JPS6233688B2 - - Google Patents

Info

Publication number
JPS6233688B2
JPS6233688B2 JP54125618A JP12561879A JPS6233688B2 JP S6233688 B2 JPS6233688 B2 JP S6233688B2 JP 54125618 A JP54125618 A JP 54125618A JP 12561879 A JP12561879 A JP 12561879A JP S6233688 B2 JPS6233688 B2 JP S6233688B2
Authority
JP
Japan
Prior art keywords
billet
superconducting wire
superconducting
alloy
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54125618A
Other languages
Japanese (ja)
Other versions
JPS5650007A (en
Inventor
Masahiro Kyofuji
Sadahiko Sanki
Juji Ishigami
Hidesumi Moriai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP12561879A priority Critical patent/JPS5650007A/en
Publication of JPS5650007A publication Critical patent/JPS5650007A/en
Publication of JPS6233688B2 publication Critical patent/JPS6233688B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 本発明は、化合物系超電導線特にNb3Sn超電導
線の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a compound-based superconducting wire, particularly a Nb 3 Sn superconducting wire.

芯材であるNbの周上にCu―Sn合金を被覆して
なる超電導素線のビレツトを熱間押出しおよび引
抜き加工等により細線化し、このようにして細線
化された超電導素線の多数本を超電導材に対する
安定化材である銅の管中に組込んでさらに熱間押
出しおよび引抜き等加工し、最終的に熱処理を行
うことにより前記銅管(安定化材)中の多数本の
超電導素線のNbとCu―Sn合金の界面にそれぞれ
Nb3Sn層を形成させるNb3Sn超電導線の製造方法
がある。
A billet of superconducting strands made of a Nb core material coated with a Cu-Sn alloy is thinned by hot extrusion and drawing, and a large number of superconducting strands thinned in this way are made into thin wires. A large number of superconducting strands in the copper tube (stabilizing material) are incorporated into a copper tube, which is a stabilizing material for the superconducting material, and then processed through hot extrusion, drawing, etc., and finally subjected to heat treatment. at the interface of Nb and Cu-Sn alloy, respectively.
There is a method for manufacturing a Nb 3 Sn superconducting wire that forms an Nb 3 Sn layer.

このNb3Sn超電導線の製造方法において、従
来、上記超電導素線のビレツトとしては、特性上
純Nbを芯材とし、その周上にCu―4〜8重量%
Sn合金を被覆したものが使用されている。しか
るに前記組成のCu―Sn合金は押出し、引抜き等
の機械加工がきわめて難しく、いまだ工業的ベー
スでの製造加工がほとんど行われていないのが実
情である。
In this method of manufacturing Nb 3 Sn superconducting wire, conventionally, the billet of the superconducting wire is made of pure Nb as a core material, and Cu-4 to 8% by weight is added on the circumference of the billet.
Those coated with Sn alloy are used. However, the Cu--Sn alloy having the above composition is extremely difficult to machine, such as extrusion or drawing, and the reality is that it is still hardly manufactured on an industrial basis.

このCu―Sn合金は、まず鋳造からして難し
く、鋳造したとき鋳肌の表面付近にSnの偏析、
プローホール等の欠陥が残存しやすいという問題
がある。このような表面欠陥が存在すると、次の
熱間あるいは冷間加工の際に材料に割れが発生
し、工業的に安定して良好な製品を得ることがで
きなくなる。
This Cu-Sn alloy is difficult to cast, and when it is cast, Sn segregates near the surface of the casting surface.
There is a problem in that defects such as protrusions tend to remain. If such surface defects exist, cracks will occur in the material during subsequent hot or cold working, making it impossible to obtain industrially stable and good products.

本発明の目的は、上記に鑑み、芯材であるNb
の周上にCu―Sn合金を被覆してなる超電導素線
のビレツトを割れを起こすことなく良好に加工す
ることができ、製造を著しく安定かつ容易ならし
めたNb3Sn超電導線の製造方法を提出することに
ある。
In view of the above, an object of the present invention is to
A method for manufacturing Nb 3 Sn superconducting wire has been developed, which enables the billet of superconducting wire coated with Cu-Sn alloy on the periphery to be processed well without cracking, making manufacturing extremely stable and easy. It's about submitting.

本発明の要旨は、芯材であるNbの周上にCu―
Sn合金を被覆してなる超電導素線ビレツトを加
工により細線化し、これにより細線化された超電
導素線の多数本を超電導材に対する安定化材であ
る銅の管中に組込んでさらに加工し、最終的に熱
処理を行うことにより前記銅管(安定化材)中の
多数本の超電導素線のNbとCu―Sn合金の界面に
それぞれNb3Sn層を形成させるNb3Sn超電導線の
製造方法において、上記超電導素線のビレツトを
加工により細線化する方法として少なくとも最初
は静水圧押出しにより加工すると共に、その際該
超電導素線のビレツトの表面を良加工性金属であ
る純銅で被覆して静水圧押出しすることを特徴と
するNb3Sn超電導線の製造方法にある。
The gist of the present invention is that Cu--
A billet of superconducting wire coated with an Sn alloy is processed into fine wires, and a large number of the thinned superconducting wires are assembled into a copper tube, which is a stabilizing material for the superconducting material, and further processed. A method for producing a Nb 3 Sn superconducting wire in which a Nb 3 Sn layer is formed at each interface between Nb and Cu-Sn alloy of a large number of superconducting wires in the copper tube (stabilizing material) by finally performing heat treatment. In this method, the billet of the superconducting wire is thinned by processing, at least initially by hydrostatic extrusion, and at that time, the surface of the billet of the superconducting wire is coated with pure copper, which is a metal with good workability, and then the billet is thinned by static extrusion. A method for producing a Nb 3 Sn superconducting wire, which is characterized by hydraulic extrusion.

本発明によれば、芯材であるNbの周上にCu―
Sn合金を被覆してなる超電導素線のビレツトを
良加工性金属である純銅で被覆することによりそ
の加工性を著しく高め、さらにその加工手段とし
て、特に静水圧押出しを利用することによりその
加工有利性をもつて、割れの発生を皆無ならしめ
たものである。
According to the present invention, Cu-
By coating the billet of superconducting wire coated with Sn alloy with pure copper, which is a metal with good workability, its workability is significantly improved, and furthermore, by using hydrostatic extrusion as a processing method, it is advantageous in its processing. Due to its properties, it completely eliminates the occurrence of cracks.

静水圧押出しは、コンテナ摩擦がなくダイス潤
滑が非常に良好な点から、本発明の目的を最大限
に生かし得る非常に有利な加工手段である。
Hydrostatic extrusion is a very advantageous processing method that can make the most of the objects of the present invention, since there is no container friction and die lubrication is very good.

次に添付図面を参照して本発明方法の実施例を
説明する。
Next, embodiments of the method of the present invention will be described with reference to the accompanying drawings.

第1図および第2図は、夫々Nb3Sn超電導線製
造のための単心静水圧押出用複合ビレツトを示
す。このビレツト1は、Nb単体ビレツト2の上
にCu―Sn合金3を被覆し、さらにその上に良加
工性金属である純銅4を被覆してなる。
FIGS. 1 and 2 each show a composite billet for single-core hydrostatic extrusion for the production of Nb 3 Sn superconducting wire. This billet 1 is made by coating a single Nb billet 2 with a Cu--Sn alloy 3, which is further coated with pure copper 4, which is a metal with good workability.

また、その両端は先端プラグ5および後端プラ
グ5′で蓋をし、真空脱気後電子ビーム溶接によ
りシールしてなる。
Further, both ends thereof are covered with a front end plug 5 and a rear end plug 5' and sealed by electron beam welding after vacuum degassing.

このようにして製造されたビレツト1は、全体
を加熱しても内部酸化の心配がなく、また表面に
純銅4を被覆しているから、加工性が良いために
押出挙動もきわめて良好であり、特に第3図に示
す方法で静水圧押出しすることにより、きわめて
健全な超電導素線の押出材を得ることができる。
The billet 1 manufactured in this way does not have to worry about internal oxidation even if it is heated as a whole, and since the surface is coated with pure copper 4, it has good workability and extremely good extrusion behavior. In particular, by hydrostatic extrusion using the method shown in FIG. 3, an extremely sound extruded superconducting wire material can be obtained.

第3図では、静水圧押出機のコンテナ6内にか
かるビレツト1を挿入し、ラム7を動かすことに
より、圧力媒体8の圧下力をもつてビレツト1を
ダイ9を通して押出すことができるようになつて
いる。
In FIG. 3, the billet 1 is inserted into the container 6 of the isostatic extruder, and by moving the ram 7, the billet 1 can be extruded through the die 9 by the downward force of the pressure medium 8. It's summery.

表面に純銅を被覆していないビレツトの場合に
は、熱間押出しはもとより静水圧押出しの場合で
も、Cu―Sn合金の欠陥に伴う押出材の割れ発
生、あるいは押出しの際先端プラグとの接続部に
おいて押出材の破断発生する場合が多く、工業的
安定生産にいたらない。
In the case of a billet whose surface is not coated with pure copper, cracks may occur in the extruded material due to defects in the Cu-Sn alloy, or cracks may occur at the connection part with the tip plug during extrusion, not only in hot extrusion but also in hydrostatic extrusion. In many cases, the extruded material breaks, and stable industrial production is not possible.

また、ビレツトの表面に純銅の被覆がないと、
押出しに際して普通ビレツトの先端に銅のプラグ
(円錐形のもの)を溶接するが、この場合銅のプ
ラグとビレツトのCu―Sn合金とを溶接すること
になり、Snの蒸発を伴うため工具、装置に損傷
を与えることから電子ビーム溶接を採用できない
という欠点がある。
Also, if there is no pure copper coating on the billet surface,
During extrusion, a copper plug (cone-shaped) is usually welded to the tip of the billet, but in this case, the copper plug and the Cu-Sn alloy of the billet are welded together, which involves evaporation of Sn, which requires tools and equipment. The disadvantage is that electron beam welding cannot be used because of the damage it causes.

このため、他の接合法でシールしなければなら
ず、通常の溶接法ではビレツトが全体的に加熱さ
れるために内部酸化を生じて、NbとCu―Sn合金
の界面の接着性を悪くし、押出挙動を悪化すると
共にその後の引抜加工も安定せず、線の破断を生
じやすくする。
For this reason, it must be sealed using another joining method, and with normal welding, the entire billet is heated, which causes internal oxidation and deteriorates the adhesion between the Nb and Cu-Sn alloy interfaces. , which worsens the extrusion behavior and makes the subsequent drawing process unstable, making the wire more likely to break.

これに対し、表面を純銅で被覆したビレツトを
静水圧押出ししてなる超電導素線については、そ
の後引抜き、純銅を繰返し行つて第4図のように
数mmオーダーの六角線とし、それらをさらに数
百、数千のオーダーで集束して安定化材である鋼
管中に組込んで第5図のようにマルチ用ビレツト
を製造し、これを再度静水圧押出しし、引抜加工
して細線化すると共にこのマルチ線の加工を1〜
2回繰返して最終的に数千〜数万の単心線の入つ
たマルチ線を製造し、このマルチ線を最終熱処理
により600〜800℃に加熱してNbとCu―Sn合金の
界面にNb3Sn層を形成させて多心Nb3Sn超電導線
を製造しても、このものは長手方向にも均一であ
り、破断部分がなく寸法形状がきわめて安定して
いる。
On the other hand, superconducting wires made by hydrostatically extruding a billet whose surface is coated with pure copper are then drawn out and repeatedly coated with pure copper to form hexagonal wires on the order of several millimeters as shown in Figure 4. A billet for multipurpose use is produced by gathering together hundreds or thousands of pieces and incorporating them into a steel pipe as a stabilizing material as shown in Fig. 5, which is then hydrostatically extruded again and drawn into thin wires. Processing of this multi wire from 1 to
This process is repeated twice to finally produce a multi-wire containing several thousand to tens of thousands of single-filament wires, and this multi-wire is heated to 600 to 800°C in a final heat treatment to add Nb to the interface between the Nb and Cu-Sn alloy. Even if a multi-core Nb 3 Sn superconducting wire is manufactured by forming a 3 Sn layer, the wire is uniform in the longitudinal direction, has no broken parts, and is extremely stable in size and shape.

因に、このマルチ超電導線については、心線数
2317本、心線径0.007mm、外径0.245mmのマルチ線
を7本撚合わせた0.8φのNb3Sn超電導線の場
合、7Tの磁界において、従来法で実験に製造し
たものが1480A/cm2の臨界電流密度を示したのに
対し、上記方法により工業的規模で製造したもの
は、1520A/cm2の臨界電流密度を示しており、特
性的にも従来法を上回わることが確認された。
Incidentally, for this multi-superconducting wire, the number of cores is
In the case of a 0.8φ Nb 3 Sn superconducting wire made by twisting 2317 multi-wires with a core diameter of 0.007 mm and an outer diameter of 0.245 mm, the wire produced experimentally using the conventional method was 1480 A/cm in a magnetic field of 7 T. 2 , whereas the product manufactured on an industrial scale using the above method showed a critical current density of 1520 A/cm 2 , confirming that its characteristics are superior to those of the conventional method. It was done.

第1図〜第3図に示す具体的実施例としては、
予め用意した外径160φ、内径148φ、長さ1200mm
の純銅管中に、外径147φ、内径91φ、長さ1200
mmのCu―13%Sn合金中空管を挿入し、さらにそ
の管中に外径90φ、長さ1100mmのNb単体中実ビ
レツトを挿入し、このものの両端を銅プラグで蓋
をし、真空脱気後電子ビーム溶接によりシールし
て得られた複合ビレツトを静水圧押出機のコンテ
ナ内に挿入し、そしてヒマシ油を圧力媒体として
押出温度370℃、最高押出圧力14000Kg/cm2にて外
径29φに静水圧押出しした。
As specific examples shown in FIGS. 1 to 3,
Pre-prepared outer diameter 160φ, inner diameter 148φ, length 1200mm
Made of pure copper tube, outer diameter 147φ, inner diameter 91φ, length 1200mm.
Insert a Cu-13%Sn alloy hollow tube with a diameter of 90 mm and a solid billet of Nb with an outer diameter of 90 mm and a length of 1100 mm. The composite billet obtained by air-sealing by electron beam welding was inserted into the container of a hydrostatic extruder, and the outer diameter was 29φ at an extrusion temperature of 370℃ and a maximum extrusion pressure of 14000Kg/cm 2 using castor oil as a pressure medium. was hydrostatically extruded.

また、この押出材のNbに対するCu、Cu―Sn合
金の断面積比は2つであり、Nb直径は約16φで
あつた。
In addition, the cross-sectional area ratio of Cu and Cu-Sn alloy to Nb in this extruded material was 2, and the Nb diameter was approximately 16φ.

以上の説明から明らかなように、本発明Nb3Sn
超電導線の製造方法によれば、芯材であるNbの
周上にCu―Sn合金を被覆してなる超電導素線の
ビレツトを加工により細線化する方法として、静
水圧押出しを採用すると共に、その際、該ビレツ
トの表面を良加工性金属である純銅で被覆して静
水圧押出しすることにより、前記ビレツトを前記
純銅の被覆層を介して静水圧押出しすることによ
り割れを起こすことなく良好に減面加工すること
ができ、この種超電導線の製造を著しく加工容易
にして安定なものとすることができると共に、そ
の結果として寸法形状のきわめて安定した良好な
形状の超電導線を得ることができ、それにより超
電導線としての特性の向上も望めるという効果が
あり、その工業的価値はきわめて大きいといえ
る。
As is clear from the above explanation, the present invention Nb 3 Sn
According to the manufacturing method of superconducting wire, hydrostatic extrusion is adopted as a method for thinning the billet of superconducting wire, which is made by coating a Cu-Sn alloy on the circumference of Nb, which is the core material, and At this time, the surface of the billet is coated with pure copper, which is a metal with good workability, and isostatically extruded, whereby the billet is hydrostatically extruded through the pure copper coating layer, thereby reducing the billet well without causing cracks. It is possible to process the surface of the superconducting wire, making it extremely easy to manufacture this type of superconducting wire and making it stable. This has the effect of improving the properties of the superconducting wire, and its industrial value can be said to be extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る超電導素線の複合ビレツ
トの正面断面図、第2図は同側面断面図、第3図
は上記複合ビレツトの静水圧押出状態図、第4図
は静水圧押出しを経て細線化された超電導素線の
断面図、第5図は細線化された超電導素線の多数
本を銅管中に組込んでなるマルチ用ビレツトの部
分断面図である。 1:複合ビレツト、2:Nb単体ビレツト、
3:Cu―Sn合金、4:純銅。
Fig. 1 is a front cross-sectional view of a composite billet of superconducting wire according to the present invention, Fig. 2 is a side cross-sectional view of the same, Fig. 3 is a diagram showing the state of hydrostatic extrusion of the composite billet, and Fig. 4 is a diagram showing hydrostatic extrusion. FIG. 5 is a partial cross-sectional view of a billet for multi-purpose use in which a large number of thinned superconducting wires are assembled into a copper tube. 1: Composite billet, 2: Nb single billet,
3: Cu-Sn alloy, 4: Pure copper.

Claims (1)

【特許請求の範囲】[Claims] 1 芯材であるNbの周上にCu―Sn合金を被覆し
てなる超電導素線のビレツトを加工により細線化
し、これにより細線化された超電導素線の多数本
を超電導材に対する安定化材である銅の管中に組
込んでさらに加工し、最終的に熱処理を行うこと
により前記銅管(安定化材)中の多数本の超電導
素線のNbとCu―Sn合金の界面にそれぞれNb3Sn
層を形成させるNb3Sn超電導線の製造方法におい
て、上記超電導素線のビレツトを加工により細線
化する方法として少なくとも最初は静水圧押出し
により加工すると共に、その際、該超電導素線の
ビレツトの表面を良加工性金属である純銅で被覆
して静水圧押出しすることを特徴とするNb3Sn超
電導線の製造方法。
1. A billet of superconducting wire made of Nb core material coated with Cu-Sn alloy is processed into fine wires, and many of the thinned superconducting wires are used as a stabilizing material for the superconducting material. By incorporating it into a certain copper tube, further processing it, and finally performing heat treatment, Nb 3 is added to the interface between the Nb and Cu-Sn alloys of the many superconducting wires in the copper tube (stabilizing material). Sn
In the method for manufacturing a Nb 3 Sn superconducting wire in which a layer is formed, the billet of the superconducting wire is thinned by processing at least initially by hydrostatic extrusion, and at that time, the billet of the superconducting wire is thinned. A method for producing a Nb 3 Sn superconducting wire, which is characterized by coating Nb 3 Sn superconducting wire with pure copper, which is a metal with good workability, and hydrostatically extruding it.
JP12561879A 1979-09-29 1979-09-29 Method of manufacturing nb3sn superconductive wire Granted JPS5650007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12561879A JPS5650007A (en) 1979-09-29 1979-09-29 Method of manufacturing nb3sn superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12561879A JPS5650007A (en) 1979-09-29 1979-09-29 Method of manufacturing nb3sn superconductive wire

Publications (2)

Publication Number Publication Date
JPS5650007A JPS5650007A (en) 1981-05-07
JPS6233688B2 true JPS6233688B2 (en) 1987-07-22

Family

ID=14914524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12561879A Granted JPS5650007A (en) 1979-09-29 1979-09-29 Method of manufacturing nb3sn superconductive wire

Country Status (1)

Country Link
JP (1) JPS5650007A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243165A (en) * 1990-02-19 1991-10-30 Sharp Corp Booster type power supply circuit
JPH04193058A (en) * 1990-11-27 1992-07-13 Sharp Corp Booster type power supply circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243165A (en) * 1990-02-19 1991-10-30 Sharp Corp Booster type power supply circuit
JPH04193058A (en) * 1990-11-27 1992-07-13 Sharp Corp Booster type power supply circuit

Also Published As

Publication number Publication date
JPS5650007A (en) 1981-05-07

Similar Documents

Publication Publication Date Title
US2435800A (en) Automatic welding electrode
JPH07502367A (en) Manufacturing method of multifilament niobium-tin superconductor
JPS6233688B2 (en)
US3150936A (en) Tungsten tubing extrusion billet
US3762025A (en) Method for producing metallic filaments
JP3124448B2 (en) Method for manufacturing Nb (3) Sn superconducting wire
US6289576B1 (en) Method for drawing elongated superconductive wires
JPS5991610A (en) Method of producing stabilizer for superconductive conductor
JPH05307917A (en) Manufacture of superconducting wire
JPH0146962B2 (en)
JPS6025846B2 (en) Manufacturing method of single-core superconducting wire
JPH06304640A (en) Manufacture of thin wire
JPH04267010A (en) Manufacture of copper-stabilized superconducting wire
JPH0794048B2 (en) Manufacturing method of inner surface silver clad aluminum tube
JPH028564Y2 (en)
JPS63274022A (en) Manufacture of multicore superconductive wire
JP2569653B2 (en) Method for producing Nb-Ti superconducting wire
JPH076641A (en) Manufacture of superconducting wire
JPS6316808A (en) Manufacture of extruding hard to work material
JPS6337515A (en) Manufacture of multicore superconductor for pulse
JPS62279016A (en) Billet for extrusion
JPS6333534A (en) Superconducting nb-ti alloy and its production
JPH04129105A (en) Manufacture of copper-stabilized fine multicore superconductor cable
JPH04259709A (en) Superconductive wire manufacture method
JPS5945021A (en) Billet for extrusion