JPH0583343B2 - - Google Patents

Info

Publication number
JPH0583343B2
JPH0583343B2 JP60034657A JP3465785A JPH0583343B2 JP H0583343 B2 JPH0583343 B2 JP H0583343B2 JP 60034657 A JP60034657 A JP 60034657A JP 3465785 A JP3465785 A JP 3465785A JP H0583343 B2 JPH0583343 B2 JP H0583343B2
Authority
JP
Japan
Prior art keywords
resin
synthetic
abrasive grains
phenolic resin
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60034657A
Other languages
Japanese (ja)
Other versions
JPS61197164A (en
Inventor
Yoji Tomita
Kan Sato
Mitsuru Maruya
Masaru Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP3465785A priority Critical patent/JPS61197164A/en
Publication of JPS61197164A publication Critical patent/JPS61197164A/en
Publication of JPH0583343B2 publication Critical patent/JPH0583343B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、合成樹脂を結合材とした固形砥石、
所謂レジノイド系砥石で、比較的精密研磨に適し
たものおよびその製造方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a solid grindstone using a synthetic resin as a binder;
This article relates to a so-called resinoid grindstone that is suitable for relatively precision polishing, and a method for manufacturing the same.

(従来の技術) 従来、研磨用の固形砥石としては、砥粒の微細
粒子を何らかの結合材を用いて把持し固定化した
ものが一般的であり、その結合材にセラミツクス
を用いたビトリフアイド系砥石、フエノール系熱
硬化性樹脂を用いたレジノイド系砥石、あるいは
ポリビニルアセタール樹脂を用いたPVA系弾性
砥石等が挙げられる、各々その特性に応じて使用
分野も異なるものであつた。
(Prior art) Conventionally, solid grinding wheels for polishing have generally been made by holding and fixing fine particles of abrasive grains using some kind of binding material.Vitrified grinding wheels using ceramics as the binding material , resinoid-based grindstones using phenolic thermosetting resin, and PVA-based elastic grindstones using polyvinyl acetal resin, each of which has different fields of use depending on its characteristics.

就中、レジノイド系砥石は、樹脂の種類、製造
条件、使用砥石の粒径等に応じて多様化が可能
で、重研削から仕上げ研磨の分野まで広い範囲の
利用分野があり、特にその位置付けとしては、ビ
トリフアイド系砥石に代表される剛性砥石と、ポ
リビニルアセタール系弾性砥石との中間にあり、
セミ弾性砥石と称せられ、研削力および磨き力を
併せもつ高性能砥石として高い評価を受けてい
た。レジノイド系砥石の結合材として用いられる
熱硬化性樹脂はフエノール系の樹脂が一般的で、
その製造は通常、砥粒粉末とフエノール系樹脂粉
末とを混合し、液状フエノール系樹脂をもつて混
練して粘稠ペーストとなし、これを所定の型に入
れプレス成形した後、熱プレス固化し更にキユア
リングを行ない硬化せしめるという方法がとられ
ていた。
In particular, resinoid grindstones can be diversified depending on the type of resin, manufacturing conditions, grain size of the grindstone used, etc., and have a wide range of applications from heavy grinding to final polishing. is between rigid whetstones, such as vitrified whetstones, and polyvinyl acetal-based elastic whetstones.
Referred to as a semi-elastic whetstone, it received high praise as a high-performance whetstone that had both grinding and polishing power. The thermosetting resin used as a binding material for resinoid grinding wheels is generally a phenolic resin.
Its production is usually done by mixing abrasive grain powder and phenolic resin powder, kneading with liquid phenolic resin to form a viscous paste, placing this in a predetermined mold, press-molding, and then solidifying with heat press. A method was used in which the material was further cured by curing.

(発明が解決しようとする課題) 前述の如き方法にて製造されるレジノイド系砥
石は、砥石の重要要素である空〓率が比較的低く
嵩比重が高いために重くて使用しにくい上、粉末
樹脂と砥粒とを機械的に混合するという手段を用
いるため、微細な砥粒を均一的に分散することが
極めて難しく、製造の限界が高々1000番手(砥粒
平均粒径約16μm)程度で、それ以上の高番手の
ものは頗る得にくいという欠点があつた。しかも
空〓率が低いということは、研磨屑の逃げ、研磨
熱の放散という点で著しく不利であり、従つて広
い面積で被研磨体と接触し、研磨すること、すな
わち平面研磨という方式には稍々不向きな点があ
つた。また比較的硬質の金属、例えばクロム、ニ
ツケル等で鍍金された面の精密研磨に対しても適
用には難があり、それらの高精度を要求される研
磨は依然として非能率、高コストにして作業環境
上問題の多い、遊離砥粒によるラツピング方式
や、バフ仕上げ方式に依存していた。
(Problems to be Solved by the Invention) Resinoid-based grindstones manufactured by the method described above are heavy and difficult to use due to their relatively low void ratio, which is an important element of grindstones, and high bulk specific gravity. Since a method of mechanically mixing resin and abrasive grains is used, it is extremely difficult to uniformly disperse fine abrasive grains, and the manufacturing limit is at most 1000 grit (average grain size of approximately 16 μm). However, it had the disadvantage that it was very difficult to obtain a higher count. Moreover, the low void ratio is extremely disadvantageous in terms of escape of polishing debris and dissipation of polishing heat, and therefore, it is not suitable for surface polishing, which involves contacting and polishing the object over a wide area. There were some things that were a little unsuitable. Furthermore, it is difficult to apply precision polishing to surfaces plated with relatively hard metals such as chromium and nickel, and polishing that requires high precision remains inefficient and costly. It has relied on lapping methods using loose abrasive grains and buffing methods, which have many environmental problems.

本発明者等は、従来のレジノイド系砥石に見ら
れる上述の欠点および現状の問題点に鑑み、鋭意
研究を行ない本発明を完成するに至つたものであ
り、その目的とするところは、優れた平滑度と高
い面精度とを具えた金属表面、特に比較的硬質の
金属表面を、経済的有利にしかも環境汚染問題を
伴なわずに取得するにある。他の目的は、比較的
空〓率が高く研磨性能にすぐれたレジノイド系合
成砥石を提供するにある。
The present inventors have completed the present invention through intensive research in view of the above-mentioned drawbacks and current problems found in conventional resinoid grinding wheels. The object of the present invention is to obtain metal surfaces with smoothness and high surface precision, especially relatively hard metal surfaces, economically and without environmental pollution problems. Another object is to provide a resinoid-based synthetic grindstone that has a relatively high void ratio and excellent polishing performance.

(課題を解決するための手段) 上述の目的は、空〓率が40〜90容量%の三次元
網状組織をなす構造体であつて、該組織が、フエ
ノール系樹脂(P)とメラミン系樹脂(M)との2成分系
熱硬化性樹脂硬化体を主成分とするマトリツクス
と、該マトリツクス中に緻密に内在し固定化され
た砥粒とからなることを特注とする合成砥石によ
つて達成される。
(Means for Solving the Problems) The above object is to provide a structure having a three-dimensional network structure with a porosity of 40 to 90% by volume, in which the structure is composed of a phenolic resin (P) and a melamine resin. Achieved by a custom-made synthetic whetstone consisting of a matrix whose main component is a two-component thermosetting resin (M) and abrasive grains that are densely embedded and fixed in the matrix. be done.

かゝる合成砥石を取得するための本発明方法
は、液状フエノール系樹脂(P)と液状メラミン系樹
脂(M)とから主としてなる混合液に砥粒、気孔生成
剤および触媒を加え均一に攪拌したスラリー状原
液を反応固化せしめた中間体を、乾燥し水分を除
去した後、熱処理を施して硬化することを特徴と
するものである。
The method of the present invention for obtaining such a synthetic abrasive stone involves adding abrasive grains, a pore-forming agent, and a catalyst to a liquid mixture mainly consisting of a liquid phenolic resin (P) and a liquid melamine resin (M), and stirring the mixture uniformly. The method is characterized in that an intermediate obtained by reacting and solidifying the slurry-like stock solution is dried to remove moisture, and then heat-treated to harden it.

すなわち、従来のレジノイド系砥石の結合材が
ほとんどフエノール系樹脂の硬化体を主体とする
ものであるのに対し、本発明は、その靭性を抑え
脆性(もろさ)を与えるために、メラミン系樹脂
の硬化体を併用したものであり、更にその空〓率
を高くし研磨性能の持続性を向上し、特に、精密
研磨に適した物性をレジノイド系砥石に賦与する
ことを主眼点とするものである。
In other words, while the bonding material of conventional resinoid grinding wheels is mostly composed of hardened phenol resin, the present invention uses melamine resin to suppress the toughness and give brittleness. It is a product that uses a hardened material in combination, and its porosity is further increased to improve the sustainability of polishing performance, and the main focus is to provide resinoid-based grindstones with physical properties suitable for precision polishing. .

本発明者等は、精密研磨に適した性能、換言す
れば切刃の自生作用に優れた性能は、砥石のマト
リツクスの主成分としてフエノール系樹脂とメラ
ミン系樹脂との2成分系硬化体を適用し、結合材
としてフエノール系樹脂硬化体の靭性(ねばり)
を抑制し、適度な(もろさ)をマトリツクスに付
与することによつて得られることを知見した。つ
まり、フエノール系樹脂の硬化体は比較的靭性が
高いため、従来のレジノイド系砥石は、高い圧力
で圧着しつつ研磨を行なわなければその性能を充
分に発揮し得ないが、マトリツクスにメラミン系
樹脂の硬化体を併用することにより、低圧でその
性能を発揮し得ることを見出したのである。
The present inventors have found that performance suitable for precision polishing, in other words, excellent performance for self-sharpening of the cutting edge, is achieved by using a two-component hardened product of phenolic resin and melamine resin as the main components of the grinding wheel matrix. The toughness (stickiness) of the cured phenolic resin is used as a binder.
The inventors have discovered that this can be achieved by suppressing this and imparting appropriate (brittleness) to the matrix. In other words, the cured product of phenolic resin has relatively high toughness, so conventional resinoid-based grindstones cannot fully demonstrate their performance unless they are bonded under high pressure and polished. They discovered that by using a cured product of the same, it is possible to exhibit its performance at low pressure.

フエノール系樹脂(P)とメラミン系樹脂(M)との組
成比率は、重量基準にてP/M=1/2〜3/1
に設定する。これを上回ると、メラミン系樹脂併
用の効果は薄く、従来のレジノイド系合成砥石と
ほとんど変わらず、また、これを下回ると脆すぎ
て、レジノイド系砥石としての性能を発揮し難く
なるので何れにしても好ましくない。更に、マト
リツクスの空〓率は40〜90容量%の範囲内に設定
することが必要である。すなわち40容量%を下回
ると研磨屑、脱落砥粒の捕捉能力に欠け、目詰ま
り現象等を惹起し易い。また、90容量%を超える
ものは、その構造的強度に欠け、砥石としての性
能を果たし難い。
The composition ratio of phenolic resin (P) and melamine resin (M) is P/M = 1/2 to 3/1 on a weight basis.
Set to . If it exceeds this value, the effect of using melamine resin in combination will be weak, and it will be almost the same as a conventional resinoid-based synthetic whetstone, and if it is less than this, it will become too brittle and will not be able to perform as a resinoid-based grindstone. I also don't like it. Furthermore, it is necessary to set the vacancy rate of the matrix within the range of 40 to 90% by volume. That is, if it is less than 40% by volume, it lacks the ability to capture polishing debris and fallen abrasive grains, and tends to cause clogging phenomena. In addition, those with a volume of more than 90% lack structural strength and are difficult to perform as a grindstone.

次に、該合成砥石の製法について詳述する。 Next, the method for manufacturing the synthetic grindstone will be described in detail.

従来のレジノイド系砥石の製法は、砥粒とフエ
ノール系ノボラツク樹脂の硬化体の粉末とを所定
の比率にて混合し、これに液状フエノール系樹脂
を加えて混練しペースト状の原液を調整し、該ペ
ースト状の原液を所定の型で成形後、熱プレスに
て硬化せしめるという方法が一般的であつた。か
かる方法では、高い空〓率のものは望むべくもな
く、高々30容量%のものが限度である上、粉末状
原料の混合という手法を得るため、微細粒子の場
合均一混合が困難で、偏在した塊粒、所謂「ママ
コ」や不均一層を形成し易く、砥粒々度の限界は
高々1000番手であつて、それ以上の高番手のもの
は得られなかつた。
The conventional manufacturing method for resinoid grinding wheels is to mix abrasive grains and hardened phenolic novolac resin powder at a predetermined ratio, add liquid phenolic resin to this, knead it, and prepare a paste-like stock solution. A common method was to mold the paste-like stock solution in a predetermined mold and then harden it using a hot press. In this method, it is undesirable to have a high porosity, and the limit is 30% by volume at most.In addition, since the method involves mixing powdered raw materials, it is difficult to mix uniformly in the case of fine particles, resulting in uneven distribution. It is easy to form abrasive grains, so-called "mamako" or non-uniform layers, and the limit of abrasive grain size is at most 1000 grit, and higher grits cannot be obtained.

本発明者等は、樹脂の原料を粉末に求めず、フ
エノール系およびメラミン系の液状樹脂、すなわ
ち樹脂原液または樹脂、あるいはそのモノマー、
オリゴマー、低重合体等、前駆体の、水溶液、溶
液、エマルジヨンをその原料となし、該液中に砥
粒々子を投入、均一攪拌をすることにより、如何
なる粒度の砥粒をも極めて容易に且つ均一に原液
中に分散し得ることを見出したのである。加うる
に、フエノール系樹脂、メラミン系樹脂の各液状
体を用いることにより樹脂液相互の混合も完全で
あり、例えば、一方の樹脂のみが塊状、縞状ある
いは層状に偏在するという弊害をも回避し得るも
のである。更に好ましくは、両樹脂液の粘度をほ
ぼ同じレベルにして用いることで、上述の弊害を
完全に回避し得るのである。そして、両樹脂溶液
の混合割合については、得られる合成砥石中のフ
エノール樹脂(P)とメラミン樹脂(M)とが重量基準
で、P/M=1/2〜3/1の組成比率を有する
ようにする。
The present inventors did not seek powder raw materials for the resins, but instead used phenolic and melamine liquid resins, that is, resin stock solutions or resins, or their monomers.
By using an aqueous solution, solution, or emulsion of a precursor such as an oligomer or a low polymer as its raw material, and adding abrasive particles into the solution and stirring uniformly, abrasive particles of any particle size can be produced extremely easily. They discovered that it can be uniformly dispersed in the stock solution. In addition, by using the phenolic resin and melamine resin liquids, the resin liquids can be mixed completely, and the problem of one resin being unevenly distributed in lumps, stripes, or layers, for example, can be avoided. It is possible. More preferably, the above-mentioned disadvantages can be completely avoided by using both resin liquids with substantially the same viscosity. Regarding the mixing ratio of both resin solutions, the phenol resin (P) and melamine resin (M) in the obtained synthetic grindstone have a composition ratio of P/M = 1/2 to 3/1 on a weight basis. Do it like this.

次に、本発明方法において、気孔生成剤を用い
たことも重要な特長である。すなわち、従来のレ
ジノイド系砥石は前述の如き方法にて製造される
ため、その空〓は、樹脂粉末と砥粒粉末との混合
時において生ずる粒子間の間〓によつて形成され
るものであり、その混合方法によつて空〓率も変
動し、同時に不安定なものであつた。それに対し
本発明方法においては気孔生成剤を用いることに
よりその空〓率、気孔径を規制しうるため、極め
て安定に所期の構造のものが得られる。
Next, the use of a pore-forming agent in the method of the present invention is also an important feature. That is, since conventional resinoid grindstones are manufactured by the method described above, the voids are formed by gaps between particles that occur when resin powder and abrasive powder are mixed. However, the vacancy rate varied depending on the mixing method, and at the same time it was unstable. In contrast, in the method of the present invention, the porosity and pore diameter can be controlled by using a pore-forming agent, so that the desired structure can be obtained extremely stably.

すなわち、液状の樹脂液は、触媒存在下に比較
的低温で縮合架橋反応を起こしてゲル化し固化し
てゆくものであつて、固化に伴い媒体である水あ
るいは溶媒と分離して体積の収縮を起こし易いの
であるが、かかる固化反応過程における体積の収
縮を防ぎ安定な気孔を形成するために、本発明方
法においては気孔生成剤を用いるものである。
In other words, a liquid resin liquid undergoes a condensation crosslinking reaction at a relatively low temperature in the presence of a catalyst to gel and solidify, and as it solidifies, it separates from the medium water or solvent and shrinks in volume. In order to prevent volumetric contraction during the solidification reaction process and form stable pores, which can easily occur, a pore-forming agent is used in the method of the present invention.

気孔生成剤としては水に分散し易いものが適用
され、具体的には澱粉、澱粉変性体、セルロース
変性体、等が挙げられる。澱粉類、セルロース変
性体等、水に分散型の気孔生成剤は、そのものの
存在していた部位が気孔となるため、気孔生成剤
の粒度を種々変化させることにより、気孔径を適
宜制御し得る。これ等の気孔生成剤の使用量は
0.5〜5.0重量/容量%程度が好ましい。少な過ぎ
ると硬化が薄く、多すぎると混練が難しく、均一
な組織体を形成し得なくなる。
As the pore-forming agent, one that is easily dispersible in water is used, and specific examples thereof include starch, modified starch, modified cellulose, and the like. In the case of water-dispersed pore-forming agents such as starches and modified celluloses, the parts where they existed become pores, so by varying the particle size of the pore-forming agent, the pore size can be controlled as appropriate. . The amount of these pore-forming agents used is
It is preferably about 0.5 to 5.0% by weight/volume. If it is too small, the curing will be thin, and if it is too large, it will be difficult to knead and it will not be possible to form a uniform structure.

本発明に用いる液状フエノール系樹脂とは樹脂
原液またはモノマー、オリゴマー、重合体等から
なる前駆体の水溶液で、酸類等の触媒の存在下に
架橋固化し得えるもの、すなわちフエノール類を
アルデヒド類と塩基性触媒の存在下で反応するこ
とによつて生ずるレゾール系樹脂の初期生成物の
水溶液が特に好適である。
The liquid phenolic resin used in the present invention is a resin stock solution or an aqueous solution of a precursor consisting of monomers, oligomers, polymers, etc., which can be crosslinked and solidified in the presence of a catalyst such as an acid. Particularly preferred are aqueous solutions of initial products of resol resins produced by reaction in the presence of basic catalysts.

また、液状メラミン系とは、樹脂またはそのモ
ノマー、オリゴマー、重合体等からなる前駆体の
水溶液で、酸類等の触媒の存在下に分子間縮合す
なわち架橋硬化し得えるもの、特にその水溶液を
用いることが本発明方法を実施するに好適であ
る。
In addition, liquid melamine is an aqueous solution of a precursor consisting of a resin or its monomer, oligomer, polymer, etc., which can undergo intermolecular condensation, that is, cross-linking and hardening, in the presence of a catalyst such as an acid. This is suitable for carrying out the method of the present invention.

ここで述べたフエノール系樹脂およびメラミン
系樹脂は、触媒存在下であれば比較的低温(30〜
100℃)においても縮合、固化反応を行ない、固
形化するものであるが、この段階では軟弱で硬度
が足りず、砥石としての性能は賦与されていな
い、いわば中間体である。
The phenolic resins and melamine resins mentioned here can be used at relatively low temperatures (30~30°C) in the presence of a catalyst.
Although it undergoes condensation and solidification reactions even at 100°C, it becomes solid, but at this stage it is soft and not hard enough, so it is an intermediate, so to speak, without the performance as a grindstone.

この中間体を乾燥し水分あるいは溶剤を除去し
た後、熱処理キユアリングを行なうことで前述の
縮合による架橋反応を促進し硬化せしめ、所期の
砥石として必要な物性を得ることができるが、キ
ユアリングに好適な温度は100〜200℃、時間は3
〜50時間程度ある。
After drying this intermediate to remove moisture or solvent, heat treatment curing is performed to accelerate the crosslinking reaction caused by the aforementioned condensation and harden it, thereby obtaining the physical properties necessary for the desired grindstone, but it is suitable for curing. The temperature is 100~200℃, the time is 3
~50 hours.

ここで用いられる触媒とは、酸類をさすもの
で、具体的には塩酸、硫酸、硝酸等の鉱酸類、酢
酸、シユウ酸、酪酸、マレイン酸、アジピン酸、
乳酸、ベンゼンスルホン酸、パラトルエンスルホ
ン酸等の有機酸類、あるいは強酸と弱塩基とより
なる塩類すなわち水溶液中で酸性を示すもの、更
には有機アミンの塩酸塩等、加温により酸を発生
するもの等が挙げられる。
The catalyst used here refers to acids, specifically mineral acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, oxalic acid, butyric acid, maleic acid, adipic acid,
Organic acids such as lactic acid, benzenesulfonic acid, and paratoluenesulfonic acid, or salts consisting of a strong acid and a weak base, i.e. those that show acidity in aqueous solution, and those that generate acid when heated, such as hydrochloride of organic amines. etc.

本発明方法においては、前述の如く前工程では
比較的低温で固化を進め、後工程では、やや高温
で熱硬化を進めるため、例えば鉱酸類等、強い触
媒性能を有するものは、添加量を低いレベルにお
さえることがよい。強酸と弱塩基とよりなる金属
塩類マイルドな触媒を用いることが、均一な反応
を進めるためには好適である。
In the method of the present invention, as mentioned above, solidification proceeds at a relatively low temperature in the pre-process, and heat curing proceeds at a slightly high temperature in the post-process. It is better to keep it at a level. It is preferable to use a mild metal salt catalyst consisting of a strong acid and a weak base in order to proceed with a homogeneous reaction.

添加量は、本発明砥石の性能を変化させない程
度、具体的には全体に対し0.1〜5重量%程度を
加えるのが好ましい。
It is preferable to add the amount to an extent that does not change the performance of the grindstone of the present invention, specifically, about 0.1 to 5% by weight based on the total weight.

本発明になる合成砥石は、以上の如き方法にて
製造され、セミ弾性砥石として極めて優れた性能
を有するものであり、その性能も、両樹脂の混合
比、空〓率、更には熱処理(キユアリング)条件
を適宜変更することで多様な製品を得ることが可
能である。
The synthetic whetstone of the present invention is manufactured by the method described above and has extremely excellent performance as a semi-elastic whetstone, and its performance also depends on the mixing ratio of both resins, the void ratio, and even heat treatment (curing). ) It is possible to obtain a variety of products by appropriately changing the conditions.

また、砥粒の種類も特に限定を受けず、ダイヤ
モンド、窒化ホウ素、炭化珪素、熔融アルミナ、
酸化クロム、酸化セリユウム等の微粉末が使用可
能であるが、特に炭化珪素、熔融アルミナ、酸化
クロム、酸化セリユウムからなる群より選ばれた
少なくも一つの研磨材料よりなるものが好適であ
る。
In addition, the type of abrasive grains is not particularly limited, and diamond, boron nitride, silicon carbide, fused alumina,
Although fine powders such as chromium oxide and cerium oxide can be used, those made of at least one abrasive material selected from the group consisting of silicon carbide, fused alumina, chromium oxide, and cerium oxide are particularly preferred.

(作用) 一般に固形砥石による研磨作用は大略次の如く
説明される。
(Function) In general, the polishing action of a solid grindstone can be roughly explained as follows.

被研磨体と接する砥石面にある砥粒は、相対的
に摺動または回動、擦過されることにより切刃の
役割を果たし、被研磨体表面を研削するとともに
その摩擦力により脱落する。同時に新しい砥粒が
表面に現われ、同様の作用、所謂自生作用を繰り
返すもので、全体的に研削および磨き作用が並行
して行なわれるものである。すなわち、砥石は自
身を摩滅させつつ相手を研磨していくもので、結
合材であるマトリツクスは砥粒を適度に保持し、
脱落させ、また自身も摩滅していくものでなけれ
ばならない。すなわち、マトリツクスは被研磨材
の材質に応じた硬度、靭性、脆性を有することが
必要である。更に加えて大切なことは、研磨作用
に起因する研削屑、脱落砥粒が研磨面よりスムー
スに排出されることである。この作用が不充分で
あると、砥面の目詰まり現象が起こり研磨性能が
経時的に極端に低下し、更に研磨斑、条痕等好ま
しかざる結果を惹き起こす。
The abrasive grains on the surface of the whetstone in contact with the object to be polished play the role of cutting blades by sliding, rotating, or being rubbed relative to each other, grinding the surface of the object to be polished, and falling off due to the frictional force. At the same time, new abrasive grains appear on the surface and the same action, the so-called self-growth action, is repeated, and the overall grinding and polishing actions are performed in parallel. In other words, the whetstone polishes the other object while abrading itself, and the matrix, which is the binding material, holds the abrasive grains appropriately.
It must be something that can be shed and worn away. That is, the matrix needs to have hardness, toughness, and brittleness depending on the material of the material to be polished. What is also important is that grinding debris and fallen abrasive grains caused by the polishing action are smoothly discharged from the polishing surface. If this action is insufficient, the abrasive surface will become clogged, the polishing performance will be extremely degraded over time, and undesirable results such as polishing spots and streaks will occur.

本発明になる合成砥石は、上述の研磨作用に極
めて適したものであり、適度な脆性を有するため
自生作用に優れ、またその空〓により研磨屑、脱
落砥粒を捕捉し得る能力を有するものである。ま
た、従来のレジノイド系砥石では困難な高番手品
の製造も可能である為、従来遊離砥粒を用いたラ
ツピング研磨方式あるいあバフ研磨方式でしか遂
行し得なかつた。比較的硬質の金属の精密研磨
(仕上げ研磨)も本発明合成砥石によつて可能に
なつた。
The synthetic whetstone of the present invention is extremely suitable for the above-mentioned polishing action, has an appropriate level of brittleness, has excellent self-growth action, and has the ability to trap polishing debris and fallen abrasive grains through its hollow space. It is. Furthermore, since it is possible to manufacture high-grid products that are difficult to produce with conventional resinoid grindstones, this could only be achieved by lapping or buffing methods using loose abrasive grains. Precision polishing (finish polishing) of relatively hard metals has also become possible with the synthetic grindstone of the present invention.

以下、実施例をあげて本発明を具体的に詳述す
る。
Hereinafter, the present invention will be specifically explained in detail with reference to Examples.

実施例 1 水溶性フエノール系樹脂として住友ベークライ
ト(株)製PR−961Aの66%水溶液250mlを、水溶性
メラミン樹脂として住友化学(株)製M−3の60%水
溶液150mlを互いに混合し、触媒として硝酸亜鉛
および塩化第鉄少量を加え、更にコーンスター
チ40gを250mlの水に分散させた液および砥粒と
して炭化珪素1500番の微粉1Kgを加えて均一攪拌
し、所定の型枠に注型し、50℃にて50時間水溶中
で反応固化し中間体を得た。これを乾燥後、145
℃にて20時間キユアリングを行ない合成砥石を得
た。ここで得られた砥石は、フエノール分15.2
%、メラミン分8.3%、P/M=1.8/1、砥粒率
76.5wt%、空〓率43vol%、ロツクウエル硬度計
スーパーフイシヤル15−Yスケールで測定した硬
度が55であつた。
Example 1 250 ml of a 66% aqueous solution of PR-961A manufactured by Sumitomo Bakelite Co., Ltd. as a water-soluble phenolic resin and 150 ml of a 60% aqueous solution of M-3 manufactured by Sumitomo Chemical Co., Ltd. as a water-soluble melamine resin were mixed together, and a catalyst was prepared. Add a small amount of zinc nitrate and ferrous chloride as a mixture, then add a solution prepared by dispersing 40 g of cornstarch in 250 ml of water and 1 kg of fine powder of silicon carbide No. 1500 as abrasive grains, stir evenly, and pour into a specified mold. The reaction mixture was solidified in water at 50°C for 50 hours to obtain an intermediate. After drying this, 145
A synthetic grindstone was obtained by curing at ℃ for 20 hours. The grindstone obtained here has a phenol content of 15.2
%, melamine content 8.3%, P/M=1.8/1, abrasive ratio
The hardness was 76.5 wt%, the vacancy rate was 43 vol%, and the hardness was 55 as measured on a Rockwell hardness tester Superphysical 15-Y scale.

これを成形し円盤状となし、クロム鍍金を施し
た円筒の研削に供した所、良好な表面精度を得、
また目詰まり等の現象も起こらなかつた。
When this was molded into a disk shape and subjected to grinding of a chrome-plated cylinder, good surface accuracy was obtained.
Moreover, phenomena such as clogging did not occur.

(比較例) 実施例1で用いたフエノール系樹脂水溶液およ
びメラミン系樹脂水溶液を樹脂原料として、触媒
として硝酸亜鉛および塩化第鉄を、砥粒として
炭化珪素1500番の微粉末を、気孔生成剤としてコ
ーンスターチを用い、実施例1に示す方法に準じ
て次の組成の合成砥石を得た。
(Comparative example) The phenolic resin aqueous solution and melamine resin aqueous solution used in Example 1 were used as resin raw materials, zinc nitrate and ferrous chloride were used as catalysts, silicon carbide No. 1500 fine powder was used as abrasive grains, and as a pore-forming agent. A synthetic grindstone having the following composition was obtained using corn starch and according to the method shown in Example 1.

(イ) フエノール分20.1wt% メラミン分 5.9wt%}P/M=3.4/1 砥粒率 75.0wt% 空〓率 44.1vol% (ロ) フエノール分 8.6wt% メラミン分 18.1wt%}P/M=1/2.1 砥粒率 72.5wt% 空〓率 43.8vol% (ハ) フエノール分 29.0wt% メラミン分 17.1wt%}P/M=1.7/1 砥粒率 53.9wt% 空〓率 29.0vol% (ニ) フエノール分 22.0wt% メラミン分 12.9wt%}P/M=1.7/1 砥粒率 65.1wt% 空〓率 90.1vol% これら実施例1と同様にクロム鍍金を施した円
筒研削に供した所、下記の如き結果を得た。
(B) Phenol content 20.1wt% Melamine content 5.9wt%}P/M=3.4/1 Abrasive grain rate 75.0wt% Vacancy rate 44.1vol% (B) Phenol content 8.6wt% Melamine content 18.1wt%}P/M = 1/2.1 Abrasive grain ratio 72.5wt% Void ratio 43.8vol% (c) Phenol content 29.0wt% Melamine content 17.1wt%}P/M=1.7/1 Abrasive grain ratio 53.9wt% Void ratio 29.0vol% ( d) Phenol content 22.0wt% Melamine content 12.9wt%}P/M=1.7/1 Abrasive grain rate 65.1wt% Vacancy rate 90.1vol% These samples were subjected to cylindrical grinding with chromium plating in the same manner as in Example 1. , the following results were obtained.

(イ) やや硬すぎて、クロム鍍金を施面に適合せ
ず、研磨ができなかつた。
(a) It was too hard and chrome plating was not compatible with the surface, making it impossible to polish it.

(ロ) 脆弱すぎて、砥石の摩耗激しく、また高速回
転に耐え得なかつた。
(b) It was too fragile, causing severe wear on the grinding wheel, and could not withstand high-speed rotation.

(ハ) 目詰まり現象激しく、頻繁なドレツシング作
業が必要であつた。
(c) The clogging phenomenon was severe and frequent dressing operations were required.

(ニ) 砥石の摩耗激しく、機械精度に追随し得ず研
磨斑が著しかつた。
(d) The grinding wheel was severely worn and could not keep up with the precision of the machine, resulting in significant polishing spots.

(発明の効果) 従来のレジノイド砥石の欠点とされていた、空
〓率の低いところに起因する目詰まり現象は、本
発明合成砥石の出現によつて大幅に減少すること
ともに、今迄比較困難とされていた平面精密研磨
分野のレジノイド砥石の適用も可能となつた。ま
た、軽量でハンドリングが容易な製品が得られる
ようになつた点も特筆されよう。
(Effect of the invention) With the appearance of the synthetic grinding wheel of the present invention, the clogging phenomenon caused by the low porosity, which was considered to be a drawback of conventional resinoid grinding wheels, has been significantly reduced, and it has been difficult to compare until now. It has also become possible to apply resinoid grinding wheels in the field of precision polishing of flat surfaces. It is also noteworthy that products that are lightweight and easy to handle are now available.

更に、本発明方法により、従来困難であつた高
番手品の製造が可能となり、遊離砥粒を用いたラ
ツピング方式、あるいはバフ仕上げ方式の分野ま
でカバーし得るものが得られるようになつた。ま
た更に本発明方式では、原液の製造に量的な困難
を伴わず、型枠への注型方法を採るため、かなり
大形のものまで製造可能であり、形状も、板状、
円盤状、円筒状、ブロツク状等となすことがで
き、特に中間体の段階で加工を行なえば、どのよ
うな複雑な形状にでも成形し得る。すなわち性能
上も、また形状面でも多様化が可能となり、従来
のレジノイド系砥石の応用範囲を遥かに超えるも
のとなり得るものである。
Furthermore, the method of the present invention makes it possible to manufacture high-count products, which has been difficult in the past, and can cover the fields of lapping methods using loose abrasive grains and buff finishing methods. Furthermore, in the method of the present invention, there are no quantitative difficulties in producing the stock solution, and the method of casting into molds is adopted, so it is possible to produce even quite large products, and the shapes can also be changed to plate-like, plate-like, etc.
It can be formed into a disk shape, a cylinder shape, a block shape, etc., and it can be formed into any complicated shape, especially if it is processed at the intermediate stage. In other words, it becomes possible to diversify both performance and shape, and the range of applications far exceeds that of conventional resinoid grindstones.

このように、本発明になる合成砥石の効果は極
めて大きく、従来合成砥石では困難であり、遊離
砥石粒によるラツピング方式、バフ仕上げ方式に
依存していた硬質金属、例えば、クロム、ニツケ
ル等で鍍金された面の精密研磨が、高精度品の適
用により充分に可能になつた。この高価な採粒の
消費が格段に減り、経済的効果をもたらすと供
に、環境、作業者の汚染問題も少なくなるのみな
らず、また高濃度廃液の処理という面での負担が
軽減され、その及ぼす影響は極めて大である。加
うるに、従来番手のものであつても、空〓率が高
くなり、研磨性能の持続性が向上し、具体的には
ドレツシング(表面更新)作業なしに研磨作業が
続けられること、および比重の低下により交換作
業、運搬作業等の労力が極めて軽減されること
等々、作業性の向上に資する所も頗る大である。
As described above, the effect of the synthetic whetstone of the present invention is extremely large, and it is difficult to use conventional synthetic whetstones by plating with hard metals such as chromium, nickel, etc., which relied on lapping and buffing methods using loose abrasive grains. Precise polishing of polished surfaces has become possible with the use of high-precision products. The consumption of this expensive granulation material is significantly reduced, which not only brings about economic effects, but also reduces environmental and worker pollution problems, and also reduces the burden of processing high-concentration waste liquid. Its influence is extremely large. In addition, even with conventional grits, the void ratio is higher and the sustainability of polishing performance is improved, specifically, the polishing work can be continued without dressing (surface renewal) work, and the specific gravity is improved. This greatly contributes to improving work efficiency, such as the reduction in labor costs for replacement work, transportation work, etc.

Claims (1)

【特許請求の範囲】 1 気孔生成剤たる澱粉を溶出させて得た空〓率
が40〜90容量%の三次元網状組織をなす構造体で
あつて、該組織が、組成比率が重量基準で1/2
〜3/1の割合よりなるフエノール系樹脂(P)とメ
ラミン系樹脂(M)との均一な2成分系熱硬化性樹脂
硬化体を主成分とするマトリツクスと、該マトリ
ツクス中に緻密に内在し、固定化された砥粒とか
らなることを特徴とする合成砥石。 2 砥粒が、炭化珪素、溶融アルミナ、酸化セリ
ウムおよび酸化クロムよりなる群から選ばれた少
なくとも一つの研磨材料からなる特許請求の範囲
第1項記載の合成砥石。 3 水溶性フエノール系樹脂の水溶液と水溶性メ
ラミン系樹脂の水溶液とからなる混合液に砥粒、
澱粉および触媒を加え均一に攪拌したスラリー状
原液を型枠に注型し、反応固化せしめて得た中間
体を、乾燥して水分を除去した後、熱処理を施し
て硬化することを特徴とする空〓率が40〜90容量
%で、且つ、フエノール系樹脂(P)とメラミン系樹
脂(M)とが重量基準でP/M=1/2〜3/1の組
成比率を有する合成砥石の製造方法。 4 水溶性フエノール系樹脂が水溶性レゾール樹
脂の水溶液である特許請求の範囲第3項記載の合
成砥石の製造方法。 5 触媒が強酸と弱塩基とよりなる塩類である特
許請求の範囲第3項乃至第4項記載の合成砥石の
製造方法。
[Scope of Claims] 1. A structure having a three-dimensional network structure with a porosity of 40 to 90% by volume obtained by eluting starch as a pore-forming agent, wherein the structure has a composition ratio on a weight basis. 1/2
A matrix whose main component is a homogeneous two-component thermosetting resin cured product of phenolic resin (P) and melamine resin (M) in a ratio of ~3/1, and which is densely contained within the matrix. , a synthetic whetstone characterized by comprising fixed abrasive grains. 2. The synthetic whetstone according to claim 1, wherein the abrasive grains are made of at least one abrasive material selected from the group consisting of silicon carbide, fused alumina, cerium oxide, and chromium oxide. 3 Add abrasive grains to a mixed solution consisting of an aqueous solution of water-soluble phenolic resin and an aqueous solution of water-soluble melamine resin.
A slurry-like stock solution containing starch and a catalyst and stirring uniformly is poured into a mold, and the resulting intermediate is solidified by reaction. After drying to remove moisture, it is heat-treated to harden. A synthetic whetstone having a void ratio of 40 to 90% by volume and a composition ratio of phenolic resin (P) and melamine resin (M) of P/M = 1/2 to 3/1 on a weight basis. Production method. 4. The method for producing a synthetic grindstone according to claim 3, wherein the water-soluble phenolic resin is an aqueous solution of a water-soluble resol resin. 5. The method for producing a synthetic grindstone according to claims 3 to 4, wherein the catalyst is a salt consisting of a strong acid and a weak base.
JP3465785A 1985-02-25 1985-02-25 Synthetic grindstone and its production method Granted JPS61197164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3465785A JPS61197164A (en) 1985-02-25 1985-02-25 Synthetic grindstone and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3465785A JPS61197164A (en) 1985-02-25 1985-02-25 Synthetic grindstone and its production method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4318892A Division JPH07106546B2 (en) 1992-11-27 1992-11-27 Method for manufacturing synthetic whetstone

Publications (2)

Publication Number Publication Date
JPS61197164A JPS61197164A (en) 1986-09-01
JPH0583343B2 true JPH0583343B2 (en) 1993-11-25

Family

ID=12420510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3465785A Granted JPS61197164A (en) 1985-02-25 1985-02-25 Synthetic grindstone and its production method

Country Status (1)

Country Link
JP (1) JPS61197164A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671708B2 (en) * 1986-12-15 1994-09-14 鐘紡株式会社 Semiconductor wafer-Whetstone for polishing
JP2630791B2 (en) * 1987-12-24 1997-07-16 タイホー工業株式会社 Precision polishing method
JP7264663B2 (en) * 2019-02-19 2023-04-25 信濃電気製錬株式会社 Whetstone and method for manufacturing whetstone

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540386A (en) * 1979-08-22 1980-03-21 Kayaba Ind Co Ltd Shock absorber
JPS5642431A (en) * 1979-09-14 1981-04-20 Matsushita Electric Works Ltd Timer circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540386A (en) * 1979-08-22 1980-03-21 Kayaba Ind Co Ltd Shock absorber
JPS5642431A (en) * 1979-09-14 1981-04-20 Matsushita Electric Works Ltd Timer circuit

Also Published As

Publication number Publication date
JPS61197164A (en) 1986-09-01

Similar Documents

Publication Publication Date Title
JPS61192480A (en) Synthetic grinding stone for soft metal
NL8004570A (en) GRINDING BODIES BINDED WITH ORGANIC MATERIAL.
US3177056A (en) Process for making a porous abrasive body and product thereof
JP2694705B2 (en) Synthetic grindstone for high-purity aluminum substrate polishing
JPH0583343B2 (en)
JPH07106546B2 (en) Method for manufacturing synthetic whetstone
JPS61209880A (en) Precise polishing of hard metal surface
JP2593829B2 (en) Synthetic whetstone
JPS59169764A (en) Solid grindstone
JPH09254041A (en) Synthetic grinding wheel and manufacture thereof
JP2687241B2 (en) Diamond grindstone manufacturing method
JPH05188B2 (en)
JPH0673807B2 (en) Polishing surface plate
JP2696776B2 (en) Synthetic whetstone and method of manufacturing the same
JP2520474B2 (en) Porous grindstone for magnetic disk substrate
JP2684607B2 (en) Synthetic whetstone
JPS62246474A (en) Manufacture of super abrasive grain grindstone for mirror-like surface finishing
JPH0360978A (en) Diamond grinding stone and manufacture thereof
JPS58223565A (en) Method for manufacture of resinoid whetstone
JP2555000B2 (en) Polishing method for hard and brittle materials
NL8103379A (en) METHOD FOR MANUFACTURING A GRINDING WHEEL.
JPH07241775A (en) Composite grinding wheel and buff material, and manufacture thereof
JPH02185373A (en) Synthetic grindstone
JPH0763936B2 (en) Grinding stone and method for manufacturing the same
JPH081522A (en) Method for manufacturing composite grinding wheel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees