JP3108496B2 - Superconducting wire manufacturing method - Google Patents

Superconducting wire manufacturing method

Info

Publication number
JP3108496B2
JP3108496B2 JP04020136A JP2013692A JP3108496B2 JP 3108496 B2 JP3108496 B2 JP 3108496B2 JP 04020136 A JP04020136 A JP 04020136A JP 2013692 A JP2013692 A JP 2013692A JP 3108496 B2 JP3108496 B2 JP 3108496B2
Authority
JP
Japan
Prior art keywords
alloy
composite
wire
billet
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04020136A
Other languages
Japanese (ja)
Other versions
JPH0554742A (en
Inventor
卓哉 鈴木
欽也 小川
壮 遠藤
京太 須齋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP04020136A priority Critical patent/JP3108496B2/en
Publication of JPH0554742A publication Critical patent/JPH0554742A/en
Application granted granted Critical
Publication of JP3108496B2 publication Critical patent/JP3108496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、超電導特性に優れたN
3 Sn超電導線の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting N
The present invention relates to a method for manufacturing a b 3 Sn superconducting wire.

【0002】[0002]

【従来の技術】Nb3 Sn超電導線の製造においては、
Nb3 Sn化合物が脆いため、最終工程でNb3 Sn相
を生成せしめることを基本とした製造法、例えば複合加
工法、内部Sn法、チューブ法等が開発されている。
2. Description of the Related Art In the production of Nb 3 Sn superconducting wires,
Since the Nb 3 Sn compound is brittle, a production method based on forming an Nb 3 Sn phase in the final step, for example, a composite processing method, an internal Sn method, a tube method, and the like have been developed.

【0003】しかして、上記加工法のうち、複合加工法
は、まず図1Aに示したように、Cu−Sn系合金製ビ
レット1に貫通孔を開け、この貫通孔にNb製棒材2を
挿入して複合ビレット3となし、次いでこの複合ビレッ
ト3に伸延加工を施して複合線材5を作製する。このと
き、複合線材5は、図1Bに示すように、その断面にお
いてNb製棒材2の周囲にCu−Sn系合金からなるブ
ロンズ層4が被覆されている。最終に、この複合線材5
に所定の加熱処理を施してブロンズ層4中のSnをNb
製棒材2に拡散させることにより、ブロンズ層4とNb
製棒材2の界面にNb3 Sn相6を生成させて図1Cに
示すようなNb3 Sn超電導線7を得る。しかして、こ
の方法により得られた超電導線は、Nb3 Sn相がブロ
ンズ層中に複合されているために電磁気的に安定であ
る。このため、この超電導線は、急速に励磁できる利点
を有し、広く実用に供されている。
[0003] Among the above-mentioned processing methods, in the composite processing method, first, as shown in FIG. 1A, a through hole is formed in a billet 1 made of a Cu-Sn alloy, and a bar 2 made of Nb is inserted into the through hole. The composite billet 3 is inserted to form a composite billet 3, and then the composite billet 3 is subjected to elongation to produce a composite wire 5. At this time, as shown in FIG. 1B, the cross section of the composite wire 5 is covered with a bronze layer 4 made of a Cu—Sn-based alloy around the Nb bar 2. Finally, this composite wire 5
To the Sn in the bronze layer 4 with Nb
By diffusing into the bar 2, the bronze layer 4 and Nb
An Nb 3 Sn phase 6 is generated at the interface of the bar 2 to obtain an Nb 3 Sn superconducting wire 7 as shown in FIG. 1C. The superconducting wire obtained by this method is electromagnetically stable because the Nb 3 Sn phase is compounded in the bronze layer. Therefore, this superconducting wire has an advantage that it can be rapidly excited, and is widely used in practice.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記の
複合加工法において用いられるCu−Sn系合金ビレッ
ト中のSn量は、加工性を考慮してCu中に固溶する範
囲内の量、すなわち15.0重量%以下の量に抑えられ
ており、その結果、生成するNb3 Sn相が量的に制限
されて臨界電流密度(Jc)等の超電導特性に高い値が
得られないという問題があった。
However, the amount of Sn in the Cu—Sn based alloy billet used in the above-mentioned combined working method is an amount within the range of solid solution in Cu in consideration of workability, that is, 15%. 0.0% by weight or less, and as a result, there is a problem that the Nb 3 Sn phase to be formed is limited in quantity and a high value of superconductivity such as critical current density (Jc) cannot be obtained. Was.

【0005】本発明はかかる点に鑑みてなされたもので
あり、より高い超電導特性を発揮できるNb3 Sn超電
導線を効率よく得ることができるNb3 Sn超電導線の
製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method of manufacturing an Nb 3 Sn superconducting wire capable of efficiently obtaining an Nb 3 Sn superconducting wire exhibiting higher superconducting characteristics. And

【0006】[0006]

【課題を解決するための手段】本発明者らは、Cu−S
n系合金を熱間加工後、このCu−Sn系合金中の金属
間化合物をより小さく分割させながら伸延加工を行うこ
とにより、固溶限界を超える量のSnを含有するCu−
Sn系合金を用いても、複合線材が充分に耐え得る変形
能を有することを知見し、さらに研究を重ねて本発明を
完成するに至った。
Means for Solving the Problems The present inventors have proposed Cu-S
After hot-working the n-based alloy, by performing elongation while dividing the intermetallic compound in the Cu-Sn-based alloy into smaller pieces, Cu-containing Cu in an amount exceeding the solid solution limit is obtained.
The inventor has found that the composite wire has sufficient deformability even with the use of the Sn-based alloy, and has further studied to complete the present invention.

【0007】すなわち、本発明は、Cu−Sn系合金の
マトリクス中にNbまたはNb合金からなる棒材を所望
本数複合して複合ビレットを作製し、次いで、前記複合
ビレットに伸延加工を施して複合線材を得て、その後、
前記複合線材に所定の加熱処理を施すNb3 Sn超電導
線の製造方法において、前記Cu−Sn系合金が15.
1〜24.6重量%のSnを含有しており、前記伸延加
工は、熱間加工後に冷間減面加工もしくは温間減面加
工、および焼鈍処理を繰り返して前記Cu−Sn系合金
中の金属間化合物をより小さく分割させながら行う加工
であることを特徴とするNb3 Sn超電導線の製造方法
を提供する。
That is, according to the present invention, a composite billet is prepared by compounding a desired number of bars made of Nb or Nb alloy in a matrix of a Cu—Sn alloy, and then the composite billet is subjected to elongation processing to form a composite billet. After getting the wire,
The method of manufacturing a composite wire subjected to a predetermined heat treatment to Nb 3 Sn superconducting wire, the Cu-Sn-based alloy 15.
Contains 1 to 24.6% by weight of Sn, and the elongation is performed by repeating cold reduction processing or warm reduction processing after hot working, and annealing treatment in the Cu-Sn based alloy. A process for producing an Nb 3 Sn superconducting wire, characterized in that the process is performed while dividing the intermetallic compound into smaller pieces.

【0008】また、本発明は、Cu−Sn系合金のマト
リクス中にNbまたはNb合金からなる棒材を所望本数
複合して複合ビレットを作製し、次いで、前記複合ビレ
ットに伸延加工を施して複合線材を得て、多数本の前記
複合線材をCuまたはCu合金からなるパイプ内に挿入
して複合して多芯複合ビレットを作製し、次いで、前記
多芯複合ビレットに伸延加工を施して多芯複合線材を得
て、その後、前記多芯複合線材に所定の加熱処理を施す
Nb3 Sn超電導線の製造方法において、前記Cu−S
n系合金が15.1〜24.6重量%のSnを含有して
おり、前記伸延加工は、熱間加工後に冷間減面加工もし
くは温間減面加工、および焼鈍処理を繰り返して前記C
u−Sn系合金中の金属間化合物をより小さく分割させ
ながら行う加工であることを特徴とするNb3 Sn超電
導線の製造方法を提供する。
[0008] The present invention also provides a composite billet by compounding a desired number of bars made of Nb or Nb alloy in a matrix of a Cu-Sn alloy to produce a composite billet, and then subjecting the composite billet to elongation processing. A wire rod is obtained, a large number of the composite wire rods are inserted into a pipe made of Cu or a Cu alloy to be composited to produce a multi-core composite billet, and then the multi-core composite billet is subjected to elongation processing to obtain a multi-core composite billet. A method for producing an Nb 3 Sn superconducting wire in which a composite wire is obtained and then a predetermined heat treatment is performed on the multi-core composite wire, wherein the Cu-S
The n-based alloy contains 15.1 to 24.6% by weight of Sn, and the elongation is performed by repeating cold reduction processing or warm reduction processing and annealing after hot working.
to provide a method of manufacturing a Nb 3 Sn superconducting wire, characterized in that the processing performed while divided smaller intermetallic compound of u-Sn-based alloy.

【0009】この発明方法において、マトリクスとなす
Cu−Sn系合金には、Snを15.1重量%〜24.
6重量%含有せしめたCu−Sn二元系合金のほか、こ
の二元系合金にTiを0.1重量%〜0.4重量%程度
含有させた合金等が適用される。また前記マトリクス中
に複合する棒状のNbまたはNb合金のうちのNb合金
としては、Taを7.5重量%程度含有せしめたNb
Ta系合金等が用いられる。
In the method of the present invention, the Cu—Sn based alloy serving as the matrix contains 15.1% by weight of Sn to 24.
In addition to the Cu-Sn binary alloy containing 6% by weight, an alloy containing about 0.1% to 0.4% by weight of Ti in this binary alloy is used. Further, as the Nb alloy of the rod-shaped Nb or Nb alloy compounded in the matrix, Nb − containing about 7.5% by weight of Ta is used.
A Ta-based alloy or the like is used.

【0010】また、この発明方法において、Cu−Sn
系合金マトリックス中にNbからなる棒材等を複合した
複合ビレットは、押出、圧延等の方法により熱間加工さ
れ、次いで圧延、スエージャー、引抜き等の加工法によ
り所定形状の複合線材に冷間加工される。なお、温間加
工とは、再結晶温度未満での加工をいい、350℃以上
での加工が好ましい。また、冷間加工も必ずしも室温で
の加工に限定されず、多少加熱しながら行ってもよい。
In the method of the present invention, Cu-Sn
A composite billet in which a bar material made of Nb is compounded in a system alloy matrix is hot worked by a method such as extrusion or rolling, and then cold worked into a composite wire having a predetermined shape by a working method such as rolling, swaging or drawing. Is done. Note that the warm working means working at a temperature lower than the recrystallization temperature, and working at 350 ° C. or more is preferable. Further, the cold working is not necessarily limited to the working at room temperature, and may be carried out while slightly heating.

【0011】前記の押出、圧延等の熱間加工温度は、N
3 Sn相の析出を防止するため、700〜750℃と
低めに抑える必要がある。また引抜き等の冷間加工は、
減面率を40%以下とし、好ましくは10〜20%加工
する毎に500〜650℃の中間焼鈍処理を行う。減面
率が40%を超えると冷間加工が困難となるからであ
る。また、中間焼鈍温度が500℃未満であると材料が
軟化しなくなり、中間焼鈍温度が650℃を超えるとN
3 Snが生成するからである。なお、中間焼鈍処理時
間は、30分〜3時間であることが好ましい。
The hot working temperature for the above-mentioned extrusion, rolling, etc. is N
To prevent precipitation of b 3 Sn phase, it is necessary to suppress the low and 700 to 750 ° C.. In addition, cold working such as drawing,
The area reduction rate is set to 40% or less, and preferably, the intermediate annealing treatment at 500 to 650 ° C. is performed every time processing is performed to 10 to 20%. If the area reduction ratio exceeds 40%, cold working becomes difficult. Further, if the intermediate annealing temperature is lower than 500 ° C., the material does not soften, and if the intermediate annealing temperature exceeds 650 ° C., N
This is because b 3 Sn is generated. The intermediate annealing time is preferably 30 minutes to 3 hours.

【0012】このようにして得られた複合線材を700
℃程度の高温で長時間加熱処理することにより、Cu−
Sn系合金中のSnとNbとが拡散反応してNb3 Sn
相が生成してNb3 Sn超電導線となる。
The composite wire thus obtained is
By performing heat treatment for a long time at a high temperature of about
Diffusion reaction between Sn and Nb in the Sn-based alloy causes Nb 3 Sn
A phase is formed to form an Nb 3 Sn superconducting wire.

【0013】この発明方法において、マトリックスとな
すCu−Sn系合金中のSn量を15.1重量%〜2
4.6重量%の範囲に限定した理由は、Sn量が15.
1重量%未満では加熱処理により生成するNb3 Sn相
の量が充分でなく、Jc(臨界電流密度)等の超電導特
性が向上せず、また24.6重量%を超えるとCu−S
n系合金の加工性が低下して伸延加工中にブロンズ層に
割れ等の欠陥が生じるためである。
In the method of the present invention, the amount of Sn in the Cu—Sn alloy serving as the matrix is adjusted to 15.1% by weight to 2%.
The reason for limiting to the range of 4.6% by weight is that the amount of Sn is 15.
If it is less than 1% by weight, the amount of the Nb 3 Sn phase generated by the heat treatment is not sufficient, and the superconducting properties such as Jc (critical current density) are not improved. If it exceeds 24.6% by weight, Cu—S
This is because the workability of the n-type alloy is reduced, and defects such as cracks occur in the bronze layer during the elongation process.

【0014】この発明方法において、多芯超電導複合ビ
レットは、純Cu製パイプ内にNbまたはTaバリアを
設置し、その中に超電導素線を充填して作製されるもの
である。また、上記多芯超電導複合ビレットを多芯複合
線材に伸延加工する方法およびこの複合線材に施す加熱
処理方法は、上記に示した通りである。
In the method of the present invention, the multifilament superconducting composite billet is manufactured by placing an Nb or Ta barrier in a pure Cu pipe and filling the superconducting element wire therein. The method of extending the multifilament superconducting composite billet into a multifilament composite wire and the heat treatment method applied to the composite wire are as described above.

【0015】本発明によれば、Snの供給源となすCu
−Sn系合金、すなわちブロンズ層のSn量が多いの
で、Cu−Sn系合金中ではα相中にδ相が析出した状
態となる。この析出物は、最後の加熱処理工程でNb3
Snが形成するため、拡散消失する。
According to the present invention, Cu serving as a source of Sn
Since the amount of Sn in the -Sn-based alloy, that is, the bronze layer is large, the Cu-Sn-based alloy is in a state in which the δ phase is precipitated in the α phase. This precipitate is Nb 3 in the last heat treatment step.
Since Sn is formed, it diffuses and disappears.

【0016】[0016]

【作用】本発明では、熱間加工後に冷間加工もしくは温
間加工、および焼鈍処理を繰り返してCu−Sn系合金
中の金属間化合物相(δ相)をより小さく分割させなが
ら加工している。すなわち、金属化合物相が冷間加工で
分割されて、α相との間に新しい界面が形成される。上
記α相の新しい界面の近傍においては、α相中のSnが
固溶限度未満であるため、Snが金属化合物相からα相
に拡散し、その分だけ金属化合物相が小さくなり、両相
が互いに接合する。したがって、冷間加工による金属化
合物相の分割と相まって金属化合物相がより小さく分割
される。
According to the present invention, cold working or warm working and annealing are repeated after hot working so that the intermetallic compound phase (δ phase) in the Cu—Sn alloy is divided into smaller pieces. . That is, the metal compound phase is split by cold working, and a new interface is formed between the metal compound phase and the α phase. In the vicinity of the new interface of the α phase, since Sn in the α phase is less than the solid solution limit, Sn diffuses from the metal compound phase to the α phase, and the metal compound phase becomes smaller by that amount, and both phases become Join each other. Therefore, the metal compound phase is divided into smaller portions in combination with the division of the metal compound phase by cold working.

【0017】このため、Cu−Sn系合金材とNb製棒
材とからなる複合ビレットのCu−Sn系合金中のSn
含有量を15.1重量%〜24.6重量%と多量として
も、複合ビレットに伸延加工を施すことができる。その
後、得られた複合線材に所定温度の加熱処理を施すこと
により、Nb3 Sn相が大量に生成する。したがって、
より高いJc等の超電導特性を有するNb3 Sn超電導
線が得られる。
For this reason, Sn in the Cu—Sn alloy of the composite billet composed of the Cu—Sn alloy material and the Nb bar is used.
Even when the content is as large as 15.1% to 24.6% by weight, the composite billet can be subjected to elongation processing. Thereafter, by subjecting the obtained composite wire to heat treatment at a predetermined temperature, a large amount of Nb 3 Sn phase is generated. Therefore,
An Nb 3 Sn superconducting wire having higher superconducting properties such as Jc can be obtained.

【0018】[0018]

【実施例】以下に、本発明を実施例により詳細に説明す
る。
The present invention will be described below in detail with reference to examples.

【0019】実施例1 Snを15重量%、Tiを0.2重量%含有するCu−
Sn系合金を真空溶解し、これを金型に鋳造して鋳塊と
なし、この鋳塊を外削してSnリッチ層を除去したの
ち、HIP処理を施して鋳塊内部のブローホールおよび
引け巣を消滅せしめて、外径60mmφのビレットとなし
た。次に、このビレットの中心に直径30mmの貫通孔を
開け、この貫通孔の中にNb−7.5重量%Ta系合金
からなる棒材を挿入した。この棒材の周囲には、挿入前
に厚さ0.5mmの無酸素銅テープを1層に巻いておい
た。次いで、前記ビレットの一端に無酸素銅製の蓋を、
他端にビレットと同じ材質の蓋をそれぞれ被せ、真空脱
気した後、前記各々の蓋を電子ビームにより溶接して密
閉して複合ビレットを作製した。しかるのち、前記複合
ビレットを前記無酸素銅製蓋の端部から押出加工を施し
て外径14mmφの棒材を作製した。なお、押出温度は7
30℃、押出ダイスのテーパー角度は60度とした。
Example 1 Cu-containing 15% by weight of Sn and 0.2% by weight of Ti
The Sn-based alloy is melted in vacuum, cast into a mold to form an ingot, and the ingot is externally cut to remove the Sn-rich layer, and then subjected to HIP treatment to blow holes and shrinkage inside the ingot. The nest was extinguished to form a billet having an outer diameter of 60 mmφ. Next, a through-hole having a diameter of 30 mm was formed in the center of the billet, and a bar made of Nb-7.5 wt% Ta-based alloy was inserted into the through-hole. Before insertion, a single layer of oxygen-free copper tape having a thickness of 0.5 mm was wrapped around the bar. Next, a lid made of oxygen-free copper at one end of the billet,
The other end was covered with a lid made of the same material as that of the billet, evacuated and evacuated, and then each of the lids was sealed by welding with an electron beam to produce a composite billet. Thereafter, the composite billet was extruded from the end of the oxygen-free copper lid to produce a rod having an outer diameter of 14 mmφ. The extrusion temperature was 7
The extrusion die was 30 ° C., and the taper angle was 60 degrees.

【0020】押出後、最外層のブロンズ層の組織を調べ
たところ、δ相が押出方向に伸ばされて分散していたも
のの、割れ等の欠陥はまったく認められなかった。
After extrusion, the structure of the outermost bronze layer was examined. As a result, although the δ phase was elongated in the extrusion direction and dispersed, no defects such as cracks were observed.

【0021】次に前記押出棒材を冷間で溝ロール圧延加
工を施して向かい合う辺同士の距離が2mmである超電導
六角素線となした。なお、上記冷間加工は、減面率で4
0%加工する毎に、600℃〜650℃×1Hrの中間
焼鈍処理を入れながら行った。超電導素線の内部を観察
したところ、ブロンズ層とNb棒材との間に介在させた
無酸素銅テープのブロンズ側にSnの拡散が認められ
た。しかしながら、Nb表面にはNb3 Sn相は確認さ
れなかった。
Next, the extruded rod material was subjected to cold groove roll rolling to form a superconducting hexagonal wire having a distance between opposing sides of 2 mm. In addition, the above-mentioned cold working has a reduction in area of 4%.
Each time the 0% processing was performed, it was performed while performing an intermediate annealing treatment at 600 ° C. to 650 ° C. × 1 Hr. Observation of the inside of the superconducting wire revealed that Sn was diffused on the bronze side of the oxygen-free copper tape interposed between the bronze layer and the Nb rod. However, no Nb 3 Sn phase was confirmed on the Nb surface.

【0022】このようにして作製した超電導六角素線
を、外径230mm、内径200mmのCu−14重量%S
n系合金製パイプ内に5000本挿入して多芯複合ビレ
ットを作製した。なお、前記パイプの中心部には、安定
化材として無酸素銅棒材を、外径50mm、内径46mmの
バリヤー用Nb製パイプに充填して配置した。
The superconducting hexagonal element wire thus produced was treated with a Cu-14 wt% S having an outer diameter of 230 mm and an inner diameter of 200 mm.
By inserting 5,000 pieces into an n-type alloy pipe, a multi-core composite billet was produced. In the center of the pipe, an oxygen-free copper rod as a stabilizing material was placed in a barrier Nb pipe having an outer diameter of 50 mm and an inner diameter of 46 mm.

【0023】次に、この複合ビレットを650℃で熱間
押出加工を施して外径60mmφの押出材となし、次いで
この押出材を減面率15%毎に500〜550℃×1H
rの中間焼鈍処理を入れながら、スエージャーおよび伸
線加工により外径0.7mmφの多芯複合線材となし、最
後に700℃×48Hrの加熱処理を施してSnをNb
に拡散させて実施例1の多芯のNb3 Sn超電導線を製
造した。
Next, the composite billet is subjected to hot extrusion at 650 ° C. to form an extruded material having an outer diameter of 60 mmφ. Then, the extruded material is formed at a temperature of 500 to 550 ° C. × 1H for every 15% reduction in area.
While the intermediate annealing process of r is performed, a multi-core composite wire having an outer diameter of 0.7 mm is formed by swaging and wire drawing. Finally, a heat treatment at 700 ° C. × 48 hr is performed to convert Sn to Nb.
The multi-core Nb 3 Sn superconducting wire of Example 1 was manufactured.

【0024】実施例2,3 下記表1に示すSn量を含有したCu−Sn系合金を用
いること以外は、実施例1と同様にして実施例2,3の
多芯のNb3 Sn超電導線を製造した。なお、Snの含
有量が24重量%である試料については、溝ロール圧延
加工並びに伸線加工の際に400℃に加熱して黒鉛潤滑
にて伸線を行った。このとき、中間焼鈍処理は不要であ
った。
Examples 2 and 3 The multi-core Nb 3 Sn superconducting wires of Examples 2 and 3 were prepared in the same manner as in Example 1 except that a Cu—Sn-based alloy containing the amount of Sn shown in Table 1 below was used. Was manufactured. In addition, about the sample whose Sn content is 24 weight%, it heated at 400 degreeC at the time of groove | channel roll rolling and wire drawing, and was drawn by graphite lubrication. At this time, the intermediate annealing treatment was unnecessary.

【0025】比較例1 Cu−Sn系合金製ビレットのCu−Sn系合金中のS
nの含有量を14重量%とすること以外は、実施例1と
同様にして比較例の多芯のNb3 Sn超電導線を製造し
た。
Comparative Example 1 S in the Cu-Sn alloy of the billet made of the Cu-Sn alloy
A multi-core Nb 3 Sn superconducting wire of a comparative example was manufactured in the same manner as in Example 1 except that the content of n was set to 14% by weight.

【0026】このようにして得られた実施例1〜3、比
較例1の各々のNb3 Sn超電導線について、液体He
中、12テスラの磁場下でJcを測定した。その結果を
下記表1に示す。
Each of the Nb 3 Sn superconducting wires obtained in Examples 1 to 3 and Comparative Example 1 obtained in this manner was
Jc was measured under a magnetic field of 12 Tesla. The results are shown in Table 1 below.

【0027】[0027]

【表1】 表1より明らかなように、本発明の方法により得られた
Nb3 Sn超電導線(実施例1〜3)は、Jcが高い値
のものであった。Jcは、Cu−Sn系合金製ビレッ
ト、すなわちブロンズ層にSn量が多く含有されている
ものほど、また最終工程でHIP処理を施したものほど
高い値を示した。
[Table 1] Table 1 As is apparent, Nb 3 Sn superconducting wire obtained by the method of the present invention (Examples 1-3) were of Jc high value. Jc showed a higher value for a billet made of a Cu-Sn alloy, that is, for a bronze layer containing a larger amount of Sn, and for a HIP-treated one in the final step.

【0028】これに対し、従来の方法により得られたN
3 Sn超電導線(比較例1)は、ブロンズ層にSn量
が少ないのでNb3 Sn相の生成量が少なく、Jcが大
幅に低いものであった。
On the other hand, N obtained by the conventional method
b 3 Sn superconducting wire (Comparative Example 1), since a small amount of Sn in the bronze layer less the amount of Nb 3 Sn phase, Jc was intended much lower.

【0029】実施例5〜7 Snを16.3重量%、18.3重量%、20.3重量
%含有するCu−Sn系合金をそれぞれ溶製して鋳塊を
得た。これら鋳塊の組織を調べたところ、すべてにα相
およびδ相が存在していることが確認された。これらの
鋳塊に実施例1と同様の処理・加工を施してそれぞれの
複合ビレットを作製し、さらに熱間押出加工を施して外
径14mmφの棒材を作製した。このとき、ブロンズ層の
組織をそれぞれ調べたところ、すべてδ相が押出方向に
繊維状に伸びていた。
Examples 5-7 Cu-Sn based alloys containing 16.3% by weight, 18.3% by weight, and 20.3% by weight of Sn were respectively melted to obtain ingots. Examination of the structures of these ingots confirmed that all of them had an α phase and a δ phase. These ingots were subjected to the same processing and processing as in Example 1 to produce respective composite billets, and further subjected to hot extrusion to produce rods having an outer diameter of 14 mmφ. At this time, when the structure of the bronze layer was examined, it was found that all of the δ phase was fibrous in the extrusion direction.

【0030】次に前記押出棒材を冷間で溝ロール圧延加
工を施して向かい合う辺同士の距離が2mmである超電導
六角素線となした。なお、上記冷間加工は、下記表2に
示す加工温度および減面率で行い、加工する毎に650
℃×1Hrの中間焼鈍処理を入れながら行った。このと
き、δ相は熱間加工で押出方向に伸ばされ、焼鈍処理時
に新しく形成されたα相との界面においてSn量が平衡
状態となって互いに接合し、冷間加工によるα相の分割
と相ま俟ってより小さく分割される。
Next, the extruded rod material was subjected to cold groove roll rolling to form a superconducting hexagonal wire having a distance between opposing sides of 2 mm. The cold working is performed at a working temperature and a surface reduction rate shown in Table 2 below.
This was performed while an intermediate annealing treatment at 1 ° C. × 1 hr was performed. At this time, the δ phase is stretched in the extrusion direction by hot working, the amount of Sn is brought into equilibrium at the interface with the newly formed α phase at the time of annealing, and they are joined together. Together, they are divided into smaller pieces.

【0031】このようにして作製したそれぞれの超電導
六角素線を用い、実施例1と同様にして実施例5〜7の
多芯のNb3 Sn超電導線を製造した。なお、実施例7
(Sn含有量が20.3重量%)については、室温にお
いて冷間加工することができなかったため、400℃に
加熱して温間加工を行った。
Using the superconducting hexagonal wires thus produced, multifilamentary Nb 3 Sn superconducting wires of Examples 5 to 7 were produced in the same manner as in Example 1. Example 7
As for (Sn content: 20.3% by weight), cold working could not be performed at room temperature.

【0032】比較例2,3 Snの含有量をそれぞれ14.3重量%、25.0重量
%にすること以外は実施例5〜7と同様にして比較例
2,3の多芯のNb3 Sn超電導線を製造した。なお、
比較例3については、Cu−Sn系合金中のSnの含有
量が多すぎるため、冷間加工の温度を400℃としても
加工することができなかった。
Comparative Examples 2 and 3 The multi-core Nb 3 of Comparative Examples 2 and 3 was prepared in the same manner as in Examples 5 to 7, except that the Sn content was 14.3% by weight and 25.0% by weight, respectively. A Sn superconducting wire was manufactured. In addition,
In Comparative Example 3, since the content of Sn in the Cu-Sn-based alloy was too large, processing could not be performed even at a cold processing temperature of 400 ° C.

【0033】このようにして得られた実施例5〜7、比
較例2の各々のNb3 Sn超電導線について、液体He
中、12テスラの磁場下でJcを測定した。その結果を
下記表2に示す。
Each of the Nb 3 Sn superconducting wires obtained in Examples 5 to 7 and Comparative Example 2 obtained as described above was
Jc was measured under a magnetic field of 12 Tesla. The results are shown in Table 2 below.

【0034】[0034]

【表2】 表2より明らかなように、本発明の方法により得られた
Nb3 Sn超電導線(実施例5〜7)は、Jcが高い値
のものであった。
[Table 2] Table 2 As apparent from, Nb 3 Sn superconducting wire obtained by the method of the present invention (Examples 5-7) were of Jc high value.

【0035】これに対し、従来の方法により得られたN
3 Sn超電導線(比較例2)は、ブロンズ層にSn量
が少ないのでNb3 Sn相の生成量が少なく、Jcが低
いものであった。また、本発明の範囲外でSnを含有し
たCu−Sn系合金を用いたもの(比較例3)は、Sn
の含有量が多すぎるので加工ができなかった。
On the other hand, N obtained by the conventional method
b 3 Sn superconducting wire (Comparative Example 2), since a small amount of Sn in the bronze layer less the amount of Nb 3 Sn phase was achieved, Jc is low. Further, those using a Cu-Sn-based alloy containing Sn outside the scope of the present invention (Comparative Example 3)
Could not be processed because the content of was too large.

【0036】[0036]

【発明の効果】以上述べたように本発明方法によれば、
Jc等の超電導特性に優れたNb3 Sn超電導線が得ら
れ、工業上顕著な効果を奏する。
As described above, according to the method of the present invention,
Nb 3 Sn superconducting wire having excellent superconducting properties such as Jc is obtained, it exhibits the industrially remarkable effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】A〜Cは、Nb3 Sn超電導線を製造する工程
を説明するための断面斜視図。
FIGS. 1A to 1C are cross-sectional perspective views for explaining a process of manufacturing an Nb 3 Sn superconducting wire.

【符号の説明】[Explanation of symbols]

1…Cu−Sn系合金製ビレット、2…Nb製棒材、3
…複合ビレット、4…ブロンズ層、5…複合線材、6…
Nb3 Sn相、7…Nb3 Sn超電導線。
DESCRIPTION OF SYMBOLS 1 ... Billet made of Cu-Sn alloy, 2 ... Bar made of Nb, 3
... composite billet, 4 ... bronze layer, 5 ... composite wire, 6 ...
Nb 3 Sn phase, 7 ... Nb 3 Sn superconducting wire.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 須齋 京太 東京都千代田区丸の内2丁目6番1号 古河電気工業株式会社内 (56)参考文献 特開 昭61−264164(JP,A) 特開 平2−112113(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 12/00 - 13/00 C22F 1/00 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Kyota Susai 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (56) References JP-A-61-264164 (JP, A) 2-112113 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01B 12/00-13/00 C22F 1/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Cu−Sn系合金のマトリクス中にNb
またはNb合金からなる棒材を所望本数複合して複合ビ
レットを作製し、次いで、前記複合ビレットに伸延加工
を施して複合線材を得て、その後、前記複合線材に所定
の加熱処理を施すNbSn超電導線の製造方法にお
いて、前記Cu−Sn系合金が15.1〜24.6重量
%のSnを含有しており、前記伸延加工は、熱間加工後
に40%以下の冷間減面加工および500〜650℃の
焼鈍処理を繰り返して前記Cu−Sn系合金中のCu−
Sn系金属間化合物をより小さく分割させながら行う加
工であることを特徴とするNbSn超電導線の製造
方法。
1. The method according to claim 1, wherein Nb is contained in a matrix of a Cu--Sn alloy.
Or bar member made of Nb alloy to prepare a desired number of composite to composite billet, then said to the composite billet is subjected to distraction process to obtain a composite wire, then, Nb 3 for performing predetermined heat treatment to the composite wire In the method for manufacturing a Sn superconducting wire, the Cu-Sn-based alloy contains 15.1 to 24.6% by weight of Sn, and the elongation is performed by cold reduction of 40% or less after hot working. And annealing treatment at 500 to 650 ° C. was repeated to obtain Cu— in the Cu—Sn alloy.
Nb 3 Sn method of manufacturing a superconducting wire, characterized in that the processing performed while divided smaller Sn based intermetallic compound.
【請求項2】 Cu−Sn系合金のマトリクス中にNb
またはNb合金からなる棒材を所望本数複合して複合ビ
レットを作製し、次いで、前記複合ビレットに伸延加工
を施して複合線材を得て、多数本の前記複合線材をCu
またはCu合金からなるパイプ内に挿入して複合して多
芯複合ビレットを作製し、次いで、前記多芯複合ビレッ
トに伸延加工を施して多芯複合線材を得て、その後、前
記多芯複合線材に所定の加熱処理を施すNbSn超
電導線の製造方法において、前記Cu−Sn系合金が1
5.1〜24.6重量%のSnを含有しており、前記伸
延加工は、熱間加工後に40%以下の冷間減面加工およ
び500〜650℃の焼鈍処理を繰り返して前記Cu−
Sn系合金中のCu−Sn系金属間化合物をより小さく
分割させながら行う加工であることを特徴とするNb
Sn超電導線の製造方法。
2. The method according to claim 1, wherein Nb is contained in a matrix of a Cu—Sn alloy.
Alternatively, a composite billet is prepared by compounding a desired number of bars made of an Nb alloy, and then the composite billet is subjected to elongation processing to obtain a composite wire.
Or, it is inserted into a pipe made of a Cu alloy and composited to produce a multi-core composite billet, and then the multi-core composite billet is subjected to elongation to obtain a multi-core composite wire, and thereafter, the multi-core composite wire is In the method for producing a Nb 3 Sn superconducting wire in which a predetermined heat treatment is performed on the Cu—Sn based alloy,
The steel contains 5.1 to 24.6% by weight of Sn. In the elongation, after the hot working, a cold area reduction process of 40% or less and an annealing process at 500 to 650 ° C. are repeated to obtain the Cu-
Nb characterized by being a process performed while dividing the Cu-Sn-based intermetallic compound in the Sn-based alloy into smaller pieces.
3. A method for producing a Sn superconducting wire.
JP04020136A 1991-02-07 1992-02-05 Superconducting wire manufacturing method Expired - Lifetime JP3108496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04020136A JP3108496B2 (en) 1991-02-07 1992-02-05 Superconducting wire manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-38123 1991-02-07
JP3812391 1991-02-07
JP04020136A JP3108496B2 (en) 1991-02-07 1992-02-05 Superconducting wire manufacturing method

Publications (2)

Publication Number Publication Date
JPH0554742A JPH0554742A (en) 1993-03-05
JP3108496B2 true JP3108496B2 (en) 2000-11-13

Family

ID=26357040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04020136A Expired - Lifetime JP3108496B2 (en) 1991-02-07 1992-02-05 Superconducting wire manufacturing method

Country Status (1)

Country Link
JP (1) JP3108496B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004024679D1 (en) * 2004-09-16 2010-01-28 Bruker Biospin Ag Method for producing a superconductive element
JP4527653B2 (en) * 2005-11-18 2010-08-18 ジャパンスーパーコンダクタテクノロジー株式会社 Nb3Sn superconducting wire and precursor therefor

Also Published As

Publication number Publication date
JPH0554742A (en) 1993-03-05

Similar Documents

Publication Publication Date Title
JPH0377608B2 (en)
US4917965A (en) Multifilament Nb3 Al superconducting linear composite articles
US20070227623A1 (en) Method for producing a superconductive element
EP1033726B1 (en) Method for producing aluminum-stabilized super conductive wire
JP3108496B2 (en) Superconducting wire manufacturing method
EP0498413B1 (en) Method of manufacturing Nb3Sn superconducting wire
JP3433937B2 (en) Method of manufacturing superconducting alloy
US3465429A (en) Superconductors
JP3134881B2 (en) Superconducting wire
JP3510351B2 (en) A3 Method for producing B-type compound superconducting wire
JPH08180752A (en) Nb3sn superconductive wire and manufacture thereof
US4860431A (en) Fabrication of multifilament intermetallic superconductor using strengthened tin
JP3050576B2 (en) Method for producing compound linear body
JP2851143B2 (en) Method for producing Nb-Ti alloy for superconducting wire
JP2871826B2 (en) Nb (3) Method for treating Cu-Sn alloy for Sn superconducting wire
JP2846434B2 (en) Method for producing Nb-Ti alloy for superconducting wire
JP3011986B2 (en) Manufacturing method of alloy superconducting wire
JP3106278B2 (en) Method for producing Nb3 Sn-based superconducting wire
JPH0636331B2 (en) Nb (bottom 3) A1 compound superconducting wire manufacturing method
JP2815373B2 (en) Method for producing third element-added Nb (3) A (1) superconducting member
JPH06203667A (en) Manufacture of superconducting composite billet
JPH0896633A (en) Manufacture of nb3sn superconducting wire
Xu et al. Development of internal-tin diffusion multifilamentary Nb/sub 3/Sn conductors including hydrostatic extrusion
JPH06223653A (en) Manufacture of nb 3 sn compound superconducting wire
JPS6366889B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080908

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 12