JPH01173748A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH01173748A
JPH01173748A JP62332081A JP33208187A JPH01173748A JP H01173748 A JPH01173748 A JP H01173748A JP 62332081 A JP62332081 A JP 62332081A JP 33208187 A JP33208187 A JP 33208187A JP H01173748 A JPH01173748 A JP H01173748A
Authority
JP
Japan
Prior art keywords
integrated circuit
transistors
oxide film
transistor
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62332081A
Other languages
Japanese (ja)
Inventor
Yoshiki Fukuzaki
義樹 福崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP62332081A priority Critical patent/JPH01173748A/en
Publication of JPH01173748A publication Critical patent/JPH01173748A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable an integrated circuit containing two transistors respectively required of characteristic high speed and high dielectric strength to be made by a method wherein exceeding two types of MIS transistors in different gate insulating film thickness are formed in the same integrated circuit. CONSTITUTION:An N channel MOS transistor 1 and an N channel MOS transistor 2 in high dielectric strength are formed bounded by a field oxide film 4 on a P type silicon substrate 3 through the intermediary of a P<+>channel stopper 5. Both transistors 1, 2 are composed of N type diffused regions 6, 7, 8, gate oxide films 13, 14, polysilicon conductive layers 10. interlayer insulating films 11 and aluminum wiring layers 12. The major difference between the transistors 1 and 2 is the difference in the thickness of the oxide films 13 and 14 i.e. 200-300Angstrom in the former and 400-600Angstrom in the latter. Such a difference in the film thickness can be made by etching away the oxide film once formed with the film 14 covered and then formed again with the cover removed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は同−集積回路内のMIS トランジスタのゲー
ト絶縁膜厚をそのトランジスタに要求される耐圧に応じ
て変えた半導体集積回路装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor integrated circuit device in which the gate insulating film thickness of a MIS transistor in the integrated circuit is varied depending on the withstand voltage required of the transistor.

従来の技術 近年、電子回路システムの小型化、低コスト化のために
いくつかの集積回路および個別素子で組んだ集積回路の
周辺回路からなる電子回路をワンチップ化した高機能集
積回路が利用さ扛るようになってきた。例えば、その一
つに高電圧を必要とする表示装置を直接駆動するために
高耐圧MISトランジスタを内蔵した高耐圧集積回路が
ある。
Background of the Invention In recent years, high-performance integrated circuits have been used to reduce the size and cost of electronic circuit systems, in which electronic circuits consisting of several integrated circuits and peripheral circuits of integrated circuits assembled from individual elements are integrated into one chip. I've started to get carried away. For example, one of them is a high voltage integrated circuit that includes a built-in high voltage MIS transistor to directly drive a display device that requires high voltage.

以下に従来のシリコン高耐圧集積回路について説明する
A conventional silicon high voltage integrated circuit will be explained below.

第2図は従来のシリコン高耐圧集積回路の要部を示す断
面図であり、1は通常のNチャンネルMO8トランジス
タ、2はNチャンネル高耐圧MOSトランジスタ、3は
p型シリコン基板、4はフィールド酸化膜、6はp十チ
ャンネルストッパ、6はソースとなるN十拡散領域、7
はドレインとなるN 拡散領域、8は高耐圧MOSトラ
ンジスタのオフセット構造を形成しているN−拡散領域
、9は均一な厚みとされたゲート酸化膜、1゜はゲート
電極となるポリシリコン導に層、11は眉間絶縁膜、そ
して12はアルミ配線層である。
FIG. 2 is a cross-sectional view showing the main parts of a conventional silicon high-voltage integrated circuit, in which 1 is a normal N-channel MO8 transistor, 2 is an N-channel high-voltage MOS transistor, 3 is a p-type silicon substrate, and 4 is a field oxidized 6 is a p channel stopper, 6 is an N diffusion region which becomes a source, and 7 is a film.
is an N diffusion region that will become the drain, 8 is an N- diffusion region that forms the offset structure of the high voltage MOS transistor, 9 is a gate oxide film with a uniform thickness, and 1° is a polysilicon conductor that will be the gate electrode. 11 is a glabellar insulating film, and 12 is an aluminum wiring layer.

発明が解決しようとする問題点 集積回路のパターンを微細化して高速化する場合、ゲー
ト長を短かくし、またゲート幅を狭くするとともにゲー
ト酸化膜厚を薄くしなければならないが、ゲート酸化膜
厚を薄くするとトランジスタのドレイン耐圧が下がると
いう問題がある。従って、第2図に示すように単一のゲ
ート酸化膜を用いて形成さnた従来の構造では、パター
ンの微細化をはかると、他のトランジスタよりも高い耐
圧が要求されるトランジスタの耐圧が低下するという問
題点を有していた。
Problems to be Solved by the Invention When miniaturizing integrated circuit patterns to increase speed, it is necessary to shorten the gate length, narrow the gate width, and reduce the gate oxide film thickness. There is a problem that if the transistor is made thinner, the drain breakdown voltage of the transistor decreases. Therefore, in the conventional structure formed using a single gate oxide film as shown in Figure 2, when the pattern is made finer, the breakdown voltage of the transistor, which is required to have a higher breakdown voltage than other transistors, increases. However, there was a problem in that it decreased.

本発明は上記の問題点を解決するもので、高速性が要求
されるトランジスタと高い耐圧が要求さnるトランジス
タのそnぞれの特徴を十分に引き出すことができる半導
体集積回路装置の提供を目的とする。
The present invention solves the above-mentioned problems, and aims to provide a semiconductor integrated circuit device that can fully bring out the characteristics of transistors that require high speed and transistors that require high breakdown voltage. purpose.

問題点を解決するための手段 この目的を達成するために本発明の半導体集積回路装置
は、高い耐圧が要求さnるトランジスタのゲート絶縁膜
を高速性が要求さnるトランジスタのゲート絶縁膜より
も厚くした構成を有している。
Means for Solving the Problems In order to achieve this object, the semiconductor integrated circuit device of the present invention has a structure in which the gate insulating film of a transistor that requires a high breakdown voltage is made smaller than the gate insulating film of a transistor that requires high speed performance. It also has a thicker structure.

作用 この構成によれば、高速性の要求さnるトランジスタよ
りもゲート絶縁膜を厚くしたトランジスタはそのドレイ
ン接合の電界強度の減少によって高耐圧化されるため、
それぞれのトランジスタの特徴を十分に引き出す最適な
設計を行うことができる。
Effects According to this configuration, a transistor with a thicker gate insulating film than a transistor that requires high speed has a higher withstand voltage due to a reduction in the electric field strength at its drain junction.
It is possible to perform an optimal design that fully brings out the characteristics of each transistor.

実施例 以下本発明の一実施例について、図面を参照しながら説
明する。
EXAMPLE An example of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例におけるシリコン高耐圧集積
回路の要部を示す断面を示すものである。
FIG. 1 shows a cross section showing the main parts of a silicon high voltage integrated circuit according to an embodiment of the present invention.

第1図において、13は薄いゲート酸化膜、14はゲー
ト酸化膜13よりも厚いゲート酸化膜である。なお1は
NチャンネルMOSトランジスタ、2はNチャンネル高
耐圧MOSトランジスタ、3はp型シリコン基板、4は
フィールド酸化膜、6はp十チャンネルストッパ、6.
了はH十拡散領域、8はN−拡散領域、1oはポリシリ
コン導電層、11は層間絶縁膜、そして12はアルミ配
線層であり、こnらは従来例の構成と同じものである。
In FIG. 1, 13 is a thin gate oxide film, and 14 is a gate oxide film thicker than gate oxide film 13. Note that 1 is an N-channel MOS transistor, 2 is an N-channel high voltage MOS transistor, 3 is a p-type silicon substrate, 4 is a field oxide film, 6 is a p+ channel stopper, 6.
8 is a H diffusion region, 8 is an N- diffusion region, 1o is a polysilicon conductive layer, 11 is an interlayer insulating film, and 12 is an aluminum wiring layer, which are the same as the conventional example.

上記の構成のシリコン高耐圧集積回路の製作にあたり、
膜厚が異る2種類のゲート酸化膜12と13は第3図で
示す過程を経て形成さ扛る。先ず第3図aに示すように
フィールド酸化膜102及びチャンネルストッパ103
の形成さnたシリコン基板101を熱酸化して250ム
程度の薄い酸化シリコン膜104を作り、次に第3図す
に示すように高耐圧MOSトランジスタを形成する部分
上をレジスト106で覆い通常のMOSトランジスタを
形成する部分の薄い酸化シリコン膜104をエツチング
して除去する。次いで、第3図Cに示すようにレジスト
を除去した後熱酸化を行い、通常のMOSトランジスタ
を形成する部分に200〜300ム程度の薄い酸化シリ
コン膜106を形成する。この過程で高耐圧MOSトラ
ンジスタを形成する部分の酸化膜厚が増し、前者よりも
厚い400〜600ム程度の酸化シリコン膜10了が形
成される。またその他の工程は従来から行われている工
程そのを用いることができる。
In manufacturing the silicon high voltage integrated circuit with the above configuration,
Two types of gate oxide films 12 and 13 having different film thicknesses are formed through the process shown in FIG. First, as shown in FIG. 3a, a field oxide film 102 and a channel stopper 103 are formed.
A silicon oxide film 104 having a thickness of about 250 μm is formed by thermally oxidizing the silicon substrate 101 on which the MOS transistors are formed, and then, as shown in FIG. The thin silicon oxide film 104 in the portion where the MOS transistor is to be formed is removed by etching. Next, as shown in FIG. 3C, after removing the resist, thermal oxidation is performed to form a thin silicon oxide film 106 of about 200 to 300 μm in the area where a normal MOS transistor will be formed. In this process, the thickness of the oxide film increases in the portion where the high voltage MOS transistor is to be formed, and a silicon oxide film 10 is formed which is thicker than the former with a thickness of about 400 to 600 μm. In addition, for other steps, conventional steps can be used.

以上のように構成さnた本実施例のシリコン高耐圧集積
回路では、高耐圧MOSトランジスタのゲート酸化膜を
通常のMOSトランジスタのゲート酸化膜よりも厚くし
たことにより、高耐圧MOSトランジスタのドレイン耐
圧をそのオフセット構造による改善以上に高めることが
でき、さらにオフセット構造を形成しているN−拡散領
域の幅を狭くすることで同じドレイン耐圧でも占有面積
の小さいトランジスタを裏作することができる。
In the silicon high-voltage integrated circuit of this embodiment configured as described above, the gate oxide film of the high-voltage MOS transistor is made thicker than the gate oxide film of a normal MOS transistor, so that the drain breakdown voltage of the high-voltage MOS transistor is increased. By narrowing the width of the N- diffusion region forming the offset structure, it is possible to fabricate a transistor with the same drain breakdown voltage but with a smaller occupied area.

なお、本実施例ではトランジスタをNチャンネルとした
が、これはPチャンネルでもよいし、NチャンネルとP
チャンネルの両方が含1nていても良い。また、他のト
ランジスタより高い耐圧の要求さ扛るMISI−ランジ
スタとしてオフセット構造を有した高耐圧MOSトラン
ジスタを使用したシリコン高耐圧集積回路についてその
実施例を示したが、ダイナミックRAMやマイクロプロ
セッサ−などの5v程度の低電圧で動作するものに使用
してもよい。この場合、内部の回路は5v以下の電圧で
動作し入出力の部分のみゲート絶縁膜を厚くして5vで
動作するようにす扛ば、内部の回路のパターンをさらに
微細化することができ、チップ面積の大幅な縮小を実現
することができる。
In this embodiment, the transistor is an N-channel transistor, but it may be a P-channel transistor, or an N-channel transistor and a P-channel transistor.
Both channels may be included. In addition, we have shown examples of silicon high-voltage integrated circuits that use high-voltage MOS transistors with an offset structure as MISI transistors, which require a higher breakdown voltage than other transistors, but also apply to dynamic RAM, microprocessors, etc. It may be used for devices that operate at a low voltage of about 5V. In this case, the internal circuit operates at a voltage of 5V or less, and if the gate insulating film is thickened only at the input/output portion so that it operates at 5V, the pattern of the internal circuit can be further miniaturized. A significant reduction in chip area can be achieved.

また、実施例では基板をシリコンとし、ゲート絶縁膜を
酸化シリコン膜としたが、基板がガリウム・ヒ素のよう
な化合物半導体であってもよく、さらに、ゲート絶縁膜
が窒化シリコン膜、酸化タンタル膜、酸化アルミニウム
膜などでもよく、また、そnらの多層膜であってもよい
Further, in the embodiment, the substrate is silicon and the gate insulating film is a silicon oxide film, but the substrate may be a compound semiconductor such as gallium arsenide, and the gate insulating film may be a silicon nitride film or a tantalum oxide film. , an aluminum oxide film, or a multilayer film thereof.

発明の効果 本発明は同一の集積回路内に、ゲート絶縁膜厚の異なっ
た2種類以上のMIS トランジスタを設けたことによ
り、高速性が要求さ扛るトランジスタと高い耐圧が要求
さnるトランジスタを内蔵する集積回路を実現すること
ができ、そ扛ぞnのトランジスタの特徴を十分に引き出
すことができる。
Effects of the Invention The present invention provides two or more types of MIS transistors with different gate insulating film thicknesses in the same integrated circuit. A built-in integrated circuit can be realized, and the characteristics of the transistor can be fully brought out.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるシリコン高耐圧集積
回路の要部を示す断面図、第2図は従来のシリコン高耐
圧集積回路の要部を示す断面図、第3図は本発明の一実
施例における2種類のゲート酸化膜厚を得る方法を説明
するための工程順断面図である。 1・・・・・・NチャンネルMO3トランジスタ、2・
・・・・・Nチャンネル高耐圧MOSトランジスタ、3
・・・・・・p型シリコン基板、4・・・・・・フィー
ルド酸化膜、6・・・・・・P十チャンネルストッパ、
6,7・・・・・・N+拡散領域、8・・・・・・N−
拡散領域、9・・・・・・ゲート酸化膜1.10・・・
・・・ポリシリコン導電層、11・・・・・・層間絶縁
膜、12・・・・・・アルミ配線層、13・・・・・・
薄いゲート酸化膜、14・・・・・・厚いゲート酸化膜
、101・・・・・・シリコン基板、102・・・・・
・フィールド酸化膜、103・・・・・・チャンネルス
トッパ、1o4・・・・・・260λ程度の薄い酸化シ
リコン膜、105・・・・・・レジスト、106・・・
・・・3ooX程度の薄い酸化シリコン膜、107・・
・・・・600X程度の酸化シリコン膜。
FIG. 1 is a cross-sectional view showing the main parts of a silicon high voltage integrated circuit according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the main parts of a conventional silicon high voltage integrated circuit, and FIG. 3 is a cross-sectional view showing the main parts of a conventional silicon high voltage integrated circuit. FIG. 3 is a step-by-step cross-sectional view for explaining a method of obtaining two types of gate oxide film thicknesses in one embodiment. 1...N-channel MO3 transistor, 2...
...N-channel high voltage MOS transistor, 3
...P-type silicon substrate, 4 ...field oxide film, 6 ...P channel stopper,
6, 7...N+ diffusion region, 8...N-
Diffusion region, 9...Gate oxide film 1.10...
... Polysilicon conductive layer, 11 ... Interlayer insulating film, 12 ... Aluminum wiring layer, 13 ...
Thin gate oxide film, 14... Thick gate oxide film, 101... Silicon substrate, 102...
・Field oxide film, 103...Channel stopper, 1o4...Thin silicon oxide film of about 260λ, 105...Resist, 106...
...Thin silicon oxide film of about 3ooX, 107...
...Silicon oxide film of about 600X.

Claims (3)

【特許請求の範囲】[Claims] (1)同一の半導体基板内に、同一の工程で形成したゲ
ート電極を有し、さらにゲート絶縁膜厚の異なる2種類
以上のMISトランジスタを有することを特徴とする半
導体集積回路装置。
(1) A semiconductor integrated circuit device characterized by having gate electrodes formed in the same process in the same semiconductor substrate and two or more types of MIS transistors having different gate insulating film thicknesses.
(2)2種類以上のMISトランジスタの中の少なくと
も1種類が他のトランジスタより高い耐圧が要求される
MISトランジスタであることを特徴とする特許請求の
範囲第1項記載の半導体集積回路装置。
(2) The semiconductor integrated circuit device according to claim 1, wherein at least one type of the two or more types of MIS transistors is a MIS transistor that requires a higher breakdown voltage than the other transistors.
(3)ゲート絶縁膜厚が2種類で、薄い方が200Å〜
300Å、厚い方が400Å〜600Åであることを特
徴とする特許請求の範囲第1項記載の半導体集積回路装
置。
(3) There are two types of gate insulating film thickness, the thinner one is 200 Å ~
2. The semiconductor integrated circuit device according to claim 1, wherein the thickness is 300 Å, and the thicker one is 400 Å to 600 Å.
JP62332081A 1987-12-28 1987-12-28 Semiconductor integrated circuit device Pending JPH01173748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62332081A JPH01173748A (en) 1987-12-28 1987-12-28 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62332081A JPH01173748A (en) 1987-12-28 1987-12-28 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH01173748A true JPH01173748A (en) 1989-07-10

Family

ID=18250934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62332081A Pending JPH01173748A (en) 1987-12-28 1987-12-28 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH01173748A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100955839B1 (en) * 2007-12-28 2010-05-06 주식회사 동부하이텍 Method for forming multi capacitor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263261A (en) * 1985-05-17 1986-11-21 Nec Corp Manufacture of mos type semiconductor element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263261A (en) * 1985-05-17 1986-11-21 Nec Corp Manufacture of mos type semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100955839B1 (en) * 2007-12-28 2010-05-06 주식회사 동부하이텍 Method for forming multi capacitor

Similar Documents

Publication Publication Date Title
US6043157A (en) Semiconductor device having dual gate electrode material and process of fabrication thereof
JPS63226055A (en) Semiconductor integrated circuit device and manufacture thereof
US5241208A (en) Semiconductor device comprising an analogue element and a digital element
JPH118352A (en) Semiconductor integrated circuit device and its manufacture
JP2000188339A (en) Semiconductor device and its manufacture
JPS6272144A (en) Semiconductor device
JPH04290447A (en) Charge coupled device and its formation, and semiconductor integrated circuit device with same and its manfuacture
JPH01173748A (en) Semiconductor integrated circuit device
US8044487B2 (en) Semiconductor device and method of manufacturing the same
JPH01257366A (en) Semiconductor device and its manufacture
JP2635577B2 (en) Semiconductor device
JPH04365373A (en) Semiconductor intrgtrated circuit device
JPH02214152A (en) Semiconductor device and manufacture thereof
JPS608636B2 (en) Manufacturing method of semiconductor device
JPH05259289A (en) Semiconductor device
JP3275274B2 (en) Field effect transistor
JP2000012841A (en) Semiconductor device
JPS61160968A (en) Semiconductor device and manufacture thereof
JP2728424B2 (en) Semiconductor integrated circuit device
JPH05315604A (en) Manufacture of semiconductor device
JPH0621369A (en) Manufacture of mos integrated circuit
JPS61214557A (en) Manufacture of semiconductor integrated circuit device
JPH09186244A (en) Semiconductor device
JPH01168054A (en) Semiconductor integrated circuit device
JP3307028B2 (en) High breakdown voltage transistor and method of manufacturing the same