JPH0117009Y2 - - Google Patents

Info

Publication number
JPH0117009Y2
JPH0117009Y2 JP1983039393U JP3939383U JPH0117009Y2 JP H0117009 Y2 JPH0117009 Y2 JP H0117009Y2 JP 1983039393 U JP1983039393 U JP 1983039393U JP 3939383 U JP3939383 U JP 3939383U JP H0117009 Y2 JPH0117009 Y2 JP H0117009Y2
Authority
JP
Japan
Prior art keywords
generator
solution
solar
circulation pump
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983039393U
Other languages
Japanese (ja)
Other versions
JPS59145674U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1983039393U priority Critical patent/JPS59145674U/en
Publication of JPS59145674U publication Critical patent/JPS59145674U/en
Application granted granted Critical
Publication of JPH0117009Y2 publication Critical patent/JPH0117009Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【考案の詳細な説明】 (イ) 産業上の利用分野 この考案は太陽熱駆動吸収冷蔵装置に関し、特
に太陽エルギーの集熱を低温度で高効率に行うこ
とができる太陽熱駆動吸収冷蔵装置に関する。
[Detailed description of the invention] (a) Industrial application field This invention relates to a solar-powered absorption refrigeration system, and particularly to a solar-powered absorption refrigeration system that can collect solar energy at low temperatures and with high efficiency.

(ロ) 従来技術 第1図に示す従来の太陽熱駆動吸収冷蔵装置で
は、太陽集熱器1aで集熱された太陽エネルギー
によつて発生器2aが加熱されると、気泡ポンプ
部3aにおいて、アンモニアなどの冷媒が吸収液
から分離蒸発するとともに、冷媒を分離した希溶
液は気泡ポンプ作用により発生器2aから吸収器
7aの入口部に送られる。蒸発した冷媒は精溜器
4aにより濃縮された冷媒蒸気となり、凝縮器5
aで凝縮されて液化し、蒸発器6aで蒸発すると
きに冷蔵室(図示省略)内から熱を奪つて冷凍効
果をあげる。
(B) Prior Art In the conventional solar-driven absorption refrigeration system shown in FIG. 1, when the generator 2a is heated by the solar energy collected by the solar collector 1a, ammonia is The refrigerant is separated and evaporated from the absorption liquid, and the dilute solution from which the refrigerant has been separated is sent from the generator 2a to the inlet of the absorber 7a by a bubble pump action. The evaporated refrigerant becomes a refrigerant vapor concentrated by the rectifier 4a, and is then transferred to the condenser 5.
When it is condensed and liquefied in the evaporator 6a and evaporated in the evaporator 6a, it removes heat from the inside of the refrigerator compartment (not shown) to produce a freezing effect.

しかし、この構成のように熱により気泡ポンプ
動作を起こさせ、自然循環方式によつて希溶液を
循環する場合、その揚程、循環量に限度があり、
60Kcal/h以上の冷凍能力を得るのに必要な溶
液の循環量を気泡ポンプにより得ることは難しく
なる。また、アンモニアを冷媒とし、水を吸収液
とした場合、気泡ポンプ動作を起こさせるには
160〜180℃が必要であり(従つて系の圧力も高く
なる)、太陽集熱器1aの集熱温度が高く、太陽
集熱器1aの集効率が低下するという問題があつ
た。
However, when a dilute solution is circulated using a natural circulation method using heat to cause a bubble pump operation as in this configuration, there are limits to the head and circulation amount.
It becomes difficult to obtain the circulation amount of solution necessary to obtain a refrigerating capacity of 60 Kcal/h or more using a bubble pump. In addition, when ammonia is used as a refrigerant and water is used as an absorption liquid, in order to cause bubble pump operation,
A temperature of 160 to 180° C. is required (therefore, the pressure of the system is also high), and there is a problem that the heat collection temperature of the solar collector 1a is high and the collection efficiency of the solar collector 1a is reduced.

(ハ) 考案の目的 この考案は、これらの事情に鑑みてなされたも
のであり、その主要な目的の一つは、冷媒を太陽
集熱器を備えた発生器内で分離し、吸収器からの
冷媒濃溶液の循環を太陽電池で駆動される溶液循
環ポンプで行い、太陽集熱器を従来より低い温度
(120〜150℃)で動作させて太陽エネルギーの集
熱効率を向上し、冷凍機(吸収冷凍サイクル)を
比較的低圧で駆動することができる太陽熱駆動吸
収冷蔵装置を提供することにある。
(c) Purpose of the invention This invention was made in view of these circumstances, and one of its main purposes is to separate the refrigerant in a generator equipped with a solar collector and separate it from the absorber. The refrigerant concentrated solution is circulated by a solution circulation pump driven by solar cells, and the solar collector is operated at a lower temperature (120 to 150 degrees Celsius) than before, improving the efficiency of solar energy collection. An object of the present invention is to provide a solar-powered absorption refrigeration device that can drive an absorption refrigeration cycle (absorption refrigeration cycle) at relatively low pressure.

(ニ) 考案の構成 この考案は、吸収冷凍サイクルとして、発生
器、精溜器、凝縮器、冷蔵室を冷却する蒸発器、
吸収器、受液槽などを備え、発生器の加熱源とし
て太陽集熱器を付設し、更に受液槽に貯えられた
冷媒濃溶液を発生器に供給する溶液循環ポンプを
受液槽と発生器を接続する吸収冷凍サイクル流路
に介設し、この溶液循環ポンプにて冷媒濃溶液を
発生器より上方の濃溶液に送液したのち傾斜状態
の発生部に上方から供給し、且つその溶液循環ポ
ンプの駆動源として太陽電池を付設してなる太陽
熱駆動吸収冷蔵装置である。
(d) Structure of the invention This invention consists of an absorption refrigeration cycle including a generator, a rectifier, a condenser, an evaporator that cools the refrigerator compartment,
Equipped with an absorber, a liquid receiving tank, etc., a solar collector is attached as a heating source for the generator, and a solution circulation pump is installed to supply the concentrated refrigerant solution stored in the liquid receiving tank to the generator. The solution circulation pump is used to send a concentrated refrigerant solution to the concentrated solution above the generator, and then to the inclined generation section from above. This is a solar heat-driven absorption refrigeration system equipped with a solar cell as a driving source for a circulation pump.

(ホ) 実施例 以下第2図および第3図に示す実施例に基づい
てこの考案を詳述する。なお、これによつてこの
考案が限定されるものではない。
(E) Example This invention will be described in detail below based on the example shown in FIGS. 2 and 3. Note that this invention is not limited to this.

太陽熱駆動吸収冷蔵装置1は太陽集熱器付発生
器2、精溜器3、凝縮器4、蒸発器5、吸収器
6、受液槽7、溶液循環ポンプ9および拡散ガス
循環ポンプ10などから主として構成されてい
る。
The solar heat-driven absorption refrigeration device 1 includes a generator with a solar collector 2, a rectifier 3, a condenser 4, an evaporator 5, an absorber 6, a liquid receiving tank 7, a solution circulation pump 9, a diffusion gas circulation pump 10, etc. It mainly consists of

太陽集熱器付発生器2は傾斜して配設され、そ
の内部には傾斜上端部が精溜器3に接続され、傾
斜下端部が吸収器6の入口側に接続された集熱管
12が設けられている。この集熱管12への冷媒
濃溶液S1の供給は、太陽光の急激な変化に対応さ
せて濃溶液S1の供給量を調節できるようにするた
め、受液槽7の濃溶液S1を配管13の途中に設け
られた溶液循環ポンプ9を用いて太陽集熱器付発
生器2より上方の濃溶液槽8に送液したのち、該
濃溶液槽8から配管14を通じて太陽集熱器付発
生器2と精溜器3の中間部に行う。濃溶液槽8か
らヘツドで太陽集熱器2内に供給された濃溶液S1
は、集熱管12を流下する間に冷媒蒸気を分離さ
れ、希溶液S2となつて配管15を通じて吸収器6
の入口側に移動する。
The solar collector-equipped generator 2 is arranged in an inclined manner, and inside thereof there is a heat collecting pipe 12 whose inclined upper end is connected to the rectifier 3 and whose inclined lower end is connected to the inlet side of the absorber 6. It is provided. The concentrated solution S 1 of the refrigerant is supplied to the heat collecting tube 12 in order to adjust the amount of concentrated solution S 1 supplied in response to sudden changes in sunlight . A solution circulation pump 9 provided in the middle of the piping 13 is used to send the liquid to the concentrated solution tank 8 above the solar collector-equipped generator 2, and then from the concentrated solution tank 8 to the solar collector-equipped generator 2 through the piping 14. This is done in the middle between the generator 2 and the rectifier 3. Concentrated solution S 1 supplied from the concentrated solution tank 8 into the solar collector 2 at the head
While flowing down the heat collecting pipe 12, the refrigerant vapor is separated, and the dilute solution S2 is passed through the pipe 15 to the absorber 6.
Move to the entrance side.

一方、分離された冷媒蒸気は精溜器3で濃度を
高められ、凝縮器4で凝縮されて液化した状態で
拡散ガスgが充満している蒸発器5内に入る。蒸
発器5内では、拡散ガスgの分圧が大きく、冷媒
であるアンモニアの分分圧が小さいため、冷媒は
膨張して蒸発し、このとき冷蔵庫内から熱を奪つ
て冷却する。蒸発した冷媒は蒸発器5内の拡散ガ
スg中に拡散し、混合ガスとなつて配管16、受
液槽7を経て吸収器6内に入り、ここで太陽集熱
器付発生器2から配管15を通じて送られてきた
希溶液S2に吸収され、濃溶液S1となつて受液槽7
に貯えられる。蒸発器5と吸収器6を接続する配
管の途中には、拡散ガス循環ポンプ10が設けら
れており、拡散ガスgの分圧を高めて蒸発器5内
における冷媒の蒸発を多くして冷凍効果を高める
とともに、冷媒を含んだ拡散ガスgと希溶液S2
の接触を多くして、希溶液S2への冷媒の吸収を良
好にしている。
On the other hand, the separated refrigerant vapor is concentrated in the rectifier 3, condensed in the condenser 4, and enters the evaporator 5 filled with the diffusion gas g in a liquefied state. In the evaporator 5, the partial pressure of the diffusion gas g is large and the partial pressure of ammonia, which is a refrigerant, is small, so the refrigerant expands and evaporates, and at this time, heat is taken from the inside of the refrigerator to cool it. The evaporated refrigerant diffuses into the diffusion gas g in the evaporator 5, becomes a mixed gas, passes through the pipe 16 and the liquid receiving tank 7, and enters the absorber 6, where it is connected to the generator 2 with solar collector and into the pipe. It is absorbed by the dilute solution S 2 sent through 15, becomes concentrated solution S 1 , and is transferred to the liquid receiving tank 7.
can be stored in A diffusion gas circulation pump 10 is installed in the middle of the pipe connecting the evaporator 5 and the absorber 6, and increases the partial pressure of the diffusion gas g to increase the evaporation of the refrigerant in the evaporator 5, thereby increasing the refrigeration effect. At the same time, the diffusion gas g containing the refrigerant is brought into contact with the dilute solution S 2 more often, and the absorption of the refrigerant into the dilute solution S 2 is improved.

溶液循環ポンプ9と拡散ガス循環ポンプ10
は、太陽電池11により駆動される構成となつて
いる。この構成では、太陽エネルギー量が大きい
ときは、太陽電池11によつて駆動される溶液循
環ポンプ9による送液量が増え、逆に太陽エネル
ギー量が小さいときは、太陽電池11によつて駆
動される溶液循環ポンプ9による送液量が減少す
るため、定流ポンプによつて冷媒の濃溶液を一定
量供給する場合に比べて、発生器2の変動に対応
でき、冷凍能力を安定化させることができる。
Solution circulation pump 9 and diffusion gas circulation pump 10
is configured to be driven by a solar cell 11. In this configuration, when the amount of solar energy is large, the amount of liquid pumped by the solution circulation pump 9 driven by the solar cell 11 increases, and conversely, when the amount of solar energy is small, the amount of liquid fed by the solution circulation pump 9 is increased. Since the amount of liquid sent by the solution circulation pump 9 is reduced, it is possible to respond to fluctuations in the generator 2 and stabilize the refrigeration capacity, compared to the case where a constant flow pump supplies a fixed amount of concentrated solution of refrigerant. I can do it.

また、流量や揚程に制限を受け易い気泡ポンプ
を動作させる必要がなく、装置内の系圧力も小さ
くすることができるため、冷媒加熱に要する集熱
温度を低くして太陽集熱器付発生器2を効率の高
いところで使用することができる。その上、冷媒
溶液は溶液循環ポンプ9によつて強制的に循環す
ることができるため、太陽集熱器付発生器2およ
び太陽電池11の各面積を大きくすることによ
り、冷凍能力を容易に大きくすることができる。
更に溶液循環ポンプ9にて冷媒濃液を発生器2よ
り上方の濃溶液槽8に送液したのち傾斜状態の発
生器2に上部から供給しているので、冷媒濃溶液
は、適量ずつ徐々に発生器2内を流下しその流下
速度も上昇蒸気流に妨げられることで幾分低速化
されよつて発生器2内の通過時間を延長してその
間に充分太陽加熱されるようになり、従つて太陽
集熱器の集熱効率を更に向上できる。
In addition, there is no need to operate a bubble pump, which is likely to be subject to restrictions on flow rate and pump head, and the system pressure within the device can be reduced, lowering the heat collection temperature required to heat the refrigerant. 2 can be used where efficiency is high. Furthermore, since the refrigerant solution can be forcibly circulated by the solution circulation pump 9, the refrigerating capacity can be easily increased by increasing the areas of the generator with solar collector 2 and the solar cells 11. can do.
Furthermore, since the concentrated refrigerant solution is sent from the generator 2 to the concentrated solution tank 8 above the generator 2 using the solution circulation pump 9 and then supplied from the top to the generator 2 in an inclined state, the concentrated refrigerant solution is gradually distributed in appropriate amounts. As it flows through the generator 2, its velocity is also somewhat slowed down by being obstructed by the rising steam flow, extending its passage time through the generator 2, during which it is sufficiently solar heated, and thus The heat collection efficiency of solar collectors can be further improved.

なお、上記実施例においては、拡散ガス循環ポ
ンプ10は太陽電池11により駆動されている
が、その他の手段によつて駆動してもよいことは
勿論である。
In the above embodiment, the diffusion gas circulation pump 10 is driven by the solar cell 11, but it goes without saying that it may be driven by other means.

(ヘ) 考案の効果 以上のごとく、この考案によれば、冷媒溶液を
溶液循環ポンプによつて太陽集熱器内に通過さ
せ、該溶液循環ポンプを太陽電池によつて駆動す
るという簡単な構成によつて、装置内の圧力を低
くし、太陽集熱器の集熱効率を向上するととも
に、太陽エネルギー量の大小にかかわらず冷媒蒸
発量の変動を少なくすることができる。
(f) Effects of the invention As described above, this invention has a simple configuration in which a refrigerant solution is passed through a solar collector using a solution circulation pump, and the solution circulation pump is driven by a solar cell. This makes it possible to lower the pressure inside the device, improve the heat collection efficiency of the solar collector, and reduce fluctuations in the amount of refrigerant evaporation regardless of the amount of solar energy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の太陽熱駆動吸収冷蔵装置の機能
説明図、第2図はこの考案に係る太陽熱駆動吸収
冷蔵装置の一実施例を示す機能説明図、第3図は
太陽集熱器の斜視断面図である。 1……太陽熱駆動吸収冷蔵装置、2……太陽集
熱器付発生器、5……蒸発器、6……吸収器、7
……受液槽、9……溶液循環ポンプ、10……拡
散ガス循環ポンプ、11……太陽電池、S1……濃
溶液、S2……希溶液、g……拡散ガス。
Fig. 1 is a functional explanatory diagram of a conventional solar-powered absorption refrigeration device, Fig. 2 is a functional explanatory diagram showing an embodiment of the solar-driven absorption refrigeration device according to this invention, and Fig. 3 is a perspective cross-section of a solar collector. It is a diagram. 1... Solar heat driven absorption refrigeration device, 2... Generator with solar collector, 5... Evaporator, 6... Absorber, 7
...Liquid receiving tank, 9...Solution circulation pump, 10...Diffusion gas circulation pump, 11...Solar cell, S1 ...Concentrated solution, S2 ...Dilute solution, g...Diffusion gas.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 吸収冷凍サイクルとして、発生器、精溜器、凝
縮器、冷蔵室を冷却する蒸発器、吸収器、受液槽
などを備え、発生器の加熱源として太陽集熱器を
付設し、更に受液槽に貯えられた冷媒濃溶液を発
生器に供給する溶液循環ポンプを受液槽と発生器
を接続する吸収冷凍サイクル流路に介設し、この
溶液循環ポンプにて冷媒濃溶液を発生器より上方
の濃溶液槽に送液したのち傾斜状態の発生器に上
部から供給し、且つその溶液循環ポンプの駆動源
として太陽電池を付設してなる太陽熱駆動吸収冷
蔵装置。
The absorption refrigeration cycle is equipped with a generator, a rectifier, a condenser, an evaporator for cooling the refrigerator, an absorber, a liquid receiving tank, etc., a solar collector is attached as a heating source for the generator, and a liquid receiving tank. A solution circulation pump that supplies the concentrated refrigerant solution stored in the tank to the generator is installed in the absorption refrigeration cycle flow path that connects the receiving tank and the generator, and this solution circulation pump supplies the concentrated refrigerant solution from the generator. A solar-powered absorption refrigeration system in which liquid is sent to an upper concentrated solution tank and then supplied from above to a tilted generator, and a solar cell is attached as a driving source for the solution circulation pump.
JP1983039393U 1983-03-17 1983-03-17 solar powered absorption refrigeration equipment Granted JPS59145674U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983039393U JPS59145674U (en) 1983-03-17 1983-03-17 solar powered absorption refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983039393U JPS59145674U (en) 1983-03-17 1983-03-17 solar powered absorption refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS59145674U JPS59145674U (en) 1984-09-28
JPH0117009Y2 true JPH0117009Y2 (en) 1989-05-18

Family

ID=30170045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983039393U Granted JPS59145674U (en) 1983-03-17 1983-03-17 solar powered absorption refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS59145674U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032193A (en) * 2008-07-28 2010-02-12 Kiyoshi Yanagimachi Absorbing type chiller

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712270A (en) * 1980-06-24 1982-01-22 Gen Co Ltd Solar heat airconditioner
JPS5831253A (en) * 1981-08-18 1983-02-23 Toshiba Corp Solar-heat collecting cylinder with solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712270A (en) * 1980-06-24 1982-01-22 Gen Co Ltd Solar heat airconditioner
JPS5831253A (en) * 1981-08-18 1983-02-23 Toshiba Corp Solar-heat collecting cylinder with solar cell

Also Published As

Publication number Publication date
JPS59145674U (en) 1984-09-28

Similar Documents

Publication Publication Date Title
CN104633981B (en) A kind of based on photovoltaic and photothermal and electrodialytic lithium bromide-water absorption refrigerating plant
US20140026602A1 (en) Method and Apparatus for Generating Chilled Water for Air-Conditioning
JPH0252962A (en) Method and device for generating cold heat
US4546620A (en) Absorption machine with desorber-resorber
CN110553420A (en) Ammonia absorption type refrigerating system based on lithium bromide unit
CN114322354A (en) Absorption type circulating refrigeration system and process thereof
JP2004144420A (en) Refrigeration system
JPH0117009Y2 (en)
JP3905986B2 (en) Waste heat utilization air conditioning system
CN113701393B (en) Solar single/double-effect switching absorption refrigeration system adopting membrane accumulator
US4014183A (en) Absorption refrigerator of natural circulation type
JP5583435B2 (en) Refrigeration and air conditioning method and apparatus
JP3444203B2 (en) Absorption refrigerator
JPH0237262A (en) Device for utilizing waste heat of fuel battery
JP2750783B2 (en) Exhaust heat recovery method in cogeneration system
US20230235927A1 (en) Integrated Hybrid Solar Absorption Cooling System
Sofrata et al. A solar-powered Li Br dual cycle
JPH05332633A (en) Composite freezer device
JPH0694964B2 (en) Multi-effect absorption refrigerator
JPS6249539B2 (en)
JPH0364790B2 (en)
JP2858921B2 (en) Control device for absorption refrigerator
JPS6122224B2 (en)
JPH038465B2 (en)
JPH0429339Y2 (en)