JPH01181573A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH01181573A
JPH01181573A JP425988A JP425988A JPH01181573A JP H01181573 A JPH01181573 A JP H01181573A JP 425988 A JP425988 A JP 425988A JP 425988 A JP425988 A JP 425988A JP H01181573 A JPH01181573 A JP H01181573A
Authority
JP
Japan
Prior art keywords
layer
insulating film
drain
gate
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP425988A
Other languages
Japanese (ja)
Inventor
Daisuke Toyama
大介 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Device Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Microelectronics Corp filed Critical Toshiba Corp
Priority to JP425988A priority Critical patent/JPH01181573A/en
Publication of JPH01181573A publication Critical patent/JPH01181573A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To improve a programming speed by providing a P-type diffused layer region in a drain near a tunnel insulating film. CONSTITUTION:In an EEPROM(electrically erasable and programmable read only memory), programming and erasure are performed by a tunnel phenomenon through a thin tunnel oxide film 5. As a P-type diffused layer 9 is provided in a drain (N-type diffused layer) 3 region near the tunnel oxide film 5, positive holes are supplied to the part under the tunnel oxide film 5 from the P-type diffused layer 9 to form an inversion layer 11 quickly and a voltage drop caused by the spread of a depletion layer can be suppressed. With this constitution, programming and erasure can be performed in a short time.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、半導体装置に係わり、特にEEPROM(電
気的に消去再書込み可能な読出し専用メモリ)の構造お
よび製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a semiconductor device, and particularly to the structure and manufacturing method of an EEPROM (electrically erasable and rewritable read-only memory).

(従来の技術) 従来のEEFROMの断面構造を第3図に示す。(Conventional technology) FIG. 3 shows a cross-sectional structure of a conventional EEFROM.

P型シリコン基板1内にソース2、ドレイン3のN型拡
散層を有し、ドレイン3上のゲート酸化膜4の一部分に
は薄いトンネル酸化膜5を有し、このゲート酸化膜4上
に浮遊ポリシリコンゲート6と制御ポリシリコンゲート
7とを有する2層ゲート構造となっている。
It has an N-type diffusion layer for a source 2 and a drain 3 in a P-type silicon substrate 1, and has a thin tunnel oxide film 5 on a part of the gate oxide film 4 above the drain 3, and a floating layer on this gate oxide film 4. It has a two-layer gate structure including a polysilicon gate 6 and a control polysilicon gate 7.

この従来のEEFROMの書き込み時(電子引き抜き時
)の動作原理を第4図に示す。
FIG. 4 shows the operating principle of this conventional EEFROM during writing (electron extraction).

制御ポリシリコンゲート8を接地電位にし、ソース2を
0由電位か5v程度にし、ドレイン3に10数Vを印加
した場合、ドレイン3・に空乏層10が拡がり、その後
トンネル酸化膜5下にP型反転層11が形成され、浮遊
ポリシリコンゲート6からドレイン3に電子がトンネル
効果で流れ出る。
When the control polysilicon gate 8 is set to the ground potential, the source 2 is set to a potential of 0 or about 5 V, and a voltage of about 10 V is applied to the drain 3, a depletion layer 10 expands in the drain 3, and then P is formed under the tunnel oxide film 5. A type inversion layer 11 is formed, and electrons flow out from the floating polysilicon gate 6 to the drain 3 due to the tunnel effect.

(発明が解決しようとする課題) この従来のEEPROMの構造においては、書き込み時
(電子引き抜き時)にドレイン3に高電圧(10数ボル
ト)がかかった時、トンネル酸化膜5近傍に正孔の供給
源が存在しない。その為、ドレイン(N型拡散層)3か
らの正孔の湧き出し又は浮遊ゲート6からのトンネル電
流の注入による空乏層10中での電子・正孔対の発生に
よってトンネル酸化膜5直下に反転層11が形成される
までは、ドレイン3表面に空乏層10が伸び続け、この
空乏層10で電圧降下を生じさせるため、トンネル酸化
膜5に浮遊ゲート6から電子を引抜くために充分な電圧
が印加されない。そのため、反転層11形成まで時間が
かかり、プログラム時間が長くなるという欠点がある。
(Problem to be Solved by the Invention) In this conventional EEPROM structure, when a high voltage (more than 10 volts) is applied to the drain 3 during writing (electron extraction), holes are generated near the tunnel oxide film 5. No supply source exists. Therefore, electron-hole pairs are generated in the depletion layer 10 due to the gushing of holes from the drain (N-type diffusion layer) 3 or the injection of tunnel current from the floating gate 6, which causes the inversion to occur directly below the tunnel oxide film 5. Until the layer 11 is formed, the depletion layer 10 continues to extend on the surface of the drain 3, and in order to cause a voltage drop in the depletion layer 10, a sufficient voltage is applied to the tunnel oxide film 5 to extract electrons from the floating gate 6. is not applied. Therefore, there is a drawback that it takes time to form the inversion layer 11 and the programming time becomes long.

そこで本発明は、トンネル酸化膜近傍に正孔の供給源を
設けることによりEEFROMのプログラムスピードを
上げることを目的とする。
Therefore, an object of the present invention is to increase the programming speed of the EEFROM by providing a hole supply source near the tunnel oxide film.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、P型半導体基板表層内にソース、ドレインと
なるN型拡散層がチャネル領域をはさんで配置され、前
記チャネル領域の表面と前記ソース、ドレインの一部分
の表面とに絶縁膜を介して浮遊ゲートが配置され、前記
ドレイン表面のゲート絶縁膜の一部分に周囲より薄いト
ンネル絶縁膜があり、前記浮遊ゲート表面に絶縁膜を介
して制御ゲートが配置されたものにおいて、前記トンネ
ル絶縁膜近傍の前記ドレイン内にP型拡散層領域が設置
されたことを特徴とする半導体装置を提供するものであ
る。
(Means for Solving the Problems) In the present invention, an N-type diffusion layer serving as a source and a drain is arranged in the surface layer of a P-type semiconductor substrate with a channel region sandwiched therebetween, and the surface of the channel region and the source and drain A floating gate is disposed on a portion of the surface of the drain via an insulating film, a tunnel insulating film thinner than the surroundings is disposed on a portion of the gate insulating film on the drain surface, and a control gate is disposed on the surface of the floating gate with an insulating film interposed therebetween. The present invention provides a semiconductor device characterized in that a P-type diffusion layer region is provided in the drain near the tunnel insulating film.

また本発明は、P型半導体基板表層内にソース。The present invention also provides a source within the surface layer of a P-type semiconductor substrate.

ドレインとなるN型拡散層をチャネル領域をはさんで形
成する工程と、トンネル絶縁膜形成予定領域近傍の前記
ドレイン内にP型拡散層領域を形成する工程と、前記半
導体基板表面にゲート絶縁膜を形成し、このゲート絶縁
膜のトンネル絶縁膜形成予定領域を除去してこの領域に
周囲より薄いトンネル絶縁膜を形成する工程と、前記ゲ
ート絶縁膜表面に浮遊ゲートとなる物質の層を形成する
工程と、この浮遊ゲートとなる物質の層の表面に絶縁膜
を形成する工程と、この絶縁膜の表面に制御ゲートとな
る物質の層を形成する工程と、前記浮遊ゲートとなる物
質の層、絶縁膜および制御ゲートとなる物質の層を前記
チャネル領域上と前記ソース・ドレインの一部分上の領
域だけを残して除去して浮遊ゲートと制御ゲートから成
る二層ゲートを形成する工程とを有する半導体装置の製
造方法を提供するものである。
A step of forming an N-type diffusion layer that will become a drain across a channel region, a step of forming a P-type diffusion layer region in the drain near a region where a tunnel insulating film is to be formed, and a step of forming a gate insulating layer on the surface of the semiconductor substrate. forming a tunnel insulating film, and removing a region of the gate insulating film where a tunnel insulating film is to be formed to form a tunnel insulating film thinner than the surrounding area in this region, and forming a layer of a substance to become a floating gate on the surface of the gate insulating film. a step of forming an insulating film on the surface of the layer of material that will become the floating gate; a step of forming a layer of material that will become the control gate on the surface of the insulating film; a layer of the material that will become the floating gate; forming a two-layer gate consisting of a floating gate and a control gate by removing an insulating film and a layer of material that will serve as a control gate, leaving only regions above the channel region and a portion of the source/drain. A method for manufacturing the device is provided.

(作 用) 本発明に係るEEFROMは2層構造の浮遊ゲート型E
EFROMであり、書き込み消去は−薄いトンネル酸化
膜を通してのトンネル現象により行われるが、ドレイン
(N型拡散層)領域中のトンネル酸化膜近傍にP型拡散
層が設けられているため、このP型拡散層からトンネル
酸化膜下に正孔が供給されて素早く反転層を形成し、空
乏層の拡がりによる電圧降下が抑えられる。その結果、
書き込み、消去が短時間で行なえる。
(Function) The EEFROM according to the present invention is a floating gate type EEFROM with a two-layer structure.
This is an EFROM, and writing and erasing is performed by tunneling through a thin tunnel oxide film, but since a P-type diffusion layer is provided near the tunnel oxide film in the drain (N-type diffusion layer) region, this P-type Holes are supplied from the diffusion layer to the bottom of the tunnel oxide film, quickly forming an inversion layer, and suppressing the voltage drop due to the expansion of the depletion layer. the result,
Writing and erasing can be done in a short time.

(実施例) 以下、実施例により説明する。(Example) Examples will be explained below.

第1図に本発明に係るE E P ROMの一実施例の
構造を示す。
FIG. 1 shows the structure of an embodiment of an EEPROM according to the present invention.

この実施例は、P型半導体基板1の表層内にソース2、
ドレイン3となるN型拡散層がチャネル領域をはさんで
配置され、チャネル領域上とソース2、ドレイン3の一
部分上とにゲート絶縁膜4を介して浮遊ゲート6が配置
され、ドレイン3上のゲート絶縁膜4の一部分にはトン
ネル効果を起こすに十分な厚さでかつ周囲より薄いトン
ネル酸化膜5があり、浮遊ゲート6上に絶縁膜7を介し
て制御ゲート8が配置され、トンネル酸化膜5近傍のド
レイン9内の一部分にP型拡散層9が配置された構造と
なっている。
In this embodiment, a source 2 is provided in the surface layer of a P-type semiconductor substrate 1;
An N-type diffusion layer that will become the drain 3 is placed across the channel region, and a floating gate 6 is placed over the channel region and part of the source 2 and drain 3 with a gate insulating film 4 interposed therebetween. In a part of the gate insulating film 4, there is a tunnel oxide film 5 that is thick enough to cause a tunnel effect and thinner than the surrounding area, and a control gate 8 is placed on the floating gate 6 with an insulating film 7 interposed therebetween. It has a structure in which a P-type diffusion layer 9 is arranged in a part of the drain 9 near the drain 9.

次に、第21ffl (a)〜(d)に従って、本発明
に係る製造方法の一実施例を説明する。
Next, an embodiment of the manufacturing method according to the present invention will be described according to 21st ffl (a) to (d).

まずP型シリコン基板1にフォトレジストをマスクとし
てイオン注入によりソース2、ドレイン3のN型拡散層
とP型拡散層9を規定位置に形成する(同図(a))。
First, N-type diffusion layers and P-type diffusion layers 9 of the source 2 and drain 3 are formed at specified positions on a P-type silicon substrate 1 by ion implantation using a photoresist as a mask (FIG. 2(a)).

次に、上記レジストマスクの除去後、基板1の表面全体
に400A程度の熱酸化膜4aを形成し、その表面をト
ンネル酸化膜形成予定領域をバターニングしたフォトレ
ジストでおおい、これをマスクにして熱酸化膜4aのト
ンネル酸化膜形成P定領域をNH4Fなどで除去する。
Next, after removing the resist mask, a thermal oxide film 4a of about 400A is formed on the entire surface of the substrate 1, and the surface is covered with a photoresist patterned in the area where the tunnel oxide film is to be formed, and this is used as a mask. The tunnel oxide film formation P constant region of the thermal oxide film 4a is removed using NH4F or the like.

その後、熱酸化を行い、100A程度のトンネル酸化膜
5を形成する(同図(b))。次に、熱酸化膜4a上に
第1ポリシリコン層6aを堆積後、その上にポリシリコ
ン酸化膜などの絶縁膜7aを形成し、その上に第2ポリ
シリコン層8aを堆積する(同図(C))。その後、ゲ
ート形成予定領域をパターニングしたフォトレジストを
マスクにして、第2ポリシリコン層8 a s絶縁膜7
 a s第1ポリシリコン層6aを順次除去して2層ゲ
ートを形成する(同図(d))。
Thereafter, thermal oxidation is performed to form a tunnel oxide film 5 of about 100 Å (FIG. 4(b)). Next, after depositing a first polysilicon layer 6a on the thermal oxide film 4a, an insulating film 7a such as a polysilicon oxide film is formed thereon, and a second polysilicon layer 8a is deposited thereon (see FIG. (C)). Thereafter, using the photoresist patterned in the region where the gate is to be formed as a mask, the second polysilicon layer 8 a s insulating film 7 is formed.
aS The first polysilicon layer 6a is sequentially removed to form a two-layer gate (FIG. 4(d)).

かかる構造においては、トンネル酸化膜5近傍のドレイ
ン(N’42拡散層)3内にP型拡散領域9が設けられ
ているため、制御ゲート8を接地電位にしドレイン3に
プログラム電圧を印加して浮遊ゲート6からドレイン3
に電子を引抜く動作のとき、トンネル酸化膜5下に形成
されるP型反転層11形成のための正孔をP型拡散領域
9から供給することで反転層11の形成を速め、電子引
抜き時間を短縮する事ができる。
In this structure, since the P-type diffusion region 9 is provided in the drain (N'42 diffusion layer) 3 near the tunnel oxide film 5, the control gate 8 is set to the ground potential and a programming voltage is applied to the drain 3. floating gate 6 to drain 3
During the operation of extracting electrons, holes for forming the P-type inversion layer 11 formed under the tunnel oxide film 5 are supplied from the P-type diffusion region 9, thereby speeding up the formation of the inversion layer 11 and withdrawing electrons. It can shorten the time.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、トンネル酸化膜
近傍のドレイン内に反転層形成のための正孔を供給する
拡散領域を設けたため、プログラム時にこの拡散層から
の正孔供給により反転層形成が促進され、電子引抜き時
間つまりプログラム時間が短縮できるという効果が得ら
れる。
As explained above, according to the present invention, a diffusion region that supplies holes for forming an inversion layer is provided in the drain near the tunnel oxide film, so that holes are supplied from this diffusion layer during programming to form an inversion layer. The formation is promoted, and the effect is that the electron extraction time, that is, the programming time can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るEEPROMの一実施例の構造を
示す断面図、第2図は本発明に係るEEFROMの製造
方法の一実施例を工程順に示す断面図、第3図は従来の
EEFROMの構造を示す断面図、第4図は第3図の従
来例の書き込み時の動作説明図である。 1・・・P型シリコン基板、2・・・ソース(N型拡散
層)、3・・・ドレイン(N型拡散層)、4・・・ゲー
ト酸化膜、5・・・トンネル酸化膜、6・・・浮遊ゲー
ト、7・・・絶縁膜、8・・・制御ゲート、9・・・P
型拡散層、10・・・空乏層、11・・・反転層。 出願人代理人  佐  藤  −雄 馬1 図 地3図 地4図 3F:)2図
FIG. 1 is a cross-sectional view showing the structure of an embodiment of an EEPROM according to the present invention, FIG. 2 is a cross-sectional view showing an embodiment of the EEFROM manufacturing method according to the present invention in the order of steps, and FIG. 3 is a conventional EEFROM. FIG. 4 is a cross-sectional view showing the structure of FIG. DESCRIPTION OF SYMBOLS 1... P-type silicon substrate, 2... Source (N-type diffusion layer), 3... Drain (N-type diffusion layer), 4... Gate oxide film, 5... Tunnel oxide film, 6 ...Floating gate, 7...Insulating film, 8...Control gate, 9...P
Type diffusion layer, 10... Depletion layer, 11... Inversion layer. Applicant's agent Sato - Yuma 1 Figure Map 3 Figure Map 4 Figure 3F:) 2 Figure

Claims (1)

【特許請求の範囲】 1、P型半導体基板表層内にソース、ドレインとなるN
型拡散層がチャネル領域をはさんで配置され、前記チャ
ネル領域の表面と前記ソース、ドレインの一部分の表面
とに絶縁膜を介して浮遊ゲートが配置され、前記ドレイ
ン表面のゲート絶縁膜の一部分に周囲より薄いトンネル
絶縁膜があり、前記浮遊ゲート表面に絶縁膜を介して制
御ゲートが配置されたものにおいて、前記トンネル絶縁
膜近傍の前記ドレイン内にP型拡散層領域が設置された
ことを特徴とする半導体装置。 2、P型半導体基板表層内にソース、ドレインとなるN
型拡散層をチャネル領域をはさんで形成する工程と、ト
ンネル絶縁膜形成予定領域近傍の前記ドレイン内にP型
拡散層領域を形成する工程と、前記半導体基板表面にゲ
ート絶縁膜を形成し、このゲート絶縁膜のトンネル絶縁
膜形成予定領域を除去してこの領域に周囲より薄いトン
ネル絶縁膜を形成する工程と、前記ゲート絶縁膜表面に
浮遊ゲートとなる物質の層を形成する工程と、この浮遊
ゲートとなる物質の層の表面に絶縁膜を形成する工程と
、この絶縁膜の表面に制御ゲートとなる物質の層を形成
する工程と、前記浮遊ゲートとなる物質の層、絶縁膜お
よび制御ゲートとなる物質の層を前記チャネル領域上と
前記ソース・ドレインの一部分上の領域だけを残して除
去して浮遊ゲートと制御ゲートから成る二層ゲートを形
成する工程とを有する半導体装置の製造方法。
[Claims] 1. N in the surface layer of the P-type semiconductor substrate to serve as the source and drain
A type diffusion layer is disposed across a channel region, a floating gate is disposed on a surface of the channel region and a portion of the source and drain via an insulating film, and a floating gate is disposed on a portion of the gate insulating film on the surface of the drain. There is a tunnel insulating film thinner than the surroundings, and a control gate is arranged on the surface of the floating gate via the insulating film, characterized in that a P-type diffusion layer region is provided in the drain near the tunnel insulating film. semiconductor device. 2. N that becomes the source and drain in the surface layer of the P-type semiconductor substrate
forming a type diffusion layer across a channel region; forming a P-type diffusion layer region in the drain near a region where a tunnel insulating film is to be formed; forming a gate insulating film on the surface of the semiconductor substrate; a step of removing a region of the gate insulating film where a tunnel insulating film is to be formed and forming a tunnel insulating film thinner than the surrounding area in this region; a step of forming a layer of a substance to become a floating gate on the surface of the gate insulating film; a step of forming an insulating film on the surface of the layer of material that will become the floating gate; a step of forming a layer of material that will become the control gate on the surface of the insulating film; and a step of forming the layer of material that will become the floating gate, the insulating film, and the control gate. A method for manufacturing a semiconductor device, comprising the step of removing a layer of material that will serve as a gate, leaving only a region above the channel region and a portion above the source/drain to form a two-layer gate consisting of a floating gate and a control gate. .
JP425988A 1988-01-12 1988-01-12 Semiconductor device and its manufacture Pending JPH01181573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP425988A JPH01181573A (en) 1988-01-12 1988-01-12 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP425988A JPH01181573A (en) 1988-01-12 1988-01-12 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH01181573A true JPH01181573A (en) 1989-07-19

Family

ID=11579544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP425988A Pending JPH01181573A (en) 1988-01-12 1988-01-12 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH01181573A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291439A (en) * 1991-09-12 1994-03-01 International Business Machines Corporation Semiconductor memory cell and memory array with inversion layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291439A (en) * 1991-09-12 1994-03-01 International Business Machines Corporation Semiconductor memory cell and memory array with inversion layer

Similar Documents

Publication Publication Date Title
JP2961530B2 (en) Method for manufacturing semiconductor flash memory device
KR100316089B1 (en) " EEPROM " omitted
JPS58130571A (en) Semiconductor device
JPH08316347A (en) Semiconductor element with recess channel structure and its preparation
JPS638631B2 (en)
KR0168155B1 (en) Flash eeprom cell & fabrication method
JP3148976B2 (en) Flash memory device and method of manufacturing the same
JPH06105786B2 (en) Non-volatile memory
JPH01181573A (en) Semiconductor device and its manufacture
JPS605062B2 (en) semiconductor logic circuit device
JPS5958868A (en) Semiconductor non-volatile memory
KR19990007264A (en) Semiconductor memory device and manufacturing method thereof
JPS6037778A (en) Mos non-volatile memory cell
JP2536866B2 (en) Method for manufacturing nonvolatile memory element
KR0186087B1 (en) Method for fabricating a semiconductor device
JP3292170B2 (en) Method for manufacturing semiconductor device
KR100214470B1 (en) Fabrication method of a eeprom cell
JPH0730001A (en) Semiconductor device
JPH05267679A (en) Semiconductor device and its manufacture
JP2729622B2 (en) Method for manufacturing semiconductor memory device
JPH0456283A (en) Semiconductor memory device and manufacture thereof
JPH03273684A (en) Semiconductor storage device and manufacture thereof
JPS6286764A (en) Semiconductor device
JPS6038032B2 (en) Insulated gate type semiconductor device
JPH09260513A (en) Semiconductor device and its manufacture