JPH01177967A - Barrel finishing method for inorganic hard body - Google Patents

Barrel finishing method for inorganic hard body

Info

Publication number
JPH01177967A
JPH01177967A JP33400887A JP33400887A JPH01177967A JP H01177967 A JPH01177967 A JP H01177967A JP 33400887 A JP33400887 A JP 33400887A JP 33400887 A JP33400887 A JP 33400887A JP H01177967 A JPH01177967 A JP H01177967A
Authority
JP
Japan
Prior art keywords
grains
barrel
walnut
polishing
inorganic hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33400887A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sawada
浩之 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP33400887A priority Critical patent/JPH01177967A/en
Publication of JPH01177967A publication Critical patent/JPH01177967A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To make it possible to inexpensively and largely manufacture an inorganic hard body having a fine lustrous surface by adding a mixture of a specific grain and an abrasive grain into liquid such as water or the like to use for the finishing of the inorganic hard body such as glass or the like. CONSTITUTION:A mixture of an abrasive grain and at least one kind selected of such grains as a walnut grain made by crushing the outer shell of the walnut, and a ceramic and a plastic grain which are porous at least on their surfaces is used as a barrel-finishing medium, and added into liquid such as water or the like, and then used for the barrel-finishing or glass, ceramics and an inorganic hard body such as a crystal. Thus the inorganic hard body having excellent weight accuracy and a lustrous surface with no struck or scratched flaw can be inexpensively and largely manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は無機硬質体のバレル研磨方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a barrel polishing method for inorganic hard bodies.

[従来の技術] ガラス、セラミックス、結晶等の無機硬質体の研磨方法
として、講あるいは穴付きの平面研削板と他の平板とを
平行に相対させ、前記の涌あるいは穴に所定形状の被研
磨物を載置し、所定の研磨剤を水等の溶液とともに供給
しながら前記研削板を所定方向に回転させて被研磨物を
研磨する冷間加工法がある。また、前記した冷間加工法
により所定の面粗さまで加工した被研磨物をフッ酸溶液
等の化学薬品で処理することにより光沢鏡面を得る化学
研磨法もある。また、特開昭61−151028号公報
に開示されているように、ガラス板材から正六面体のガ
ラスを切断し、この正六面体ガラスを容器内に投入し、
その軟化温度以上に加熱した状態で前記容器を所定時間
回転させることにより光沢面を有するガラス球を製造す
る方法もある。
[Prior Art] As a method for polishing inorganic hard bodies such as glass, ceramics, crystals, etc., a surface grinding plate with holes or holes is placed parallel to another flat plate, and a predetermined shape of the object to be polished is placed in the trough or hole. There is a cold working method in which an object is placed and the grinding plate is rotated in a predetermined direction while supplying a predetermined abrasive together with a solution such as water to polish the object. There is also a chemical polishing method in which a polished object processed to a predetermined surface roughness by the cold working method described above is treated with a chemical such as a hydrofluoric acid solution to obtain a glossy mirror surface. Further, as disclosed in Japanese Patent Application Laid-Open No. 61-151028, regular hexahedral glass is cut from a glass plate material, and this regular hexahedral glass is placed in a container.
There is also a method of manufacturing glass spheres having a glossy surface by rotating the container for a predetermined period of time while heating the container to a temperature higher than its softening temperature.

[発明が解決しようとする問題点] 前記した冷間加工法では、−度に研磨できる被研磨物の
数が限られており、かつ処理工程数が多いため加工コス
トが高いという欠点がある。また、前記した薬品による
化学研磨法では、被研磨物を格成する成分が表面から選
択的に溶出し、その表面にいわゆるヤク層を発生するこ
とがあり、特にガラスの様な透明体には極めて不都合で
ある。また、特開昭61−151028号公報に開示さ
れた方法によると、ガラス球を製造するにあたり高い重
I精度を得るためにガラス素材を正六面体に高精度に切
断し、この正六面体のガラスを不活性ガス雰囲気で軟化
加工しなければならず、非常に繁雑な製造工程となり、
かつ前記ガラスを軟化温度以上に加熱して加工するため
、ガラス同志が接触した場合にガラス同志の融着が発生
ずる可能性が大となり、良質のガラス研磨球を低い加工
コストで製造することが困雑であった。
[Problems to be Solved by the Invention] The above-described cold working method has disadvantages in that the number of objects that can be polished at one time is limited and the processing cost is high due to the large number of processing steps. In addition, in the chemical polishing method using chemicals described above, the components that make up the polished object may be selectively eluted from the surface and a so-called yellow layer may be generated on the surface, especially for transparent objects such as glass. This is extremely inconvenient. Furthermore, according to the method disclosed in JP-A No. 61-151028, in order to obtain high gravity I accuracy when manufacturing glass bulbs, a glass material is cut into regular hexahedrons with high precision, and this regular hexahedral glass is It has to be softened in an inert gas atmosphere, making it a very complicated manufacturing process.
In addition, since the glass is processed by heating it above its softening temperature, there is a high possibility that the glasses will fuse together if they come into contact with each other, making it difficult to manufacture high-quality glass polishing balls at low processing costs. It was complicated.

本発明は上記した問題点を解決するためになされたもの
であり、その目的は、ガラス、セラミックス、結晶等の
無機硬質体を研磨精度良く安価に多量に研磨することが
可能な方法を提供することにある。
The present invention has been made to solve the above-mentioned problems, and its purpose is to provide a method capable of polishing a large amount of inorganic hard bodies such as glass, ceramics, crystals, etc. with high polishing accuracy and at low cost. There is a particular thing.

[問題点を解決するための手段] バレルメディア(研摩石ともいう)、水、界面活性剤等
を入れなバレル槽中に被研磨物を入れ、バレル槽を回転
することにより被研磨物を研磨するバレル研磨法はそれ
自体従来より公知であるが、従来公知のバレル研磨法は
、バレルメディアとしてアルミナボール、スチールボー
ル、シリカを主成分とする焼結材ボール等を用いている
ため、被研磨物が金属や比較的に硬度の高い貴石類の場
合しか適用できず、前記の金属や貴石類よりも硬度の低
いガラス、セラミックス、結晶等の無機硬質体の研磨に
バレル研磨法が応用された例は過去にない。
[Means for solving the problem] The object to be polished is placed in a barrel tank containing barrel media (also called polishing stone), water, surfactant, etc., and the object to be polished is polished by rotating the barrel tank. The barrel polishing method itself has been known for a long time, but since the conventional barrel polishing method uses alumina balls, steel balls, sintered balls mainly composed of silica, etc. as barrel media, The barrel polishing method can only be applied when the object is metal or precious stones with relatively high hardness; barrel polishing is applied to polish inorganic hard materials such as glass, ceramics, and crystals, which have a lower hardness than the metals and precious stones mentioned above. There is no example in the past.

本発明名は、クルミ(胡桃)の外殼(実を覆っている殻
)を粉砕することにより得られたクルミ粒体(以下、単
にクルミ粒体という)、少なくとも表面が多孔性のセラ
ミックス粒体(以下、単に多孔性セラミックス粒体とい
う)、少なくとも表面が多孔性のプラスチックス粒体(
以下、単に多孔性プラスチックス粒体という)等に砥粒
を加えて得た混合物をバレルメディアとして用いること
により、従来のバレル研磨法では不可能であった、ガラ
ス、セラミックス、結晶等の無機硬質体のバレル研磨を
初めて可能にした。
The name of the present invention refers to walnut grains (hereinafter simply referred to as walnut grains) obtained by crushing the outer shell (shell covering the fruit) of walnuts, ceramic grains with at least a porous surface ( Hereinafter, simply referred to as porous ceramic granules), plastic granules with at least a porous surface (
By using a mixture obtained by adding abrasive grains to porous plastic particles (hereinafter simply referred to as porous plastic granules) as the barrel media, it is possible to polish inorganic hard materials such as glass, ceramics, and crystals, which was impossible with the conventional barrel polishing method. For the first time, barrel polishing of the body became possible.

従って本発明は、クルミ粒体、多孔性セラミックス粒体
及び多孔性プラスチックス粒体からなる群から選ばれた
少なくとも1種と砥粒との混合物及び水の存在下で無機
硬質体をバレル研磨することを特徴とする無機硬質体の
バレル研磨方法である。
Therefore, the present invention provides barrel polishing of an inorganic hard body in the presence of water and a mixture of at least one selected from the group consisting of walnut grains, porous ceramic grains, and porous plastic grains and abrasive grains. This is a barrel polishing method for inorganic hard bodies.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明のバレル研磨方法において研磨処理される無機硬
質体としては、ガラス、セラミックス、結晶等の無機硬
質体が挙げられる。好適に用いられる無機硬質体は、所
定範囲の硬度を有するものであり、後記の実施例におい
て、その測定方法を示した摩耗度(FA)値が50〜1
000、特に50〜200のものが特に好ましい。上述
のガラス、セラミックス、結晶のうち、−船釣に硬度が
比較的に低いガラスが本発明の方法によりバレル研磨す
るのに最も適している。
Examples of the inorganic hard body to be polished in the barrel polishing method of the present invention include inorganic hard bodies such as glass, ceramics, and crystals. The inorganic hard body suitably used has a hardness within a predetermined range, and in the examples below, the abrasion degree (FA) value shown in the measurement method is 50 to 1.
000, particularly preferably 50 to 200. Among the glasses, ceramics, and crystals mentioned above, glasses with relatively low hardness for boat fishing are most suitable for barrel polishing by the method of the present invention.

これら無機硬質体は、球、球状体、楕円体、エツジを有
しない不定形体等の種々の形状であって良い。
These inorganic hard bodies may have various shapes such as spheres, spherical bodies, ellipsoids, and amorphous bodies having no edges.

本発明の方法において、上記無機硬質体のバレル研磨に
使用されるメディアはクルミ粒体、多孔性セラミックス
粒体及び多孔性プラスチックス粒体から選ばれる少なく
とも1程と砥粒との混合物である。
In the method of the present invention, the media used for barrel polishing the inorganic hard material is a mixture of at least one selected from walnut grains, porous ceramic grains, and porous plastic grains and abrasive grains.

本発明において、クルミ粒体、多孔性セラミックス粒体
、多孔性プラスチックス粒体等の粒体を用いたのは、(
i)これらの粒体はその表面に存在する凹凸により、研
磨材として用いられる砥粒を保持する坦体としての働き
をする、(ii)これらの粒体は、被研磨物同志の衝突
を緩和乃至防止する働きをする、(iii)これらの粒
体を砥粒と混合して得た混合物に水を力Pえてスラリー
化すると、このスラリーがガラス等の無機硬質体の研磨
に適した粘度となる等の理由からである。
In the present invention, grains such as walnut grains, porous ceramic grains, and porous plastic grains are used because (
i) These grains act as a carrier to hold the abrasive grains used as an abrasive material due to the irregularities existing on their surfaces, (ii) These grains alleviate collisions between objects to be polished. (iii) When water is added to the mixture obtained by mixing these particles with abrasive grains to form a slurry, this slurry has a viscosity suitable for polishing inorganic hard materials such as glass. This is because of the following reasons.

このような粒体としては、クルミ粒体が最も好ましく用
いられる。クルミ粒体の大きさは6〜60メツシユが望
ましい。クルミ粒体が60メツシユを超え、粒度が細か
くなると、砥粒の保持能力および被研磨物とメディアと
の摩擦力が低下し研削力の減少を引き起こし、また、6
メツシユ未満で粒度が粗くなると、被研磨物同志の衝突
の危険性が増大し、かつ被研磨物表面の鏡面化が得られ
にくくなり、打痕やスクラッチ痕のない高品質の研磨品
が得られなくなるからである。
As such grains, walnut grains are most preferably used. The size of the walnut grains is preferably 6 to 60 mesh. When the walnut grains exceed 60 meshes and the grain size becomes fine, the abrasive retention ability and the frictional force between the object to be polished and the media decrease, causing a decrease in the grinding force.
If the grain size becomes coarser than the mesh, the risk of collision between the objects to be polished increases, and it becomes difficult to obtain a mirror finish on the surface of the object to be polished, making it difficult to obtain a high-quality polished product without dents or scratches. Because it will disappear.

またクルミ粒体の代りに多孔性セラミックス粒体や多孔
性プラスチックス粒体も用いられる。これら多孔性セラ
ミックス粒体及び多孔性プラスチックス粒体の大きさは
、これらの性質や、同時に用いられる砥粒の種類、大き
さ、さらには被研磨物の社類等を考慮して適宜決定され
る。
Also, porous ceramic granules or porous plastic granules may be used instead of walnut granules. The sizes of these porous ceramic granules and porous plastic granules are determined as appropriate, taking into account their properties, the type and size of the abrasive grains used at the same time, and the class of the object to be polished. Ru.

次に上記粒体とともに用いられる砥粒としては、アルミ
ナ、シリカ、炭化ケイ素、グリーンカーボン、酸化セリ
ウム、酸化ジルコニウム、酸化鉄、酸化クロムなどの無
機系砥粒が挙げられる。上記無機系砥粒の種類及び粒度
は、被研磨物において所望される表面の面粗度に応じて
選択される。すなわち、面粗さ(Rmax)で100Å
以下の光沢面を得るためには、砥粒の粒度を変えて、以
下の3工程、すなわち■加工取代を含んだ被研磨物の重
量を所定値に調整する租バレル工程、■租バレル工程で
所定の重量に調整した被研磨物をより精度良く重量調整
し、その表面をさらに細かい面粗さにするための中バレ
ル工程及び■中バレル工程で、ある程度滑らかになった
被研磨物を光沢面(100Å以下の粗さ)まで仕上げる
ための仕上げバレル工程を通常実施する必要があるが、
前記■の粗バレル工程は粒度が#240〜#800の 
′比較的に粗いアルミナ、シリカ、炭化ケイ素、グリー
ンカーボン等の砥粒を、また■の中バレル工程は粒度が
#800〜#2000のアルミナ、シリカ、炭化ケイ素
、グリーンカーボン等の砥粒を、さらに■の仕上げバレ
ル工程は粒度が#2000以上の微細な酸化セリウム、
酸化ジルコニウム、酸化鉄、酸化クロム等の砥粒を用い
るのが好ましい。
Next, examples of the abrasive grains used together with the above grains include inorganic abrasive grains such as alumina, silica, silicon carbide, green carbon, cerium oxide, zirconium oxide, iron oxide, and chromium oxide. The type and particle size of the inorganic abrasive grains are selected depending on the desired surface roughness of the object to be polished. In other words, the surface roughness (Rmax) is 100 Å
In order to obtain the following glossy surface, the grain size of the abrasive grains is changed and the following three steps are carried out: (1) A fine barrel process in which the weight of the object to be polished, including the machining allowance, is adjusted to a predetermined value; (2) A fine barrel process The weight of the workpiece adjusted to a predetermined level is adjusted more precisely, and the workpiece is polished to a glossy surface. It is usually necessary to carry out a finishing barrel process to achieve a roughness of 100 Å or less.
The coarse barrel process (①) has a particle size of #240 to #800.
' Relatively coarse abrasive grains such as alumina, silica, silicon carbide, green carbon, etc. are used, and in the middle barrel process (2), abrasive grains such as alumina, silica, silicon carbide, green carbon, etc. with a particle size of #800 to #2000 are used. In addition, the finishing barrel process (■) uses fine cerium oxide with a particle size of #2000 or more.
It is preferable to use abrasive grains such as zirconium oxide, iron oxide, and chromium oxide.

これらの工程■、■、■を経ることにより、被研磨物は
、高度な重量精度を有し、かっ打痕あるいはスクラッチ
痕のない光沢面(100Å以下の粗さ)を有することに
なる。
By going through these steps (1), (2), and (2), the object to be polished has a high degree of weight accuracy and a glossy surface (roughness of 100 Å or less) without any dents or scratches.

上記砥粒の添加量は、上記粒体に対して5〜50重量%
とするのが好ましい。その理由は、5重量%未満の場合
には研削力の低下を招き著しく長い研磨時間が必要とな
り、また50重工%を超える星にしても研削力の向上は
なく、逆にスラリーの粘性の増大により研削力の低下を
招く場合もあるからである。
The amount of the abrasive grains added is 5 to 50% by weight based on the granules.
It is preferable that The reason for this is that if it is less than 5% by weight, the grinding force will decrease and a significantly longer polishing time will be required, and even if it is more than 50% by weight, there will be no improvement in the grinding force, and on the contrary, the viscosity of the slurry will increase. This is because this may lead to a decrease in the grinding force.

本発明においては、クルミ粒体等の粒体と砥粒との混合
物に水を添加する。水は粒体や砥粒を均一に分散させ流
動性を与えるとともに、特にガラスの研磨においては、
その研磨速度はガラスの化学的耐久性にも依存し、使用
した液の化学作用によってガラス表面に生成した軟質層
を削り取るという機揚に起因している部分が多く、より
研磨速度を向上させるという働きをするものであり、そ
の添加量はクルミ粒体等の粒体の重量に対して0゜8〜
2.0倍とするのが好ましい。水の添加Iを0.8倍よ
り少なくすると砥粒を保持したクルミ粒体等の粒体の流
動性の悪化により、研削力の低下を招き、かつ被研磨物
表面にスクラッチ痕などを発生させることになるからで
あり、また水の添加量を2.0倍よりも多くするとクル
ミ粒体等の粒体、砥粒および水からなるスラリーの粘性
が減少するために、前記クルミ粒体等の粒体の研削力が
低下するとともに被研磨物同志の衝突が起こるからであ
る。
In the present invention, water is added to a mixture of grains such as walnut grains and abrasive grains. Water uniformly disperses grains and abrasive grains and provides fluidity, especially when polishing glass.
The polishing speed also depends on the chemical durability of the glass, and is largely due to the ability to scrape away the soft layer that forms on the glass surface due to the chemical action of the liquid used, which is said to further improve the polishing speed. The amount added is 0°8 to 0.8 to the weight of grains such as walnut grains.
It is preferable to set it to 2.0 times. If the water addition I is less than 0.8 times, the fluidity of grains such as walnut grains holding abrasive grains deteriorates, leading to a decrease in grinding force and causing scratch marks on the surface of the polished object. This is because, if the amount of water added is more than 2.0 times, the viscosity of the slurry consisting of grains such as walnut grains, abrasive grains, and water decreases. This is because the grinding force of the grains decreases and collisions between the objects to be polished occur.

また前記の水に界面活性剤を添加することもでき、水と
界面活性剤とを用いる場合にも水と界面活性剤の合計添
加量は上記粒体のM量に対して0゜8〜2.0倍とする
のが好ましい。また界面活性剤は水に対して1〜10重
量%程度添加するのが好ましい。
A surfactant can also be added to the water, and even when water and a surfactant are used, the total amount of water and surfactant added is 0°8 to 2% relative to the M amount of the granules. It is preferable to set it to .0 times. Further, it is preferable to add the surfactant in an amount of about 1 to 10% by weight based on water.

以上説明した本発明の方法によれば、クルミ粒体等の粒
体と、研磨材である砥粒とを併用するので、従来のバレ
ル研磨法では実施不可能であった、ガラス、セラミック
ス、結晶等の無機硬質体のバレル研磨が可能となり、高
度な重量精度を有し、かつ打痕やスクラッチ痕のない光
沢面を有する無機硬質体を安価に多量に作製することが
できる。
According to the method of the present invention explained above, grains such as walnut grains and abrasive grains as an abrasive material are used together, so that polishing of glass, ceramics, crystals, etc., which was impossible with the conventional barrel polishing method, is possible. Barrel polishing of inorganic hard bodies such as the following is possible, and inorganic hard bodies having a high degree of weight accuracy and a glossy surface without dents or scratch marks can be produced in large quantities at low cost.

[実施例1 以下、本発明の詳細な説明するが、本発明はこれらの実
施例に限定されるものではない。
[Example 1] The present invention will be described in detail below, but the present invention is not limited to these Examples.

実施例〕 表−1に示したように、摩耗度(FA)が60〜450
の範囲にあって、硬度がそれぞれ相違する10種のガラ
ス球■〜■(それぞれ直径的5mm>を被研磨物として
用いた。なお、上記摩耗度の測定方法は以下の通りであ
る。すなわち、測定表面禎が9−の試料を、水平に毎分
60回転する鋳鉄製平面器の定位置に保持し、lstg
fの荷重をかけ、粒度20μmのアルミナ砥粒10gに
水20m1を添加した液を、5分間供給しう・ンブ前後
の試料重量を秤量して摩耗重量を測定し、標準試料(B
K7ガラス)の摩耗重量も測定して、摩耗度を次式によ
り算出した。
Example] As shown in Table 1, the degree of wear (FA) is 60 to 450.
Ten types of glass balls (each having a diameter of 5 mm) with different hardness within the range of A sample with a measurement surface roughness of 9 is held in a fixed position on a cast iron flat plate that rotates horizontally at 60 revolutions per minute.
Applying a load of
The abrasion weight of K7 glass) was also measured, and the degree of abrasion was calculated using the following formula.

予めクルミ粒体(16メツシユ)、砥粒及び水が加えで
あるバレル槽(内容積7.51>に、上記ガラス球■〜
■のそれぞれ100個を投入して、粗バレル工程、中バ
レル工程及び仕上げバレル工程を実施した。なお、各工
程におけるクルミ粒体の添加量、砥粒の粗さ及び添加量
、水の添加量並びに研磨時間は表1−に示しである。
In a barrel tank (inner volume 7.51㎡) to which walnut grains (16 mesh), abrasive grains and water have been added in advance, the above glass bulb ~
A rough barrel process, a medium barrel process, and a finishing barrel process were carried out using 100 pieces of each of (2). The amount of walnut particles added, the roughness and amount of abrasive grains added, the amount of water added, and the polishing time in each step are shown in Table 1-.

たとえばガラス球■の場合、表面の大きな欠陥の除去お
よび重量の調整を行なう粗バレル工程を、クルミ粒体(
16メツシユ>2500g、アルミナ砥粒<#240)
1200g、水2800gを用いて30時間行ない、次
いで、面粗さの向上を行なう中バレル工程を、クルミ粒
体(16メツシユ>2300g、アルミナ砥粒(#80
0)700g、水3000gを用いて25時間行ない、
最後に、鏡面化を行なう仕上げバレル工程を、クルミ粒
体(16メツシユ)3000g、酸化セリウム(Ce0
2)砥粒(#2000以上)700g、水3500gを
用いて10時間行なった(なお、各工程は遠心バレル研
磨法により行ない、各工程におけるバレル槽回転数は、
全て1.70rpmであった)。その結果、ガラス球■
から、高度な重量精度を有し1、かつ面粗さ(Rmax
)が100Å以下の光沢面を有する無痕のガラス球が得
られた。
For example, in the case of glass bulbs, a rough barrel process to remove large defects on the surface and adjust the weight is performed using walnut particles (
16 mesh>2500g, alumina abrasive<#240)
1,200 g of water and 2,800 g of water were used for 30 hours, followed by a medium barrel process to improve the surface roughness using walnut grains (16 mesh > 2,300 g) and alumina abrasive grains (#80
0) Conducted for 25 hours using 700g and 3000g of water,
Finally, a finishing barrel process for mirror polishing is carried out using 3000g of walnut grains (16 meshes), cerium oxide (Ce0
2) It was carried out for 10 hours using 700 g of abrasive grains (#2000 or more) and 3500 g of water (each step was carried out by the centrifugal barrel polishing method, and the barrel tank rotation speed in each step was:
all at 1.70 rpm). As a result, the glass bulb■
1, and has a high level of weight accuracy and surface roughness (Rmax
A mark-free glass sphere with a glossy surface of less than 100 Å was obtained.

他のガラス球■〜[株]についても同様に表−1に示す
条件で粗バレル工程、中バレル工程及び仕上げバレル工
程を実施した結果、いずれも高度な重工精度と面相さ1
00Å以下の光沢面を有する無痕のガラス球が得られた
As a result of carrying out the rough barrel process, medium barrel process, and finishing barrel process for other glass bulbs ~ [stock] under the conditions shown in Table 1, all of them had a high level of heavy engineering precision and a surface appearance of 1.
A mark-free glass sphere with a glossy surface of less than 00 Å was obtained.

(以下余白) 実施例2 上の実施例1は一律に16メツシユのクルミ粒体を使用
して行なったものであるが、クルミ粒体の粒度を変化さ
せて行なった実施例を実施例2として以下に示す。
(Leaving space below) Example 2 Example 1 above was carried out using 16 mesh walnut grains, but Example 2 is an example in which the grain size of the walnut grains was varied. It is shown below.

表−2は、粗バレル工程における研磨条件及び評価を示
したものである。
Table 2 shows the polishing conditions and evaluation in the rough barrel process.

先ず、ガラス球■の場合、クルミ粒体が2メツシユや3
メツシユと粗い粒度を有すると、後工程で除去できない
ような激しい痕の発生が認められた。また、クルミ粒体
が60メツシユを超え粒度が細かくなると、100時間
を超える研磨を行なったにも拘らず、研磨前に存在する
欠陥を除去できなかった。これに対してクルミ粒体の粒
度が6〜30メツシユであると、租バレル工程を良好に
行なうことができ、次いで中バレル工程及び仕上げバレ
ル工程(これらの条件は、表−1のガラス球■における
中バレル工程および仕上げバレル工程の条件とほぼ同じ
である)を行なうことにより、硬度の重量精度と表面■
さ100Å以下の光沢面を有し、痕のないガラス球を得
ることができた。
First, in the case of the glass bulb ■, the walnut particles are 2 mesh or 3 mesh.
When the grain size was coarse and mesh, severe marks were observed that could not be removed in the subsequent process. Further, when the walnut grains exceeded 60 meshes and the particle size became fine, defects existing before polishing could not be removed even though polishing was performed for more than 100 hours. On the other hand, when the particle size of the walnut grains is 6 to 30 mesh, the grain barrel process can be carried out well, and then the middle barrel process and the finishing barrel process (these conditions are as follows: (The conditions are almost the same as those for the middle barrel process and finishing barrel process), the weight accuracy of hardness and the surface ■
It was possible to obtain a glass sphere having a glossy surface with a thickness of 100 Å or less and without any marks.

またガラス球■の場合、クルミ粒体が60メツシユを超
え粒度が細かくなると、上記ガラス球■の場合と同様に
、研磨前に存在する欠陥が除去できないという結果が得
られた。
Furthermore, in the case of the glass bulb (2), when the walnut grains exceeded 60 meshes and the grain size became fine, the result was obtained that, as in the case of the above-mentioned glass bulb (2), defects existing before polishing could not be removed.

また比較的に硬いガラス■(摩耗度60)の場合も、ク
ルミ粒体の粒度が2,3及び4メツシユと粗いと、後工
程で除去できない程の激しい痕の発生が認められた。
In addition, in the case of relatively hard glass 1 (wear degree 60), when the grain size of the walnut grains was coarse (2, 3, and 4 meshes), it was observed that severe marks were generated that could not be removed in the post-process.

以上の実験結果より、粗バレル工程におけるクルミ粒体
の粒度は6メツシユ以上30メツシュ以下が好ましいが
、ガラス球■においてクルミ粒体の粒度30メツシユの
場合、研磨結果は良好であるものの研磨時間が80時間
と長いため、研磨効率を考えた場合、30メツシユ未満
、特に20メツシユ以下のクルミ粒体を用いるのが最も
好ましい。
From the above experimental results, the grain size of the walnut grains in the coarse barrel process is preferably 6 mesh or more and 30 meshes or less, but when the grain size of the walnut grains is 30 mesh in the glass bulb (2), the polishing result is good, but the polishing time is Since the polishing time is as long as 80 hours, in consideration of polishing efficiency, it is most preferable to use walnut grains of less than 30 meshes, particularly 20 meshes or less.

またガラス球■及び■について、粗バレル工程及び中バ
レル工程(これらの条件は表−1のガラス球■及び■に
おける粗バレル工程及び中バレル工程の条件とほぼ同じ
である)を実施して所定の面状態まで研磨した後、表−
3に示すようにクルミ粒体の粒度を変えて仕上げバレル
工程を実施した。
In addition, glass bulbs ■ and ■ were subjected to a rough barrel process and a medium barrel process (these conditions are almost the same as the conditions for the coarse barrel process and medium barrel process for glass bulbs ■ and ■ in Table 1). After polishing to the surface condition of
As shown in Figure 3, the finishing barrel process was carried out by changing the grain size of the walnut grains.

表−3より明らかなように、ガラス球■においてクルミ
粒体の粒度が3メツシユと粗い場合、打痕、スクラッチ
痕の発生により、研磨時間10時間で面粗さは1000
人にも達しなかった。また粒度が60メツシユを超える
場合には100時間以上の研磨を続けることにより面粗
さ100人未満に到達することは可能であるが、研磨時
間が長くかかりすぎるという点で問題があった。
As is clear from Table 3, when the grain size of the walnut grains in glass bulb (■) is as coarse as 3 mesh, the surface roughness decreases to 1000 in 10 hours of polishing due to the occurrence of dents and scratch marks.
It didn't even reach humans. Further, when the grain size exceeds 60 mesh, it is possible to reach a surface roughness of less than 100 by continuing polishing for 100 hours or more, but there is a problem in that the polishing time is too long.

これに対してクルミ粒体の粒度が6〜60メツシユにあ
ると、比較的に短い研磨時間で面粗さ100Å以下に到
達することができた。特に10〜60メツシユの場合、
面粗さ40Å以下のすぐれた光沢面を得ることができた
On the other hand, when the grain size of the walnut grains was 6 to 60 mesh, a surface roughness of 100 Å or less could be achieved in a relatively short polishing time. Especially in the case of 10 to 60 meshes,
An excellent glossy surface with a surface roughness of 40 Å or less could be obtained.

また比較的に軟かいガラス球■(摩耗度450)におい
ては、クルミ粒体の粒度6メツシユでは面粗さ100Å
以下を達成できず、10メツシュ以上のクルミ粒体を使
用する必要がありた。
In addition, for a relatively soft glass bulb (wear degree 450), the surface roughness is 100 Å with a mesh of walnut grain size 6.
It was not possible to achieve the following, and it was necessary to use walnut grains with a mesh size of 10 or more.

(以下余白) なお、上記実施例1,2では、粗バレル工程、中バレル
ー91.程及び仕上げバレル工程の3工程によリバレル
研磨処理を行なったが、場合により中バレル工程を省き
、利バレル工程と仕上げバレル工程のみを実施しても良
い、また単一の工程のみで研磨処理しても良い、 また、これらの工、程の全てに上記粒体と砥粒との混合
物を用いる必要は必ずしもなく、該混合物を一工稈(特
に仕上げバレル工程)のみに使用しても良い。またクル
ミ粒体の粒度を各]−程に応じて変化させることもてき
る。
(Left below) In Examples 1 and 2 above, the rough barrel process and the middle barrel process were performed at 91. Although the rebarrel polishing process was performed in three steps: the middle barrel process and the finishing barrel process, it is also possible to omit the middle barrel process and perform only the rebarrel process and the finishing barrel process, or it is possible to perform the polishing process using only a single process. In addition, it is not necessarily necessary to use a mixture of the above grains and abrasive grains in all of these steps, and the mixture may be used only in one culm (especially the finishing barrel process). . Furthermore, the particle size of the walnut grains can be changed according to the degree of each grain.

さらに上記実施例1.2では、遠心バレル研磨機を使用
したが、これ以外のバレル研磨機を用いることもできる
。また、バレル研磨時間は、任意に変動させることがで
き、特に租バレル工程での研磨時間は、そのL1的とす
る取代を研磨するに必要な時間を設定すべきであり、実
施例1,2における時間に限定されるものではない。
Further, in Example 1.2 above, a centrifugal barrel polisher was used, but other barrel polishers may also be used. In addition, the barrel polishing time can be arbitrarily varied, and in particular, the polishing time in the rough barrel process should be set to the time necessary to polish the L1 machining allowance. It is not limited to the time in

[発明の効果] 以上の通り、本発明のバレル研磨方法によれば、クルミ
粒体等の粒体と砥粒との混合物を水等の液体に添加して
無機硬質体を湿式研磨処理することから、高度な重量精
度を有し、かつ打痕およびスクラッチ痕のない光沢面を
有する無機硬質体を安価に多量に作製することができる
[Effects of the Invention] As described above, according to the barrel polishing method of the present invention, a mixture of grains such as walnut grains and abrasive grains is added to a liquid such as water to wet polish an inorganic hard body. From this, an inorganic hard body having a high degree of weight accuracy and a glossy surface free of dents and scratches can be produced in large quantities at low cost.

Claims (1)

【特許請求の範囲】[Claims] (1)クルミの外殼を粉砕することにより得られたクル
ミ粒体、少なくとも表面が多孔性のセラミックス粒体及
び少なくとも表面が多孔性のプラスチック粒体からなる
群から選ばれた少なくとも1種と砥粒との混合物及び水
の存在下で無機硬質体をバレル研磨することを特徴とす
る無機硬質体のバレル研磨方法。
(1) At least one selected from the group consisting of walnut grains obtained by crushing walnut shells, ceramic grains with at least a porous surface, and plastic grains with at least a porous surface, and abrasive grains. A method for barrel polishing an inorganic hard body, comprising barrel polishing the inorganic hard body in the presence of water and a mixture of the inorganic hard body.
JP33400887A 1987-12-30 1987-12-30 Barrel finishing method for inorganic hard body Pending JPH01177967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33400887A JPH01177967A (en) 1987-12-30 1987-12-30 Barrel finishing method for inorganic hard body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33400887A JPH01177967A (en) 1987-12-30 1987-12-30 Barrel finishing method for inorganic hard body

Publications (1)

Publication Number Publication Date
JPH01177967A true JPH01177967A (en) 1989-07-14

Family

ID=18272463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33400887A Pending JPH01177967A (en) 1987-12-30 1987-12-30 Barrel finishing method for inorganic hard body

Country Status (1)

Country Link
JP (1) JPH01177967A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03108806U (en) * 1990-02-22 1991-11-08
US5455555A (en) * 1992-11-24 1995-10-03 Tdk Corporation Chip varistor
US6186869B1 (en) 1999-02-12 2001-02-13 Cetek Limited Cleaning using welding lances and blasting media
CN109129165A (en) * 2018-10-10 2019-01-04 常州世竟液态金属有限公司 A kind of polishing process of deeply worried walnut granule
WO2023162930A1 (en) * 2022-02-28 2023-08-31 株式会社チップトン Barrel polishing method, and cushioning material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03108806U (en) * 1990-02-22 1991-11-08
US5455555A (en) * 1992-11-24 1995-10-03 Tdk Corporation Chip varistor
US6186869B1 (en) 1999-02-12 2001-02-13 Cetek Limited Cleaning using welding lances and blasting media
CN109129165A (en) * 2018-10-10 2019-01-04 常州世竟液态金属有限公司 A kind of polishing process of deeply worried walnut granule
WO2023162930A1 (en) * 2022-02-28 2023-08-31 株式会社チップトン Barrel polishing method, and cushioning material

Similar Documents

Publication Publication Date Title
US6702650B2 (en) Porous abrasive article having ceramic abrasive composites, methods of making, and methods of use
US3808747A (en) Mechanical finishing and media therefor
CN109321204A (en) A kind of more particle agglomeration type abrasive grain bodies, preparation method and applications
JPS61192480A (en) Synthetic grinding stone for soft metal
JP3779329B2 (en) Vitreous grinding tool containing metal coated abrasive
KR100597209B1 (en) Molded abrasive product and polishing wheel using it
US6575824B2 (en) Abrasive molding and abrasive disc provided with same
JPH01177967A (en) Barrel finishing method for inorganic hard body
JP4869695B2 (en) Vitrified grinding wheel manufacturing method
US2547087A (en) Surface plate and the like
JPH04256581A (en) Composite grinding wheel
JPS62148159A (en) Super finishing grindstone having super abrasive grain
KR100740558B1 (en) Molded body for polishing and surface plate for polishing using it
JPH10264015A (en) Polishing compact and polishing surface table and polishing method using it
JP2003321270A (en) Alumina ceramics superior in wearing resistance and corrosion resistance and method for manufacturing its molding
JPH0679613A (en) Dry type barrel polishing method and dry type medium composition
JPH01177965A (en) Barrel finishing method for inorganic hard body
JPS6284977A (en) Grinding pellet
JP3263818B2 (en) Dry barrel polishing method and dry media for rough to medium finishing
JP2007196317A (en) Method of manufacturing vitrified superfinishing grinding wheel
JPH05285812A (en) Grinding method
JPH01177966A (en) Barrel finishing method for inorganic hard body
JP3603165B2 (en) Abrasive composition
JPS6017472B2 (en) Abrasive material
JPH11198030A (en) Molded body for polishing, surface plate for polishing using it and method of polishing