JPH01177966A - Barrel finishing method for inorganic hard body - Google Patents

Barrel finishing method for inorganic hard body

Info

Publication number
JPH01177966A
JPH01177966A JP33400787A JP33400787A JPH01177966A JP H01177966 A JPH01177966 A JP H01177966A JP 33400787 A JP33400787 A JP 33400787A JP 33400787 A JP33400787 A JP 33400787A JP H01177966 A JPH01177966 A JP H01177966A
Authority
JP
Japan
Prior art keywords
barrel
inorganic
polishing
molded product
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33400787A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sawada
浩之 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP33400787A priority Critical patent/JPH01177966A/en
Publication of JPH01177966A publication Critical patent/JPH01177966A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To make it possible to simply and largely manufacture an inorganic hard body having a fine lustrous surface by using a barrel-finishing medium consisting of flexible synthetic resin and inorganic polishing material. CONSTITUTION:A solid product consisting of flexible synthetic resin and inorganic polishing material is used as a barrel-finishing medium, and added into liquid such as water or the like, and then used for the barrel finishing of glass, ceramics and an inorganic hard body such as a crystal. Thus the inorganic hard body having excellent weight accuracy and a fine lustrous surface with no struck or scratched flaw can be inexpensively end largely manufactured.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は無機硬質体のバレル研磨方法に関する。[Detailed description of the invention] “Industrial application field” The present invention relates to a barrel polishing method for inorganic hard bodies.

「従来の技術」 ガラス、セラミックス、結晶等の無機硬質体の研磨方法
として、講あるいは穴付きの平面研削板と他の平板とを
平行に相対させ、前記の講あるいは穴に所定形状の技研
@杓を載置し、所定の研磨剤を水等の溶液とともに供給
しながら前記研削板を所定方向に回転させて被研磨物を
研磨する冷間加工法がある。また、前記した冷間加工法
により所定の面利さまで加工した被研磨物をフッ酸溶液
等の化学薬品で処理することにより光沢鏡面を得る化学
研磨法もある。また、特開昭61−1510289公報
に開示されているように、ガラス板材かち正六面体のカ
ラスを切断し、この正六面体カラスを容器内に投入し、
その軟化温度以上に加熱した状態で前記容器を所定時間
回転させることにより光沢面を有するガラス球を製造す
る方法もある。
"Prior art" As a method of polishing inorganic hard bodies such as glass, ceramics, crystals, etc., a surface grinding plate with holes or holes is placed parallel to another flat plate, and a grinding plate of a predetermined shape is formed in the holes or holes. There is a cold working method in which a ladle is placed and the grinding plate is rotated in a predetermined direction while supplying a predetermined abrasive together with a solution such as water to polish the object to be polished. There is also a chemical polishing method in which a polished object processed to a predetermined surface smoothness by the cold working method described above is treated with a chemical such as a hydrofluoric acid solution to obtain a glossy mirror surface. In addition, as disclosed in Japanese Patent Application Laid-Open No. 61-1510289, a regular hexahedral glass plate material is cut, and the regular hexahedral glass is placed in a container.
There is also a method of manufacturing glass spheres having a glossy surface by rotating the container for a predetermined period of time while heating the container to a temperature higher than its softening temperature.

[発明が解決しようとする問題点] 前記し、な冷間加工法では、−度に研磨できる被研磨物
の数が限られており、がっ処理工程数が多いため加工コ
ストが高いという欠点がある。また、前記し7な薬品に
よる化学研磨法では、被研磨物を桿1成する成分が表面
から選択的に溶出し、その表面にいわゆるヤケ層を発生
ずることがあり、特にガラスの様な透明体には極めて不
都合である。また、特開昭61−151028号公報に
開示された方法によると、ガラス球を製造するにあたり
高い重量精度を得るためにガラス素材を正六面体に高精
度に切断し、この正六面体のガラスを不活性ガス雰囲気
で軟化加工しなければならず、非常に繁雑な製造工程と
なり、かつ前記ガラスを軟化湯境以上に加熱し、て加工
するため、ガラス同志が接触した場合にガラス同志の融
着が発生する可能性が大となり、良質のガラス研磨球を
低い加工コストで製造することが困難であった。
[Problems to be Solved by the Invention] The above-mentioned cold working method has the disadvantage that the number of objects that can be polished at one time is limited and the processing cost is high due to the large number of polishing steps. . In addition, in the chemical polishing method using chemicals mentioned above, the components that make up the rod of the polished object may be selectively eluted from the surface, causing a so-called burnt layer on the surface. It is extremely inconvenient for the body. Furthermore, according to the method disclosed in Japanese Patent Application Laid-Open No. 61-151028, in order to obtain high weight accuracy when manufacturing glass bulbs, a glass material is cut into regular hexahedrons with high precision, and this regular hexahedral glass is The glass must be softened in an active gas atmosphere, which is a very complicated manufacturing process, and the process involves heating the glass above the softening temperature, so when the glasses come into contact, they may fuse together. There is a large possibility that this will occur, making it difficult to manufacture high-quality glass polishing balls at low processing costs.

本発明は上記した問題点を解決するためになされたもの
であり、その目的は、ガラス、セラミックス、結晶等の
無機硬質体を研磨精度良く安価に多量に研磨することが
可能な方法を提供することにある。
The present invention has been made to solve the above-mentioned problems, and its purpose is to provide a method capable of polishing a large amount of inorganic hard bodies such as glass, ceramics, crystals, etc. with high polishing accuracy and at low cost. There is a particular thing.

[問題点を解決するための手段] バレルメディア(研摩石ともいう)、水、界面活性剤等
を入れたバレル槽中に被研磨物を入れ、バレル槽を回転
することにより被研磨物を研磨するバレル研磨法はそれ
自体従来より公知であるが、従来公知のバレル研磨法は
、バレルメディアとしてアルミナボール、スチールボー
ル、シリカを主成分とする焼結材ボール等を用いている
ため、被研磨物が金属や比較的に硬度の高い貴石類の場
合しか適用できず、前記の金属や貴石類よりも硬度の低
いガラス、セラミックス、結晶等の無機硬質体の研磨に
バレル研磨法が応用された例は過去にない。
[Means for solving the problem] The object to be polished is placed in a barrel tank containing barrel media (also called polishing stone), water, surfactant, etc., and the object to be polished is polished by rotating the barrel tank. The barrel polishing method itself has been known for a long time, but since the conventional barrel polishing method uses alumina balls, steel balls, sintered balls mainly composed of silica, etc. as barrel media, The barrel polishing method can only be applied when the object is metal or precious stones with relatively high hardness; barrel polishing is applied to polish inorganic hard materials such as glass, ceramics, and crystals, which have a lower hardness than the metals and precious stones mentioned above. There is no example in the past.

本発明基は、バレルメディアとして、可撓性合成樹脂と
無機系研磨材との一体化成形物を用いることにより、従
来のバレル研磨法では不可能であった、ガラス、セラミ
ックス、結晶等の無機硬質体のバレル研磨を初めて可能
にした。
By using an integrated molded product of a flexible synthetic resin and an inorganic abrasive material as the barrel media, the present invention enables polishing of inorganic materials such as glass, ceramics, and crystals, which was impossible with conventional barrel polishing methods. For the first time, barrel polishing of hard materials became possible.

従って本発明は、可撓性合成樹脂と無機系研磨材との一
体化成形物及び水の存在下で無機硬質体をバレル研磨す
ることを特徴とする無機硬質体のバレル研磨力法である
Therefore, the present invention is a barrel polishing method for an inorganic hard body, which is characterized by barrel polishing the inorganic hard body in the presence of an integrated molded product of a flexible synthetic resin and an inorganic abrasive material and water.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明のバレル研磨力法において研磨処理される無機硬
質体としては、ガラス、セラミックス、結晶等の無機硬
質体か挙げられる。好適に用いられる無機硬質体は、所
定範囲の硬度を有するものであり、後記の実施例におい
て、その測定方法を示した摩耗反(F=” A )値が
50〜1000、特に50〜200のものが特に好まし
い。上述のガラス、セラミックス、結晶のうち、−i的
に硬度が比較的に低いガラスが本発明の方法によりバレ
ル研磨するのに最も適している。
Examples of the inorganic hard body to be polished in the barrel polishing force method of the present invention include inorganic hard bodies such as glass, ceramics, and crystals. The inorganic hard body preferably used has a hardness within a predetermined range, and in the examples below, the abrasion reaction (F = "A) value shown in the measurement method is 50 to 1000, especially 50 to 200. Among the above-mentioned glasses, ceramics, and crystals, glasses with relatively low hardness are most suitable for barrel polishing by the method of the present invention.

これら無機硬質体は、球、球状体、楕円体、エツジを有
しない不定形体等の種々の形状であって良い。
These inorganic hard bodies may have various shapes such as spheres, spherical bodies, ellipsoids, and amorphous bodies having no edges.

本発明の方法において、上記無機硬質体のバレル研磨に
使用されるメディアは可撓性合成樹脂と無機系研磨材と
の一体化成形物である。
In the method of the present invention, the media used for barrel polishing the inorganic hard body is an integrally molded product of a flexible synthetic resin and an inorganic abrasive material.

ここに可視性合成樹脂と無機系研磨材との一体化成形物
とは、可撓性合成樹脂をマトリックスとし、これに無機
系研磨材が一体的に結合している成形物を意味し、この
ような一体止成形物は例えばド記の(イ)、(ロ)等の
方法により製造される。
Here, the integrated molded product of visible synthetic resin and inorganic abrasive material means a molded product in which a flexible synthetic resin is used as a matrix and an inorganic abrasive material is integrally bonded to this. Such an integrally fixed molded article is manufactured, for example, by the methods (a) and (b) in the following.

(イ) 可撓性合成樹脂を、この合成樹脂を溶解する溶
媒に加えて得た溶液に無機系研磨材を加えて分散した後
、溶媒を揮散させて、固化し、所望の形状及び大きさに
粉砕して可撓性合成樹脂マトリックスに無機系研磨材が
一体的に結合している成形物を得る。
(b) After adding an inorganic abrasive to a solution obtained by adding a flexible synthetic resin to a solvent that dissolves this synthetic resin and dispersing it, the solvent is evaporated and solidified to obtain the desired shape and size. A molded article in which an inorganic abrasive material is integrally bonded to a flexible synthetic resin matrix is obtained.

なお、無機系研磨材を分散した合成樹脂溶液をスプレー
乾燥等の方法で乾燥処理して、直接一体止成形物を得て
も良い。また合成樹脂と無機系研磨材との結合性が弱い
場合には、これらの結合性を向上させるため結合剤(バ
インダー)を加えることもできる。
Note that a synthetic resin solution containing an inorganic abrasive dispersed therein may be dried by a method such as spray drying to directly obtain an integral molded product. Further, if the bond between the synthetic resin and the inorganic abrasive is weak, a binder may be added to improve the bond.

(ロ) 可撓性合成樹脂製造用の液状モノマー(単1体
)又は液状プレポリマー(予備重合体)に無機系研磨材
を加えた後、重合し、次いで得られた固形物を粉砕する
ことにより、可撓性合成樹脂マトリックスに無機系研磨
材が一体的に結合している成形物を得る。上記の重合操
作において、重合物が完全に固化していない重合完結前
の段階で、この重合物を所定メツシュの篩を通過させた
後、重合を完結させると、上記粉砕の手間が省は好都合
である。
(b) Adding an inorganic abrasive to a liquid monomer (single substance) or liquid prepolymer (prepolymer) for producing flexible synthetic resin, polymerizing it, and then pulverizing the obtained solid material. As a result, a molded article in which the inorganic abrasive material is integrally bonded to the flexible synthetic resin matrix is obtained. In the above polymerization operation, it is convenient to pass the polymerized product through a sieve with a predetermined mesh before completing the polymerization, and then to complete the polymerization, which saves the trouble of the above-mentioned pulverization. It is.

本発明において用いられる可撓性合成樹脂として、ウレ
タン樹脂、シリコン樹脂、ポリアミド樹脂、フッ素樹脂
等が挙げられるが、可撓性を有し、かつ無機系研磨材を
担持し7得るものであれば、上記以外の合成樹脂も用い
ることができる。
Examples of flexible synthetic resins used in the present invention include urethane resins, silicone resins, polyamide resins, fluororesins, etc., but as long as they are flexible and support an inorganic abrasive material, , synthetic resins other than those mentioned above can also be used.

上記樹脂のうち、ウレタン樹脂が、その可撓性、クツシ
ョン性等の点から最も好ましく、このウレタン樹脂と無
機系研磨材との一体化成形物は、上記(ロ)の方法によ
り製造するのが好ましい。すなわち、液状モノマー(ポ
リイソシアネート及びポリオール)又は液状プレポリマ
ー(ポリイソシアネートとポリオールとの予備重合体)
に無機系研磨材を分散した後、重合処理し、重合完結前
の完全に固化していない重合物を所定メツシュの篩に通
し、次いで重合を完結させて、所定の形状と大きさを有
する、ウレタン樹脂と無機系研磨材との一体化成形物を
得る。
Among the above resins, urethane resin is most preferable from the viewpoint of flexibility, cushioning properties, etc., and an integral molded product of this urethane resin and an inorganic abrasive material is preferably produced by the method (b) above. preferable. i.e. liquid monomers (polyisocyanates and polyols) or liquid prepolymers (prepolymers of polyisocyanates and polyols)
After dispersing an inorganic abrasive material in a polymer, it is polymerized, and the polymer that has not completely solidified before completion of polymerization is passed through a predetermined mesh sieve, and then the polymerization is completed to have a predetermined shape and size. An integrated molded product of urethane resin and inorganic abrasive material is obtained.

またシリコン樹脂、ポリアミド樹脂、フッ素樹脂等と無
機系研磨材との一体化成形物の製造に際しても、これら
樹脂の性質等に応じて、上記(イ)又は(ロ)の方法又
はこれ以外の方法が適宜選択される。
In addition, when manufacturing an integrated molded product of silicone resin, polyamide resin, fluororesin, etc. and inorganic abrasive material, the above methods (a) or (b) or other methods may be used depending on the properties of these resins. is selected as appropriate.

また上記1iJ’ JA性合成樹脂に一体的に結合され
て担持される無機系研磨材としては、アルミナ、シリカ
、炭化ケイ素、グリーンカーボン、酸化セリウム、酸化
ジルコニウム、酸化鉄、酸化クロムなどの無機系研磨材
が挙げられる。
Inorganic abrasives that are integrally bonded and supported on the 1iJ' JA synthetic resin include inorganic abrasives such as alumina, silica, silicon carbide, green carbon, cerium oxide, zirconium oxide, iron oxide, and chromium oxide. Examples include abrasives.

本発明者の検討によれば、ガラス、セラミックス、結晶
等の無択硬買体をバレル研磨するに際しては、■バレル
工程、中バレル工程及び仕上げバレル工程の3工程によ
り行なうことが望ましく、本発明のバレル研磨方法は、
上記3つの工程のうち、後2者の工程(中バレル工程及
び仕上げバレル工程)で実施するのが好ましく、このよ
うな観点から、可撓性合成樹脂に担持される無機系研磨
材としては、比較的に粒度の細かいアルミナ、酸化セリ
ウム、酸化ジルコニウム等を用いるのが好ましい。
According to the study of the present inventor, when barrel polishing a hard-purchased body such as glass, ceramics, crystal, etc., it is desirable to perform the barrel polishing by three steps: a barrel process, a middle barrel process, and a finishing barrel process. The barrel polishing method is
Of the above three steps, it is preferable to carry out the latter two steps (middle barrel step and finishing barrel step). From this point of view, as an inorganic abrasive material supported on a flexible synthetic resin, It is preferable to use alumina, cerium oxide, zirconium oxide, etc., which have a relatively fine particle size.

一体化成形物における無機系研磨材の割合は、一体止成
形物に要求される研磨性、可撓性合成樹脂の種類等によ
って変動するが、−船釣には可撓性合成樹脂の重量に対
してろ・−30?6であるのが好ましい。
The proportion of inorganic abrasive in the integral molded product varies depending on the abrasiveness required for the integral molded product, the type of flexible synthetic resin, etc.; It is preferable that it is -30 to 6.

その理由は、無機系研磨材が5%未満の場合、無機系研
磨材が少なずぎて、被研磨物を研削研磨しにくく、また
30%を超えると、可撓性合成樹脂との一体化が不完全
となり、合成樹脂に結合しない無機系研磨材が存在し、
またバレル研磨を行なうと、摩耗が激しく耐久性に欠け
るようになるためである。
The reason for this is that when the inorganic abrasive content is less than 5%, there is too little inorganic abrasive material, making it difficult to grind and polish the object being polished, and when it exceeds 30%, it becomes difficult to grind and polish the object. is incomplete, and there is an inorganic abrasive that does not bond to the synthetic resin.
Further, barrel polishing causes severe wear and lacks durability.

また可撓性合成樹脂と無機系研磨材との一体化成形物の
大きさは、被研磨物である無機硬質体の大きさ等の因子
により適宜決定されるが、体積比で2倍以下であるのが
好ましい。その理由は、被研磨物の大きさの2倍より大
きくなると、被研磨物同志の衝突が起こり、鏡面化でき
にくくなるためである6 本発明のバレル研磨方法においては、上記の可撓性合成
樹脂と無機系研磨材との一体化成形物を水に加えて使用
する。水は、一体止成形物を均一に分散させ流動性を与
えるとともに特にガラスの研磨においては、その研磨速
度はガラスの化学的耐久性にも依存し1、使用した液の
化学作用によってガラス表面に生成した軟質層を削り取
るという観横に起因している部分が多く、より研磨速度
を向上させるという働きをするものである。水の添加量
に関しては、高さ方向に断面積が−様な容器に入れた場
合の一体化成形物のレベル(マス面)に対して水を0.
5〜1.5倍の高さレベルまで加えるの力撒了ましい。
In addition, the size of the integrated molded product of flexible synthetic resin and inorganic abrasive material is appropriately determined depending on factors such as the size of the inorganic hard material to be polished, but the volume ratio should not exceed 2 times. It is preferable to have one. The reason for this is that when the size of the polished object is more than twice the size of the polished object, collisions occur between the polished objects and it becomes difficult to obtain a mirror finish.6 In the barrel polishing method of the present invention, the flexible synthetic An integrated molded product of resin and inorganic abrasive material is used by adding it to water. Water provides fluidity by uniformly dispersing the fixed molded product, and especially when polishing glass, the polishing speed also depends on the chemical durability of the glass1. Much of this is due to the side effect of scraping off the generated soft layer, and it works to further improve the polishing rate. Regarding the amount of water added, the amount of water to be added is 0.00% relative to the level (mass surface) of the integrated molded product when placed in a container with a cross-sectional area of - in the height direction.
The power applied to the height level of 5 to 1.5 times is impressive.

水の添加量を0.5倍の高さレベルより低くすると一体
化成形物の流動性の悪化もしくは被研磨物との摩擦力の
増加により、研削力の低下もしくは被研磨物表面に打痕
やスクラッチ痕を発生させることになり、また水の添加
iを1.5倍の高さレベルよりも高くすると一体化成形
物および水からなるスラリーの粘性が減少するために、
前記一体止成形物の研削力が低下するとともに技研@物
同志の衝突が起こるからである。
If the amount of water added is lower than 0.5 times the height level, the fluidity of the integrated molded product will deteriorate or the frictional force with the object to be polished will increase, resulting in a decrease in the grinding force or dents on the surface of the object to be polished. This will cause scratch marks, and if the water addition i is made higher than the 1.5 times height level, the viscosity of the slurry consisting of the integrated molded product and water will decrease.
This is because the grinding force of the integrally fixed molded product decreases and collisions between the two products occur.

また前記の水に界面活性剤を添加することもでき、水と
界面活性剤とを用いる場合にも水と界面活性剤の合計添
加量は一体化成形物のレベル(マス面)に対して0.5
〜1.5倍の高さレベルとするのが好ましい。また界面
活性剤は水に対して1〜10重量%程度添加するのが好
ましい。
A surfactant can also be added to the water, and even when water and a surfactant are used, the total amount of water and surfactant added is 0 to the level (mass surface) of the integrated molded product. .5
It is preferable to set the height level to ~1.5 times. Further, it is preferable to add the surfactant in an amount of about 1 to 10% by weight based on water.

本発明名の検討によれば、バレル研磨処理は、バレルメ
ディアの粒度を変えて、粗バレル工程、中バレル工程、
仕上げバレル工程等の複数の工程で実施することが好ま
しいことが明らかになっているが、本発明のバレル研磨
方法は、無機系研磨材が可撓性合成樹脂に結合した一体
化成形物をバレルメディアとして用いるため、粗バレル
工程で用いるのは適当でなく、粗バレル工程後の任意の
工程、例えば、中バレル工程及び仕上げバレル工程、特
に仕上げバレル工程において用いるのに適している。
According to the study of the name of the present invention, the barrel polishing process can be performed by changing the grain size of the barrel media to perform a coarse barrel process, a medium barrel process,
Although it has become clear that it is preferable to carry out the process in multiple steps such as a finishing barrel process, the barrel polishing method of the present invention involves polishing an integral molded product in which an inorganic abrasive is bonded to a flexible synthetic resin. Since it is used as a media, it is not suitable for use in the rough barrel process, but is suitable for use in any process after the rough barrel process, such as the middle barrel process and the finishing barrel process, especially the finishing barrel process.

以上、本発明によれば、可撓性を有し、クツション的機
能を果ず合成樹脂に、研磨性を有する無機系研磨材を一
体的に結合させて得られた、可撓性合成樹脂の長所と無
機系研磨材の長所を具備する一体化成形物を、バレルメ
ディアとして使用することにより、従来のバレル研磨法
では不可能であった、ガラス、セラミックス、結晶等の
無機硬質体のバレル研磨が可能となり、高度な重量精度
を有し、かつ打痕やスクラッチ痕のない光沢面を有する
無機硬質体を安価に多量に得ることができる。
As described above, according to the present invention, a flexible synthetic resin that is flexible and has a cushioning function is obtained by integrally bonding an inorganic abrasive material that has abrasive properties. By using an integrated molded product that has the advantages of inorganic abrasive materials as barrel media, barrel polishing of inorganic hard materials such as glass, ceramics, and crystals, which was impossible with conventional barrel polishing methods, is possible. This makes it possible to obtain large quantities of inorganic hard bodies with high weight accuracy and a glossy surface without dents or scratch marks at low cost.

[実施例] 以下、実施例により本発明を更に説明する。[Example] The present invention will be further explained below with reference to Examples.

ウレタンプレポリマーに、酸化セリウム(Ce02)を
混合した後、加熱して重合反応を行なわせ、次いで、重
合完結前の完全に固化していない重合物を篩を通過させ
た後、さらに重合反応を行なわせて、大きさが3〜5m
mの不定形状フレークからなる、ウレタン樹脂と酸化セ
リウムとの一体化成形物を得た。得られた一体化成形物
において、酸化セリウムの混合量は第1表及び第2表に
示す如く、ウレタン樹脂の重量に対して0〜40%の範
囲であった。
After mixing cerium oxide (Ce02) into the urethane prepolymer, it is heated to cause a polymerization reaction, and then the polymer that has not completely solidified before completion of polymerization is passed through a sieve, and then the polymerization reaction is further carried out. The size is 3-5m.
An integrated molded product of urethane resin and cerium oxide was obtained, which consisted of irregularly shaped flakes of m. In the obtained integrated molded product, the amount of cerium oxide mixed was in the range of 0 to 40% based on the weight of the urethane resin, as shown in Tables 1 and 2.

得られた一体化成形物をバレル槽(内容積7゜51)に
約1/2のレベルまで入れ、次に一体化成形物のレベル
(マス面)まで水を加えて湿潤させた後、被研磨物であ
るガラス球100個を投入した。投入した各ガラス球は
直径的10mmであり、予め粒度#2000のアルミナ
砥粒で砂ずり研磨されたものである。
The obtained integrated molded product was placed in a barrel tank (inner volume 7°51) to about 1/2 the level, and then water was added to moisten the integrated molded product up to the level (mass surface), and then the 100 glass balls, which were polished objects, were introduced. Each glass bulb that was introduced had a diameter of 10 mm and had been sand-polished in advance with alumina abrasive grains having a grain size of #2000.

第1表は、摩耗m(Flが150であるガラス球を被研
磨物として用いた時の研磨例を示したものである。
Table 1 shows an example of polishing when a glass bulb having an abrasion m (Fl) of 150 was used as the object to be polished.

なお、上記摩耗度(FA)は以下のようにして測定した
。すなわち、測定表面f五が9−の試料を、水平に毎分
60回転する鋳鉄製平面皿の定位置に保持し、lbgf
の荷重をかけ、粒度20μmのアルミナ砥粒10gに水
20m1を添加した液を、5分間供給しラップ前後の試
料重量を秤量して摩耗重量を測定し、標準試料(BK7
ガラス)の摩耗重量も測定して、次式により摩耗度を算
出する。
In addition, the said abrasion degree (FA) was measured as follows. That is, a sample with a measurement surface f5 of 9- is held in a fixed position on a cast iron flat plate that rotates horizontally at 60 revolutions per minute, and lbgf
Applying a load of
The abrasion weight of glass) is also measured, and the degree of abrasion is calculated using the following formula.

第1表の研磨例においては、ウレタン樹脂の重量に対す
る酸化セリウムの混合量が0%、3%、5%、10%、
20%、30%、40%であるウレタン樹脂−酸化セリ
ウム一体化成形物を用い、被研@物であるガラス球がそ
の面粗さ(Rmax)100Å以下となることを目標に
して、10時間毎に測定をくり返しなからバレル研磨処
理(バレル槽回転数170rpm)したものであり、同
表から明らかなように酸化セリウムの混合■が0%、3
%である実験例No、1.2の場合、]OO時間のバレ
ル研磨にもかかわらすRm、]xが800Å以上で全く
光沢が認められなかった。次に酸化セリウムの混合量が
5〜40%の実験例No、 3〜7において、20〜8
0時間のバレル研磨により、高度な重量精度と、Rm8
x100Å以下の光沢面を有するガラス球が得られた。
In the polishing examples shown in Table 1, the amount of cerium oxide mixed with respect to the weight of the urethane resin is 0%, 3%, 5%, 10%,
Using 20%, 30%, and 40% urethane resin-cerium oxide integrated moldings, polishing was carried out for 10 hours with the goal of achieving a surface roughness (Rmax) of 100 Å or less for the glass sphere to be polished. It was subjected to barrel polishing (barrel tank rotation speed 170 rpm) after repeated measurements, and as is clear from the table, the cerium oxide mixture was 0% and 3%.
%, no gloss was observed when Rm, ]x was 800 Å or more despite barrel polishing for ]OO hours. Next, in Experimental Example Nos. 3 to 7, in which the mixed amount of cerium oxide was 5 to 40%, 20 to 8
0 hour barrel polishing provides high weight accuracy and Rm8
A glass sphere with a glossy surface of less than x100 Å was obtained.

しかし酸化セリウムの混合量が40%の実験例No、 
7の場合には、一体止成形物の摩耗率が100時間のバ
レル研磨で30%以上と激しく、このため安定した条件
でバレル研磨を行なうことが困組であるばかりでなく、
経済性においても好ましくないことが明らかとなった。
However, experimental example No. where the amount of cerium oxide mixed was 40%,
In the case of No. 7, the wear rate of the integral molding is severe, exceeding 30% after 100 hours of barrel polishing, and for this reason, it is not only difficult to carry out barrel polishing under stable conditions;
It has become clear that this method is also unfavorable from an economic point of view.

第2表は、被研磨物として、摩耗度(FA)が450の
ガラス球を用いた時の研磨例を実験例No。
Table 2 shows a polishing example using a glass bulb with an abrasion degree (FA) of 450 as an experimental example No. as an object to be polished.

8〜14に、摩耗度(FA>100のガラス球を用いた
時の研磨例を実験例No、 15〜21に示したもので
あり、第1表と同様にウレタン樹脂の重量に対する酸化
セリウムの混合量が0%、3%、5%、108δ、20
%、30%、40%であるウレタン−酸化セリウム一体
成形物を用い、被研磨物であるガラス球をその面粗さ(
Rmax)が100Å以下となることを目標にしてバレ
ル研磨(バレル槽回転数170rpm)を行なったもの
である。
Tables 8 to 14 show examples of polishing using glass bulbs with an abrasion degree (FA>100), and Experimental Example Nos. 15 to 21 show examples of polishing using glass bulbs with an abrasion degree (FA>100).Similar to Table 1, the ratio of cerium oxide to the weight of the urethane resin is shown in Table 1. Mixing amount is 0%, 3%, 5%, 108δ, 20
%, 30%, and 40% urethane-cerium oxide integrally molded product, the surface roughness (
Barrel polishing (barrel tank rotation speed: 170 rpm) was performed with the aim of achieving a Rmax) of 100 Å or less.

この場合も酸化セリウムの混合量が5%未満の場合、R
m、x100Å以下の光沢面を得ることが出来ず、40
重量%を超えるとウレタン−酸化セリウム一体止成形物
の摩耗が激しいのに対し、酸化セリウムの混合量が5〜
30%の場合、高度の重量精度を有し、かつRmax1
00Å以下の光沢面を有するガラス球がウレタン−酸化
セリウム一体止成形物を摩耗させることなく得られるこ
とが判明した。
In this case too, if the amount of cerium oxide mixed is less than 5%, R
It was not possible to obtain a glossy surface of less than m, x 100 Å, and 40
If the amount exceeds 5% by weight, the wear of the urethane-cerium oxide integral molded product will be severe, but if the amount of cerium oxide mixed is 5% or more,
30%, has a high degree of weight accuracy and Rmax1
It has been found that a glass bulb having a glossy surface of 00 Å or less can be obtained without abrading the urethane-cerium oxide integral molded product.

[発明の効果] 本発明によれば、バレルメディアとして、可撓性合成樹
脂に無機系研磨材が一体的に結合している、可撓性合成
樹脂と無機系研磨材との一体化成形物を用いてバレル研
磨することにより、高度なiff精度を有し、かつ、打
痕やスクラッチ痕等のない光沢面を有する無機硬質体を
安価がっ多量に得ることが可能になった。
[Effects of the Invention] According to the present invention, an integrated molded product of a flexible synthetic resin and an inorganic abrasive material, in which an inorganic abrasive material is integrally bonded to a flexible synthetic resin, is used as a barrel media. By carrying out barrel polishing using the .

Claims (1)

【特許請求の範囲】[Claims] (1)可撓性合成樹脂と無機系研磨材との一体化成形物
及び水の存在下で無機硬質体をバレル研磨することを特
徴とする無機硬質体のバレル研磨方法。
(1) A method for barrel polishing an inorganic hard body, which comprises barrel polishing the inorganic hard body in the presence of an integrated molded product of a flexible synthetic resin and an inorganic abrasive and water.
JP33400787A 1987-12-30 1987-12-30 Barrel finishing method for inorganic hard body Pending JPH01177966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33400787A JPH01177966A (en) 1987-12-30 1987-12-30 Barrel finishing method for inorganic hard body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33400787A JPH01177966A (en) 1987-12-30 1987-12-30 Barrel finishing method for inorganic hard body

Publications (1)

Publication Number Publication Date
JPH01177966A true JPH01177966A (en) 1989-07-14

Family

ID=18272453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33400787A Pending JPH01177966A (en) 1987-12-30 1987-12-30 Barrel finishing method for inorganic hard body

Country Status (1)

Country Link
JP (1) JPH01177966A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5249395A (en) * 1991-04-30 1993-10-05 Hoya Corporation Method of polishing dental instrument
JP2014018922A (en) * 2012-07-19 2014-02-03 Disco Abrasive Syst Ltd Elastic polishing material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5249395A (en) * 1991-04-30 1993-10-05 Hoya Corporation Method of polishing dental instrument
JP2014018922A (en) * 2012-07-19 2014-02-03 Disco Abrasive Syst Ltd Elastic polishing material

Similar Documents

Publication Publication Date Title
KR100295335B1 (en) Slurry with reduced viscosity, salt products manufactured therefrom, and method for producing the article
JP2597045B2 (en) Abrasive paper material
TWI414590B (en) Hydrophilic and hydrophobic silane surface modification of abrasive grains
KR100808731B1 (en) Composite Abrasive Particles and Method of Manufacture
KR100483090B1 (en) Method and Article for the Production of Optical Quality Surface on Glass
TW526126B (en) Dual cured abrasive articles
JPS61192480A (en) Synthetic grinding stone for soft metal
SE530145C2 (en) Abrasives with new structures and abrasive methods
AU2002227235A1 (en) Composite abrasive particles and method of manufacture
JP2001348271A (en) Polishing compact and polishing surface plate using the same
JPH01177966A (en) Barrel finishing method for inorganic hard body
JPH04256581A (en) Composite grinding wheel
JPH01177967A (en) Barrel finishing method for inorganic hard body
USRE21737E (en) Resin bonded abrasive article
US3092476A (en) Method of manufacturing a grinder or hone having fine cushiony surfaces
JPH01177965A (en) Barrel finishing method for inorganic hard body
US2945333A (en) Method and apparatus for polishing
US5139536A (en) Alumina bonded abrasive for cast iron
JP2003165058A (en) Polishing compact and polishing surface plate using the same
CN110128716A (en) A kind of self-lubricating polishing rubber material and preparation method thereof and product
JPH0583343B2 (en)
JPH02190255A (en) Polishing method
JPH0411639A (en) Production of composite abrasive material
JPS6017472B2 (en) Abrasive material
JPS62241669A (en) Manufacture of lime grindstone