JPH04259709A - Superconductive wire manufacture method - Google Patents

Superconductive wire manufacture method

Info

Publication number
JPH04259709A
JPH04259709A JP3040956A JP4095691A JPH04259709A JP H04259709 A JPH04259709 A JP H04259709A JP 3040956 A JP3040956 A JP 3040956A JP 4095691 A JP4095691 A JP 4095691A JP H04259709 A JPH04259709 A JP H04259709A
Authority
JP
Japan
Prior art keywords
superconducting
alloy material
metal
composite billet
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3040956A
Other languages
Japanese (ja)
Inventor
Kinya Ogawa
欽也 小川
Takeshi Endo
壮 遠藤
Kiyouta Suzai
京太 須齋
Minoru Ishikawa
実 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3040956A priority Critical patent/JPH04259709A/en
Publication of JPH04259709A publication Critical patent/JPH04259709A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/30Reducing waste in manufacturing processes; Calculations of released waste quantities

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Extrusion Of Metal (AREA)

Abstract

PURPOSE:To provide a superconductive wire manufacturing method with little loss of a superconductive alloy material. CONSTITUTION:Both ends of a metal pipe 1 filled with a superconductive alloy material 2 are covered with metal covers 3 whose thickness is 20-100% of the thickness of the metal pipe 1 to give a composite billet 4. In the extrusion- processed material obtained by extruding the composite billet, the tip part and the rear end part having a high advancing ratio are located in the metal covers and the superconductive alloy material located part has a low advancing ratio and thus an inferior part lacking the superconductive alloy material is lessened and as a result, the superconductive alloy material loss is lowered.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、超電導合金素材のロス
の少ない超電導線の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a superconducting wire with little loss of superconducting alloy material.

【従来の技術】超電導線は、フラックスフローに伴う急
激な温度上昇つまりクエンチを防止する為、Nb−Ti
合金等の超電導合金素材に熱伝導性に優れた銅又は銅合
金等を複合して構成されている。このような構成の超電
導線の製造は、例えば銅製パイプ内にNb−Ti超電導
合金線材を1本充填し、このパイプ内を真空脱気したの
ち、パイプの両端に銅製蓋を固設して複合ビレットとな
し、この複合ビレットを所望形状に押出加工し、この押
出加工材に引抜き等の減面加工を施して製造される。こ
のようにして製造された超電導線は銅マトリックス中に
超電導合金線材が1本複合された単芯の超電導線である
が、実際にはこの単芯超電導線の多数本を銅パイプ内に
充填し、これを減面加工して多芯超電導線となして、超
電導合金素材つまり超電導フィラメントをできるだけ細
く分散させて熱放散が良好なものとして用いられている
[Prior Art] Superconducting wires are made of Nb-Ti to prevent rapid temperature rises, that is, quenching, caused by flux flow.
It is constructed by combining superconducting alloy material such as alloy with copper or copper alloy, etc., which has excellent thermal conductivity. To manufacture a superconducting wire with such a configuration, for example, a copper pipe is filled with one Nb-Ti superconducting alloy wire, the inside of the pipe is vacuum degassed, and copper caps are fixed to both ends of the pipe to form a composite. It is produced by forming a billet, extruding this composite billet into a desired shape, and subjecting the extruded material to surface reduction processing such as drawing. The superconducting wire manufactured in this way is a single-core superconducting wire in which one superconducting alloy wire is composited in a copper matrix, but in reality, many of these single-core superconducting wires are filled into a copper pipe. This wire is processed to reduce its area to form a multicore superconducting wire, and the superconducting alloy material, that is, the superconducting filament is dispersed as finely as possible, and is used as a wire with good heat dissipation.

【0002】0002

【発明が解決しようとする課題】ところで、一般に押出
加工材は、図3にそのメタルフローを示したように、押
出ビレット5と図示しない押出ダイス内面との間の摩擦
抵抗の影響で、押出ビレット5の表面に相当する部分の
変形が遅れた形状を呈し、この遅れの傾向は押出加工材
の先端部分及び後端部分において顕著に現れるものであ
る。他方、超電導線の製造にて用いる複合ビレットは、
図4にその縦断面図を示したように、金属製蓋3の厚さ
を薄くして押出加工時に内部に超電導合金素材2が充満
した良品部分ができるだけ長く取れるように作製されて
おり、その結果この複合ビレット4を押出して得られた
押出加工材は、図5にその縦断面図を示したように、そ
の先端部分及び後端部分に超電導合金素材2が不足した
不良部分が大量に発生し、この不良部分は切断除去する
為、高価な超電導合金素材を大量にロスしてしまうとい
う問題があった。
[Problems to be Solved by the Invention] Generally speaking, as shown in FIG. 3, the metal flow of extruded materials is such that due to the influence of frictional resistance between the extruded billet 5 and the inner surface of an extrusion die (not shown), the extruded billet It has a shape in which the deformation of the portion corresponding to the surface of No. 5 is delayed, and this tendency of delay is noticeable at the front end and rear end portions of the extruded material. On the other hand, the composite billet used in the production of superconducting wire is
As shown in the longitudinal cross-sectional view of Fig. 4, the thickness of the metal lid 3 is made thin so that the good part filled with the superconducting alloy material 2 can be kept as long as possible during extrusion processing. As a result, the extruded material obtained by extruding this composite billet 4 has a large number of defective parts where the superconducting alloy material 2 is insufficient at its leading and trailing ends, as shown in the longitudinal cross-sectional view of FIG. However, since these defective parts are removed by cutting, there is a problem in that a large amount of expensive superconducting alloy material is lost.

【0003】0003

【課題を解決する為の手段及び作用】本発明はこのよう
な状況の中で鋭意研究を行った結果なされたもので、そ
の目的とするところは、超電導合金素材のロスの少ない
超電導線の製造方法を提供することにある。即ち、本発
明は、1本の超電導合金線材又は多数本の単芯超電導線
材又は多数本の多芯超電導線材を充填した金属製パイプ
の両端に金属製蓋を固設して複合ビレットとなし、次い
でこの複合ビレットに押出加工を含む減面加工を施す超
電導線の製造方法において、前記金属製蓋の厚さを前記
金属製パイプの直径の20%〜100%の厚さにするこ
とを特徴とするものである。
[Means and effects for solving the problems] The present invention was made as a result of intensive research under these circumstances, and its purpose is to manufacture superconducting wires with less loss of superconducting alloy materials. The purpose is to provide a method. That is, the present invention provides a composite billet by fixing metal lids to both ends of a metal pipe filled with one superconducting alloy wire, multiple single-core superconducting wires, or multiple multi-core superconducting wires, The method for manufacturing a superconducting wire in which the composite billet is then subjected to area reduction processing including extrusion processing is characterized in that the thickness of the metal lid is 20% to 100% of the diameter of the metal pipe. It is something to do.

【0004】本発明方法において、超電導合金線材,単
芯超電導線,多芯超電導線等の超電導合金素材を充填す
る金属製パイプの材料には、主に無酸素銅,タフピッチ
銅,銅錫合金等の銅又は銅合金が用いられるが、熱伝導
性に優れたものであれば任意の金属材料が用いられる。 又この金属製パイプに被せる金属製蓋には、通常、金属
製パイプと同じ材質のものが用いられる。又本発明方法
において、前記金属製蓋の厚さを、用いた金属製パイプ
の直径の20%〜100%に限定した理由は、20%未
満では押出加工材の超電導合金素材が不足した不良部分
の長さが長くなり、又100%を超えると1回の押出し
で得られる超電導合金素材が充満した良品部分の収量長
さが短くなり、いずれもコスト又は生産性が低下する為
である。以下に本発明の超電導線の製造方法を図を参照
して具体的に説明する。図1は本発明方法にて用いる複
合ビレットの態様例を示す縦断面図、図2は前記複合ビ
レットの押出加工材のメタルフローの態様例を示す縦断
面説明図である。複合ビレットは、図1に示したように
金属製パイプ1内に超電導合金素材2を充填し、次いで
この金属製パイプ1内を真空脱気したのち、両端に金属
製蓋3を溶接して作製される。次に、このようにして作
製した複合ビレット4は、必要に応じタッピングやHI
P処理等を施して、外周の金属製パイプ1と内部の超電
導合金素材2との密着性を高めたのち、熱間で所望形状
に押出加工する。得られた押出加工材は、図2に示した
ように先進率の大きい先端部分及び後端部分が金属製蓋
3の部分に位置し、超電導合金素材2の配置部分は先進
率が小さく、従って超電導合金素材が不足して不良とな
る部分が低減する。このようにして得られた押出加工材
は、このあと不良部分を切断除去し、次いでスエージャ
ーや引抜等の減面加工法により所定形状の超電導線に加
工される。
In the method of the present invention, the material of the metal pipe filled with superconducting alloy material such as superconducting alloy wire, single-core superconducting wire, multi-core superconducting wire, etc. mainly includes oxygen-free copper, tough pitch copper, copper-tin alloy, etc. Copper or copper alloy is used, but any metal material can be used as long as it has excellent thermal conductivity. Also, the metal lid that covers the metal pipe is usually made of the same material as the metal pipe. In addition, in the method of the present invention, the reason why the thickness of the metal lid is limited to 20% to 100% of the diameter of the metal pipe used is that if the thickness is less than 20%, defective parts where the superconducting alloy material of the extruded material is insufficient This is because the length becomes longer, and when it exceeds 100%, the yield length of a good part filled with superconducting alloy material obtained by one extrusion becomes shorter, both of which reduce cost or productivity. The method for manufacturing a superconducting wire of the present invention will be specifically explained below with reference to the drawings. FIG. 1 is a longitudinal cross-sectional view showing an example of an embodiment of a composite billet used in the method of the present invention, and FIG. 2 is a longitudinal cross-sectional explanatory view showing an example of a metal flow of an extruded material of the composite billet. The composite billet is produced by filling a metal pipe 1 with a superconducting alloy material 2 as shown in Fig. 1, then vacuum degassing the metal pipe 1, and then welding metal lids 3 to both ends. be done. Next, the composite billet 4 produced in this way is subjected to tapping or HI process as necessary.
After P treatment or the like is performed to improve the adhesion between the outer circumferential metal pipe 1 and the inner superconducting alloy material 2, the tube is hot extruded into a desired shape. As shown in FIG. 2, the obtained extruded material has a leading end portion and a trailing end portion with a high advancement rate located in the metal lid 3, and a portion where the superconducting alloy material 2 is arranged has a small advancement rate, so The number of defective parts due to lack of superconducting alloy material is reduced. The extruded material thus obtained is then cut and removed to remove defective portions, and then processed into a superconducting wire of a predetermined shape by an area-reducing method such as swaging or drawing.

【0005】[0005]

【実施例】以下に本発明を実施例により詳細に説明する
。 実施例1 外径250mm,内径150mmの無酸素銅製パイプに
、Nb−Ti超電導合金素材を厚さ1.7mmのNb板
をバリヤーとして1層に巻いて充填し、次いで前記パイ
プ内を真空脱気したのち、このパイプの両端に種々厚さ
の無酸素銅製蓋を電子ビーム溶接して複合ビレットを作
製した。この複合ビレットの長さは蓋部を入れて900
mmに統一した。次いでこの複合ビレットにHIP処理
を施して外径245mmに圧縮したのち、これを850
℃に加熱して25mmφの線材に押出した。このように
して得られた押出加工材について、内部にNb−Ti超
電導合金素材が所定の径を有して充満した良品部分の長
さ(収量長さ)を計測し、又押出加工材全長に対する良
品部分の長さの比率(良品率)を求めた。結果は表1に
示した。
[Examples] The present invention will be explained in detail below using examples. Example 1 An oxygen-free copper pipe with an outer diameter of 250 mm and an inner diameter of 150 mm was filled with a Nb-Ti superconducting alloy material wrapped in one layer using a 1.7 mm thick Nb plate as a barrier, and then the inside of the pipe was vacuum degassed. Thereafter, caps made of oxygen-free copper of various thicknesses were electron beam welded to both ends of this pipe to produce composite billets. The length of this composite billet is 900 mm including the lid.
Standardized to mm. Next, this composite billet was subjected to HIP treatment and compressed to an outer diameter of 245 mm, and then compressed to 850 mm.
It was heated to ℃ and extruded into a wire rod with a diameter of 25 mm. For the extruded material obtained in this way, the length (yield length) of the non-defective part filled with Nb-Ti superconducting alloy material with a predetermined diameter inside was measured, and The ratio of the length of the non-defective part (defective product rate) was determined. The results are shown in Table 1.

【0006】[0006]

【表1】[Table 1]

【0007】表1より明らかなように、本発明方法品(
No1〜5)は、いずれも収量長さ又は/及び良品率が
高い値を示すものであった。先端と後端の蓋の厚さの和
が同じ場合は、押出し時に先頭となる先端の蓋の厚さを
厚くした方(No2)が、先端と後端を同じ厚さにした
もの(No3)より収量長さも良品率も高い値となって
いるが、これは押出加工材の先進率が先端部分の方が後
端部分より大きい為である。これに対し、比較例品のN
o6は蓋の厚さが薄かった為良品率が極端に低下し、N
o7は蓋の厚さが厚すぎた為、収量長さが極めて短くな
った。
As is clear from Table 1, the method of the present invention (
Nos. 1 to 5) all showed high values of yield length and/or good product rate. If the sum of the thicknesses of the lids at the tip and rear end are the same, the one with the thicker lid at the leading end during extrusion (No. 2) is the one with the same thickness at the front end and the rear end (No. 3). The yield length and non-defective rate are both higher, but this is because the leading edge rate of the extruded material is greater at the leading end than at the trailing end. On the other hand, the N of the comparative example product
o6 had a thin lid, so the rate of good products was extremely low, and N
In o7, the lid was too thick, so the yield length was extremely short.

【0008】実施例2 実施例1のNo2の条件で得た25mmφの押出加工材
に、引抜き及び伸線加工を施して2.5mmφの単芯超
電導線を作製した。次に、この単芯超電導線7000本
を実施例1で用いたのと同じ外径250mm,内径15
0mmの無酸素銅製パイプ内に充填し、パイプ内を真空
脱気したのち、パイプ両端に種々厚さの無酸素銅製蓋を
電子ビーム溶接して複合ビレットとなした。上記の複合
ビレットの長さは蓋部も入れて1200mmとした。こ
のようにして作製した複合ビレットをHIP処理して外
径を240mmに圧縮し、しかるのち、この複合ビレッ
トを500℃に加熱して45mmφの線材に熱間で押出
加工した。このようにして得られた押出加工材について
、内部に単芯超電導線が7000本充満した良品部分の
長さを計測し、又良品率を求めた。結果は表2に示した
Example 2 A 25 mmφ extruded material obtained under the conditions No. 2 of Example 1 was subjected to drawing and wire drawing to produce a 2.5 mmφ single-core superconducting wire. Next, 7,000 of these single-core superconducting wires were prepared using the same outer diameter of 250 mm and inner diameter of 15 mm as used in Example 1.
After filling a 0 mm oxygen-free copper pipe and evacuating the inside of the pipe, oxygen-free copper lids of various thicknesses were electron beam welded to both ends of the pipe to form a composite billet. The length of the above composite billet including the lid was 1200 mm. The composite billet thus produced was compressed to an outer diameter of 240 mm by HIP treatment, and then this composite billet was heated to 500° C. and hot extruded into a wire rod of 45 mmφ. Regarding the extruded material thus obtained, the length of the non-defective part in which the inside was filled with 7000 single-core superconducting wires was measured, and the non-defective product rate was determined. The results are shown in Table 2.

【0009】[0009]

【表2】[Table 2]

【0010】表2より明らかなように、本発明方法品(
No8〜12)は、収量長さ又は/及び良品率が高い値
を示すものであった。パイプの先端と後端の蓋の長さの
和が同じ場合は、先端の蓋の厚さを厚くした方(No9
)が、同じ長さにしたもの(No10)より収量長さも
良品率も高い値となる点は実施例1の場合と同じであっ
た。他方、比較例品のNo13は蓋の厚さが薄かった為
良品率が極端に低下した。又、No14は蓋の厚さが厚
すぎた為、収量長さが極めて短くなった。以上、金属製
パイプに1本の超電導合金線材又は多数本の単芯超電導
線を充填した複合ビレットを用いて超電導線を製造した
例について説明したが、多数本の多芯超電導線を充填し
た複合ビレットを用いた場合も同様の効果が得られる。 又超電導合金素材の材料にNb−Ti超電導合金を用い
た例について説明したが、本発明方法は、Nb3 Sn
超電導線等他の超電導線の製造に適用しても同様の効果
が得られるものである。
As is clear from Table 2, the method of the present invention (
Nos. 8 to 12) showed high values of yield length and/or good product rate. If the sum of the lengths of the pipe tip and rear end caps is the same, choose the one with the thicker tip cap (No. 9).
) was the same as in Example 1 in that the yield length and non-defective rate were higher than those of the same length (No. 10). On the other hand, Comparative Example Product No. 13 had a thin lid, so the rate of non-defective products was extremely low. In addition, since the lid of No. 14 was too thick, the yield length was extremely short. Above, an example was explained in which a superconducting wire was manufactured using a composite billet in which a metal pipe was filled with one superconducting alloy wire or a large number of single-core superconducting wires. A similar effect can be obtained when billet is used. Furthermore, although an example was explained in which Nb-Ti superconducting alloy was used as the superconducting alloy material, the method of the present invention is applicable to Nb3Sn
Similar effects can be obtained even when applied to the production of other superconducting wires such as superconducting wires.

【0011】[0011]

【効果】以上述べたように本発明方法によれば、押出加
工時に発生する高価な超電導合金素材のロスを低減する
ことができるので、工業上顕著な効果を奏する。
[Effects] As described above, according to the method of the present invention, it is possible to reduce the loss of expensive superconducting alloy material that occurs during extrusion processing, so that it has a significant industrial effect.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明方法で用いる複合ビレットの縦断面図で
ある。
FIG. 1 is a longitudinal cross-sectional view of a composite billet used in the method of the present invention.

【図2】本発明方法における押出加工材のメタルフロー
説明図である。
FIG. 2 is an explanatory diagram of a metal flow of an extruded material in the method of the present invention.

【図3】押出加工材のメタルフロー説明図である。FIG. 3 is an explanatory diagram of metal flow of extruded material.

【図4】従来の複合ビレットの縦断面図である。FIG. 4 is a longitudinal cross-sectional view of a conventional composite billet.

【図5】従来の複合ビレットの押出加工材のメタルフロ
ー説明図である。
FIG. 5 is a metal flow explanatory diagram of a conventional composite billet extruded material.

【符号の説明】[Explanation of symbols]

1  金属製パイプ 2  超電導合金素材 3  金属製蓋 4  複合ビレット 5  押出ビレット 1 Metal pipe 2 Superconducting alloy material 3 Metal lid 4 Composite billet 5 Extrusion billet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  1本の超電導合金線材又は多数本の単
芯超電導線材又は多数本の多芯超電導線材を充填した金
属製パイプの両端に金属製蓋を固設して複合ビレットと
なし、次いでこの複合ビレットに押出加工を含む減面加
工を施す超電導線の製造方法において、前記金属製蓋の
厚さを前記金属製パイプの直径の20%〜100%の厚
さにすることを特徴とする超電導線の製造方法。
Claim 1: A metal pipe filled with one superconducting alloy wire, multiple single-core superconducting wires, or multiple multi-core superconducting wires is fixed with metal lids at both ends to form a composite billet, and then The method for manufacturing a superconducting wire in which the composite billet is subjected to area reduction processing including extrusion processing is characterized in that the thickness of the metal lid is 20% to 100% of the diameter of the metal pipe. Method of manufacturing superconducting wire.
JP3040956A 1991-02-12 1991-02-12 Superconductive wire manufacture method Pending JPH04259709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3040956A JPH04259709A (en) 1991-02-12 1991-02-12 Superconductive wire manufacture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3040956A JPH04259709A (en) 1991-02-12 1991-02-12 Superconductive wire manufacture method

Publications (1)

Publication Number Publication Date
JPH04259709A true JPH04259709A (en) 1992-09-16

Family

ID=12594944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3040956A Pending JPH04259709A (en) 1991-02-12 1991-02-12 Superconductive wire manufacture method

Country Status (1)

Country Link
JP (1) JPH04259709A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475915A (en) * 1994-10-31 1995-12-19 Igc Advance Superconductors, Inc. Method for increasing extrusion yield in forming a superconducting rod

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475915A (en) * 1994-10-31 1995-12-19 Igc Advance Superconductors, Inc. Method for increasing extrusion yield in forming a superconducting rod
WO1996013867A1 (en) * 1994-10-31 1996-05-09 Igc Advance Superconductors, Inc. Method of extruding a superconducting rod

Similar Documents

Publication Publication Date Title
US3514850A (en) Electrical conductors
US3631586A (en) Manufacture of copper-clad aluminum rod
JPH04259709A (en) Superconductive wire manufacture method
EP0498413B1 (en) Method of manufacturing Nb3Sn superconducting wire
JPH05307917A (en) Manufacture of superconducting wire
JPH076641A (en) Manufacture of superconducting wire
JPH04315524A (en) Member for bonding together copper material and aluminum material and manufacture thereof
JP3124448B2 (en) Method for manufacturing Nb (3) Sn superconducting wire
JPS59110486A (en) Production of ti clad wire rod
RU2101792C1 (en) Process of manufacture of ribbon superconductive cable
RU2076363C1 (en) Method for manufacturing of multiple-conductor superconducting wire using nb*003sn compound
JP3108496B2 (en) Superconducting wire manufacturing method
JPH07114842A (en) Extruding method for nbti superconducting billet
JPS6128412B2 (en)
JPS62164897A (en) Composite bus bar for electric conduction
JP2644432B2 (en) Hot extrusion method of superconducting composite billet
JPH0576926A (en) Superconducting composite billet for extrusion
JPS6025846B2 (en) Manufacturing method of single-core superconducting wire
JPS6233688B2 (en)
JPH06203667A (en) Manufacture of superconducting composite billet
SU1310906A1 (en) Method of extruding elongated articles of aluminium or its alloys
SU452881A1 (en) Method of making anodes of x-ray tubes
US3123893A (en) Method of working sheet
JPH0612931A (en) Manufacture of compound superconductive wire rod
JPH07182940A (en) Manufacture of nb-ti composite multi-core superconducting wire