JPS6025846B2 - Manufacturing method of single-core superconducting wire - Google Patents

Manufacturing method of single-core superconducting wire

Info

Publication number
JPS6025846B2
JPS6025846B2 JP12239779A JP12239779A JPS6025846B2 JP S6025846 B2 JPS6025846 B2 JP S6025846B2 JP 12239779 A JP12239779 A JP 12239779A JP 12239779 A JP12239779 A JP 12239779A JP S6025846 B2 JPS6025846 B2 JP S6025846B2
Authority
JP
Japan
Prior art keywords
wire
manufacturing
superconducting wire
superconducting
billet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12239779A
Other languages
Japanese (ja)
Other versions
JPS5645519A (en
Inventor
貞彦 参木
雅宏 清藤
保彦 三宅
祐治 石上
英純 森合
明光 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP12239779A priority Critical patent/JPS6025846B2/en
Publication of JPS5645519A publication Critical patent/JPS5645519A/en
Publication of JPS6025846B2 publication Critical patent/JPS6025846B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、単心複合超電導線の製造方法、とくに静水圧
押出しを利用した方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a single-core composite superconducting wire, particularly a method using hydrostatic extrusion.

単心の複合超電導線を製造する方法として、従来は、第
1図に示されるように、心材である超電導材料と被覆層
である例えば銅又は銅合金の安定化材を、夫々別個に加
工して比較的細い線状および管状となし、かるのち前者
を後者に挿入隊合せしめて単心の複合線とする方法が知
られている。
Conventionally, as shown in Fig. 1, a method for producing a single-core composite superconducting wire involves separately processing a superconducting material as a core material and a stabilizing material such as copper or copper alloy as a covering layer. A method is known in which the wire is made into a relatively thin wire or tubular shape, and then the former is inserted into the latter to form a single composite wire.

この方法の欠点および問題点にいては、各構成材は上記
のように夫々別個に加工して製造するが、このうち鋼又
は銅合金製安定化材の管については、一般に溶解鋳造し
た鉾塊から作成した押出用ビレットを熱間押出用レジュ
ーサ−あるし・は引抜ベンチで冷間にて粗加工し、引続
いてコイル押管等により滅面加工し、所定サイズとした
のち、直状に矯正し、必要長さに切断する。この加工法
は、工業的に十分確立されており、高品質の小蓬管がき
わめて能率よく生産される。
Regarding the disadvantages and problems of this method, each constituent material is processed and manufactured separately as described above, but among these, for tubes made of steel or copper alloy stabilizing materials, generally melted and cast cylindrical blocks are used. The billet for extrusion made from is rough-processed in the cold using a reducer for hot extrusion or a drawing bench, and then processed to have a smooth surface using a coiled tube, etc., to a specified size, and then straightened. Straighten and cut to required length. This processing method is industrially well-established and produces high-quality small pipes very efficiently.

しかしながら、一方心材である超電導材料は、例えばN
b−Ti合金の場合を例にとると、本系合金の場合、溶
解鋳造した鏡塊を、鍛造等の方法により800〜100
000で熱間加工し、その後圧延スヱージングにより粗
加工し、これを表面面肖り後引抜、伸線により減面し仕
上加工する。しかるにこの従来工程の場合、熱間加工に
おいては、表面酸化が激しく、その際発生する素材の酸
化物や、あるいは加工工具の剥離片等が異物として加工
材中に押し込み又は巻き込まれる恐れがある。
However, on the other hand, the superconducting material that is the core material is, for example, N
Taking the case of b-Ti alloy as an example, in the case of this alloy, a melted and cast mirror ingot is heated to 800 to 100 by a method such as forging.
000, followed by rough processing by rolling swaging, and after smoothing the surface, drawing and wire drawing are performed to reduce the area and finish. However, in the case of this conventional process, surface oxidation is severe during hot working, and there is a risk that oxides of the material generated at that time or peeled off pieces of the processing tool may be pushed into or caught up in the workpiece as foreign matter.

これら異物は、その後の冷間加工例えば引抜、伸線時に
断線原因となる。
These foreign substances cause wire breakage during subsequent cold working, such as drawing and wire drawing.

またこの材料は、鋼等に比較して工具との反応性が大き
く、例えば伸線加工中にダィとの暁付を起きし易く、伸
線材の表面品質を低下させたり、極端な場合に断線につ
らなる事も多く、従って伸線は、その潤滑性の維持に入
念な注意を必要とする。
In addition, this material has greater reactivity with tools than steel, etc., and for example, tends to cause friction with the die during wire drawing, reducing the surface quality of the wire drawing material, or in extreme cases. This often leads to wire breakage, and therefore wire drawing requires careful attention to maintain its lubricity.

単心線の表面および内部欠陥は、多心線の加工時例えば
引抜の際の不均一変形(くびれ)および断線の原因とな
る。
Surface and internal defects in single-filament wires cause non-uniform deformation (waisting) and wire breakage during processing of multi-filament wires, for example during drawing.

したがって、別に用意したNb−Ti線を鋼管中に挿入
する場合は、膨大なる条長にわたり予め表面検査を必要
とし、その手数は計り知らぬほど大きい。Nb−Tiに
限らず、超電導材料は一般に銅、アルミニウムに比較し
て加工の難しいものが多く、製造上、又品質管理上同様
の問題を有している。
Therefore, when inserting a separately prepared Nb-Ti wire into a steel pipe, a surface inspection is required in advance over an enormous length, which requires an immeasurably large amount of work. Not limited to Nb-Ti, many superconducting materials are generally more difficult to process than copper and aluminum, and have similar problems in terms of manufacturing and quality control.

尚、超電導材料は、熱間加工後酸化物層の表面押し込み
、巻き込みなどの欠陥を除去するために相当量表面を面
削する必要があり、それによる材料歩蟹りの低下が著し
い。本発明の目的は、前記した従来技術の欠点を解消し
、製造作業が能率的に遂行でき、かつ高品質の複合線材
が得られる超電導線の製造方法を提供するとにある。
It should be noted that the surface of superconducting materials needs to be subjected to a considerable amount of surface cutting to remove defects such as surface indentation and entrainment of the oxide layer after hot working, which significantly reduces material yield. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a superconducting wire, which eliminates the drawbacks of the prior art described above, allows efficient manufacturing operations, and provides a high-quality composite wire.

本発明の要旨は、予め用意した銅又は銅合金等の安定化
材製の中空ピレット内に超電導材料製の中実ビレットを
挿入し、その両端をプラグで蓋をし、真空脱気たのち中
空ビレットとプラグとを溶接によりシールして得られた
複合ビレットを静水圧押出しし、又要すればさらに引抜
加工して単心の複合超電導線を製造する方法において、
上記超電導材料製の中実ビレットとして溶解鋳造又はそ
れを鍛造したものをそのまま用いることを特徴とする単
心超電導線の製造方法にある。
The gist of the present invention is to insert a solid billet made of a superconducting material into a previously prepared hollow pellet made of a stabilizing material such as copper or copper alloy, cover both ends with plugs, and vacuum degas the hollow billet. In a method for manufacturing a single-core composite superconducting wire by isostatically extruding a composite billet obtained by sealing a billet and a plug by welding, and further drawing if necessary,
A method for manufacturing a single-core superconducting wire, characterized in that a solid billet made of the above-mentioned superconducting material is melted and cast or forged and used as it is.

したがって、この方法は、心材である超電導材料および
被覆材である銅又は銅合金等の安定化材を夫々素材より
別個に粗加工を経て仕上加工後接合して絹立てるかわり
に、素材状態で両材料を組合わせ静水圧押出しにより、
一体化、滅面加工し、要すればその後引抜、伸線等の加
工により所定サイズの単心複合線を製造する方法である
Therefore, in this method, the superconducting material that is the core material and the stabilizing material such as copper or copper alloy that is the coating material are separately rough-processed from the raw materials, finished, and then joined together. By combining materials and isostatic extrusion,
This is a method of manufacturing a single-fiber composite wire of a predetermined size by integrating, flattening, and then performing drawing, wire drawing, etc., if necessary.

安定化材として、銅の素管(中空ビレット)を使用した
本発明に係る工程図を第2図に示す。本発明において、
安定化材しては、節又は銅合金のほか、極低温において
磁気並び電気抵抗が銅より小さいアルミニウム又はその
合金が使用可能であり、銅又は銅合金としては、例えば
電気用鋼、無酸素鋼等電気的、熱的に高導伝一性の純鋼
をはじめ、Sn,Ga等主に化合超電導体を構成する成
分を含んだ銅合金が使用される。
FIG. 2 shows a process diagram of the present invention in which a copper tube (hollow billet) is used as a stabilizing material. In the present invention,
As the stabilizing material, in addition to knots or copper alloys, aluminum or its alloys, which have lower magnetic and electrical resistance than copper at cryogenic temperatures, can be used; examples of copper or copper alloys include electrical steel, oxygen-free steel, etc. In addition to pure steel with high electrical and thermal conductivity, copper alloys containing components such as Sn and Ga that mainly constitute a compound superconductor are used.

また超電導材料としては、例えばNb−Ti合金、Nb
−Zr基合金等の超電導現象を発揮する合金あるいはN
b,V等化合物超電導体の構成成分となる金属が使用さ
れる。
In addition, examples of superconducting materials include Nb-Ti alloy, Nb
- Alloys that exhibit superconductivity such as Zr-based alloys or N
Metals such as B and V, which are constituents of compound superconductors, are used.

次に本発明の実施例を説明する。Next, embodiments of the present invention will be described.

実施例 1 第3図において、予め用意した外径1600、肉厚6凧
、長さ120仇舷の安定化材製中空ビレットたる鋼管1
内に、外径1460、長さ1100肋のNb−Ti合金
銭塊2を挿入し、その両端を銅プラグ3,3′で蓋をし
、真空脱気たのち電子ビーム溶接でシーして作成した単
○複合ビレット4を第5図において、ヒマシ油10を力
媒体として押出温度30000、最局押出圧力1400
0k9/地にて外径2501こ静水圧押出しすることに
より、銅比0.2のNb−Tjを心材とした単心複合線
5が得られた。
Example 1 In Fig. 3, a hollow billet steel pipe 1 made of stabilizing material with an outer diameter of 1600 mm, a wall thickness of 6 mm, and a length of 120 mm was prepared in advance.
A Nb-Ti alloy ingot 2 with an outer diameter of 1,460 mm and a length of 1,100 mm is inserted inside, and both ends are covered with copper plugs 3, 3', and after vacuum degassing, it is sealed by electron beam welding. In Fig. 5, the single-○ composite billet 4 is extruded using castor oil 10 as a force medium at an extrusion temperature of 30,000 and a final extrusion pressure of 1,400.
A single-fiber composite wire 5 having a core material of Nb-Tj with a copper ratio of 0.2 was obtained by isostatically extruding a wire having an outer diameter of 2,501 mm at a temperature of 0 k9/ground.

尚、第5図において、11はコンテナ、12はステム、
13はダイである。
In addition, in FIG. 5, 11 is a container, 12 is a stem,
13 is a die.

本押出材の断面を調査したが、酸化物、異物等は全く認
めれず、又銅/Nb−Ti界面にも反応生成物は生成し
ておらず、両構成材は極めて強固な接着をしていること
が分った。
The cross section of this extruded material was examined, and no oxides or foreign matter were found, and no reaction products were generated at the copper/Nb-Ti interface, indicating that both constituent materials were bonded extremely strongly. I found out that there is.

この押出は、その後引抜きにより、100まで伸線した
が、ダイス焼付、断線等Nb−Ti単体線においてはい
まいま懸念されるトラブルもなく、非常に順調な減面加
工できた。
This extrusion was then carried out by drawing to draw the wire to a wire size of 100 mm. However, there were no problems such as die burning or wire breakage that are currently a concern with Nb-Ti single wires, and the area reduction process was carried out very smoothly.

実施例 2 第3図において、予め用意した外径1600、内径91
0、長さ120仇枕の安定化材製中空ビレットたるCu
−13%Snの鋳造上りの素管6内に、外径900、長
さ110仇枕のNb銭塊7を挿入接合し、両端をプラグ
で蓋をし、真空脱気後電子ビーム溶接でシールして作成
した単心複合ビレット8を、第5図においてヒマシ油1
0を圧力媒体として押出温度370oo、技高出出力1
4000k9/地にて静水圧押出しすることにより、外
径290の単心複合線9が得られた。
Example 2 In Fig. 3, the outer diameter 1600 and the inner diameter 91 prepared in advance are
0. Length 120cm Hollow billet barrel made of stabilizing material Cu
- A Nb coin coin 7 with an outer diameter of 900 mm and a length of 110 mm is inserted and bonded into the cast raw tube 6 of 13% Sn, and both ends are covered with plugs, and after vacuum degassing, it is sealed by electron beam welding. The single-fiber composite billet 8 prepared by
0 as the pressure medium, extrusion temperature 370oo, technical high output 1
A single-fiber composite wire 9 with an outer diameter of 290 mm was obtained by hydrostatic extrusion at 4000 k9/ground.

実施例1と同様に本押出材の断面を調査たが、酸化物、
異物等は全く認められず、又Cu−Sn/Nb界面にも
化合物層がなく極めて清浄な界面を示しており、両構成
材は、強固な接着していることが分った。
The cross section of this extruded material was investigated in the same manner as in Example 1, but oxides,
No foreign matter was observed, and there was no compound layer at the Cu-Sn/Nb interface, indicating an extremely clean interface, indicating that both constituent materials were strongly bonded.

この押出材は、その後引抜きと中間暁錨の繰返しにより
、200まで伸線たが、ダイス競付、断線等Nb単体線
の引抜きにおいて、いよいよ懸念されるトラブルもなく
、極めて順調な滅面加工ができた。
This extruded material was then drawn to a wire diameter of 200 by repeating drawing and intermediate anchoring, but there were no problems such as die competition or wire breakage that were worried about when drawing Nb single wire, and extremely smooth surface processing was achieved. did it.

比較例 実施例1と同様の方法で作成た複合ビレットを、熱間押
出機により温度75000、最高出圧力2500トンで
熱間押出ししたころ、外径500の単心複合線が得られ
たが、この出材のCu/Nb−Ti界面には7〃以上の
反応生成物が生成しており、その後100まで引抜きを
試みたが、細いサイズ範囲をいまいま断線を起こした。
Comparative Example A composite billet prepared in the same manner as in Example 1 was hot extruded using a hot extruder at a temperature of 75,000 tons and a maximum output pressure of 2,500 tons, and a single-core composite wire with an outer diameter of 500 mm was obtained. 7 or more reaction products were generated at the Cu/Nb-Ti interface of this material, and after that, attempts were made to pull it out to 100, but wire breakage occurred in a narrow size range.

また、反応生成物の生成を回避するため、出温度600
ooに下げて押出しを試みたが、この場合の押出可能サ
イズは80Jにもなり、サイズが大きく加工設備の力の
点から実際上その後の凝面加工が下可能であった。尚、
第1図に示される従来方法については、これ以上に思わ
しくない結果を得たものである。
In addition, in order to avoid the formation of reaction products, the exit temperature was 600%.
Attempts were made to extrude the material at a lower temperature of 0.00, but the extrudable size in this case was as much as 80J, and due to the large size and the power of the processing equipment, it was actually possible to carry out subsequent surface processing. still,
The conventional method shown in FIG. 1 gave even more unfavorable results.

本発明方法は、以上の説明からも明らかなように次のよ
うな効果を有するものである。‘1} 超電導材料の熱
間加加工程が省略でき、酸化物、異亡押込みの危険がな
くなり、高品質の複合線材が得られると同様に、従釆工
程での熱間加工後の面削が省略でき、材料の歩留りが大
幅に向上する。
As is clear from the above description, the method of the present invention has the following effects. '1} The hot working process of superconducting materials can be omitted, the risk of oxides and foreign material indentation is eliminated, and high quality composite wire rods can be obtained. can be omitted, greatly improving material yield.

もちろん作業能率もブル風こ向上する。■ 素材の粗加
工の時点で超電導材料に安定化材が被覆されるので、そ
の後の減面加工において安定化材が保護層の役割をなし
、製造時の品質管理が容易となる。
Of course, work efficiency will also improve. ■ Since the superconducting material is coated with a stabilizing material during the rough processing of the material, the stabilizing material serves as a protective layer during the subsequent area reduction processing, facilitating quality control during manufacturing.

{3’ 従来のように超電導材料単体を加工する場合と
比較して、安定化材が被覆されているので、例えば引抜
きにおいてもダィとの焼付がなく、スムーズな伸線が行
える。
{3' Compared to conventional processing of a single superconducting material, since the wire is covered with a stabilizing material, there is no seizure with the die during drawing, for example, and smooth wire drawing can be performed.

【4} 静水圧押出しの際、低温で一気阿成に非常に大
きな加工を受けるので、構成材が互いに金属的に接着し
、その後この単心複合線を使用して多心複合線を製造す
る場合にも、接着が強固であるため、加工が非常に順調
かつ安定して行うことができる。
[4] During isostatic extrusion, the material undergoes extremely large processing at low temperatures at once, so the constituent materials become metallically bonded to each other, and this single-core composite wire is then used to manufacture multi-core composite wire. In this case, the bond is strong, so processing can be carried out very smoothly and stably.

以上のように、本発明は新規かつ極めて優れた単心超電
導線の製造方法を提供したものであり、その工業的値は
大きなものがある。
As described above, the present invention provides a new and extremely excellent method for producing a single-core superconducting wire, and has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方法の工程図、第2図は本発明に関する方
法の工程図、3図は複合ビレットの正面断面図、4図は
第3図中A−A′断面図、第5図は複合ビレットの静水
圧押出状態図である。 1・・…・鋼管、2・・…・Nb−Ti合金銭塊、3・
・・・・・Cu−13%Sn銃上り素管、7・・・・・
・Nb銭魂。 寸3図寸4図 矛ー図 汁乙図 汁;図
Fig. 1 is a process diagram of the conventional method, Fig. 2 is a process diagram of the method according to the present invention, Fig. 3 is a front sectional view of a composite billet, Fig. 4 is a sectional view taken along line A-A' in Fig. 3, and Fig. 5 is a process diagram of the method according to the present invention. FIG. 3 is a diagram showing a state of hydrostatic extrusion of a composite billet. 1... Steel pipe, 2... Nb-Ti alloy ingot, 3...
...Cu-13%Sn gun tube, 7...
・Nb Zentama. Dimension 3 Dimension 4 Dimension Spear - Zu Zuzu Otsu Zujiru; Figure

Claims (1)

【特許請求の範囲】 1 予め用意した安定化材製の中空ビレツト内に超電導
材料製の中実ビレツトを挿入し、その両端をプラグで蓋
とし、真空脱気たのち中空ビレツトとプラグとを溶接に
よりシールして得られた複合ビレツトを静水圧押出しし
、又要すればさらに引抜加工して単心の複合超電導線を
製造する方法において、上記超電導材料製の中実ビレツ
トとして、溶解鋳造又はそれを鍛造したものをそのまま
用いることを特徴とする単心超電導線の製造方法。 2 特許請求の範囲第1項記載の単心超電導線の製造方
法において、安定化材製の中空ビレツトとして溶解鋳造
又はそれを鍛造してものをそのまま用いることを特徴と
する単心超電導線の製造方法。
[Claims] 1. A solid billet made of a superconducting material is inserted into a hollow billet made of a stabilizing material prepared in advance, its ends are covered with plugs, and after vacuum degassing, the hollow billet and the plug are welded. In the method of manufacturing a single-fiber composite superconducting wire by hydrostatically extruding the composite billet obtained by sealing and, if necessary, further drawing, the solid billet made of the above-mentioned superconducting material is melted or cast. A method for manufacturing a single-core superconducting wire, characterized in that a forged single-core superconducting wire is used as is. 2. The method for producing a single-core superconducting wire according to claim 1, characterized in that the hollow billet made of a stabilizing material is melted and cast or forged and used as it is. Method.
JP12239779A 1979-09-21 1979-09-21 Manufacturing method of single-core superconducting wire Expired JPS6025846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12239779A JPS6025846B2 (en) 1979-09-21 1979-09-21 Manufacturing method of single-core superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12239779A JPS6025846B2 (en) 1979-09-21 1979-09-21 Manufacturing method of single-core superconducting wire

Publications (2)

Publication Number Publication Date
JPS5645519A JPS5645519A (en) 1981-04-25
JPS6025846B2 true JPS6025846B2 (en) 1985-06-20

Family

ID=14834774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12239779A Expired JPS6025846B2 (en) 1979-09-21 1979-09-21 Manufacturing method of single-core superconducting wire

Country Status (1)

Country Link
JP (1) JPS6025846B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151300A (en) * 1984-12-25 1986-07-09 ライオン株式会社 Liquid detergent composition

Also Published As

Publication number Publication date
JPS5645519A (en) 1981-04-25

Similar Documents

Publication Publication Date Title
EP0097306B1 (en) Method of making dispersion strengthened metal bodies and product
US3631586A (en) Manufacture of copper-clad aluminum rod
CN1785587A (en) Preparation method of Cu/Ta/Cu composite tube
CN109801756B (en) Preparation method of copper-aluminum composite wire
US6294738B1 (en) Silver and silver alloy articles
JPS6025846B2 (en) Manufacturing method of single-core superconducting wire
US7089647B2 (en) Increasing the copper to superconductor ratio of a superconductor wire by cladding with copper-based strip
US3150936A (en) Tungsten tubing extrusion billet
EP0498413B1 (en) Method of manufacturing Nb3Sn superconducting wire
RU2101792C1 (en) Process of manufacture of ribbon superconductive cable
JPS6233688B2 (en)
US6289576B1 (en) Method for drawing elongated superconductive wires
CN116741460B (en) Preparation method of NbTi/Cu superconducting composite wire with ultralow copper ratio
JPH05307917A (en) Manufacture of superconducting wire
JPS6051070B2 (en) Nuclear fuel elements and their manufacturing methods
US3811178A (en) Method for the manufacture of cored wire
JPH0342126B2 (en)
JP2993986B2 (en) Manufacturing method of aluminum stabilized superconducting wire
US5898021A (en) Method of manufacturing an oxide ceramic superconductor having a high core density
JPH04259709A (en) Superconductive wire manufacture method
JPS6316808A (en) Manufacture of extruding hard to work material
CN114496351A (en) Copper-clad aluminum conductor and processing method thereof
JPH0794048B2 (en) Manufacturing method of inner surface silver clad aluminum tube
Datta et al. Extrusion of a hole for tin core insertion in the subelement billet for internal tin superconductor
JPH0512939A (en) Manufacture of aluminum composite superconducting wire