JPH0364790B2 - - Google Patents

Info

Publication number
JPH0364790B2
JPH0364790B2 JP15960182A JP15960182A JPH0364790B2 JP H0364790 B2 JPH0364790 B2 JP H0364790B2 JP 15960182 A JP15960182 A JP 15960182A JP 15960182 A JP15960182 A JP 15960182A JP H0364790 B2 JPH0364790 B2 JP H0364790B2
Authority
JP
Japan
Prior art keywords
refrigerant
generator
heat
temperature
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15960182A
Other languages
Japanese (ja)
Other versions
JPS5949463A (en
Inventor
Sanpei Usui
Tomihisa Oochi
Takafumi Kunugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15960182A priority Critical patent/JPS5949463A/en
Publication of JPS5949463A publication Critical patent/JPS5949463A/en
Publication of JPH0364790B2 publication Critical patent/JPH0364790B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 本発明は主として水−臭化リチウム溶液を熱媒
体とし、かつ吸収式ヒートポンプサイクルを使用
する吸収式温水機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention mainly relates to an absorption type water heater that uses a water-lithium bromide solution as a heat medium and uses an absorption type heat pump cycle.

従来のこの種温水機では、燃焼器の燃焼ガスに
より直接に温水を加熱しているため、燃焼排ガス
温度を温水の温度よりも低温にすることができな
い。そこで熱交換の温度差を小さくすると、温水
機が非常に大型化、かつ酸露点腐食防止の観点か
ら燃焼排ガス温度は200℃程度が下限であるため、
ボイラ効率は高位基準で80%程度となつているの
で、エネルギー効率の低下する恐れがあつた。
In conventional water heaters of this type, the hot water is directly heated by the combustion gas from the combustor, and therefore the temperature of the combustion exhaust gas cannot be made lower than the temperature of the hot water. Therefore, if we reduce the temperature difference in heat exchange, the water heater will become very large, and from the perspective of preventing acid dew point corrosion, the lower limit of the combustion exhaust gas temperature is around 200℃.
Since boiler efficiency is set at around 80% by high-level standards, there was a risk that energy efficiency would decline.

その対策として燃焼排ガスにより燃焼用空気の
予熱を行えば、ボイラ効率はせいぜい数%増加す
るに過ぎないが、使用するガス−ガス熱交換器は
著しく大型化する欠点がある。
If the combustion air is preheated using combustion exhaust gas as a countermeasure, the boiler efficiency will increase by only a few percent at most, but the disadvantage is that the gas-gas heat exchanger used will become significantly larger.

なお、この種冷温水機として関連するものに例
えば社団法人日本冷凍協会発行「冷凍」(第51巻
88号、昭和51年10月号)が挙げられる。
In addition, related to this type of water chiller/heater, for example, "Refrigerating" published by the Japan Refrigeration Association (Volume 51)
No. 88, October 1976 issue).

本発明は上記にかんがみ従来の温水機で排棄さ
れていた熱量のほぼ半分が燃焼排ガス中の水蒸気
潜熱であり、この燃焼排ガスの温度を常温まで低
下させると、燃焼排ガス中の顕著および潜熱の大
部分を回収できることに着目し、省エネルギー効
果の向上および冷媒加熱器の小型化および腐食の
軽減をはかることを目的とするものである。
In view of the above, the present invention provides that almost half of the heat discarded in conventional water heaters is water vapor latent heat in the combustion exhaust gas, and when the temperature of this combustion exhaust gas is lowered to room temperature, the remarkable Focusing on the fact that most of the refrigerant can be recovered, the aim is to improve the energy saving effect, downsize the refrigerant heater, and reduce corrosion.

上記目的を達成するために、本発明は発生器に
付設した燃焼器から発生する燃焼排ガスの熱を汲
上げ対象の低温熱源とし、この低温熱源で水冷媒
を蒸発させた場合の低い蒸気圧力下においても、
冷媒加熱器とフラツシユ蒸発器を併用することに
より、蒸気流動圧損失を十分に低減させるように
構成したものである。
In order to achieve the above object, the present invention uses the heat of combustion exhaust gas generated from a combustor attached to a generator as a low-temperature heat source to be pumped up, and uses this low-temperature heat source to evaporate water refrigerant under low steam pressure. Even in
By using a refrigerant heater and a flash evaporator together, the vapor flow pressure loss is sufficiently reduced.

以下本発明の実施例を図面について説明する。
第1図および第2図に示す符号のうち、同一符号
は同一または該当する部分を示すものとする。
Embodiments of the present invention will be described below with reference to the drawings.
Among the reference numerals shown in FIG. 1 and FIG. 2, the same reference numerals indicate the same or corresponding parts.

第1図において、1は燃焼室1Aa、燃焼供給
管1Abおよび燃焼用空気供給フアン1Acからな
る燃焼器1Aと蒸発管1Bを備える発生器、2は
前記燃焼器1Aの排ガス吐出側に取付けられ、そ
の燃焼排ガスを熱源とする冷媒加熱器、2aは冷
媒加熱器2内に設けられた蒸発管、3は配管10
を介して発生器1の頂部に連通し、かつ熱媒体例
えば温水3aの通水する凝縮器である。
In FIG. 1, 1 is a generator comprising a combustor 1A consisting of a combustion chamber 1Aa, a combustion supply pipe 1Ab, and a combustion air supply fan 1Ac, and an evaporation pipe 1B; 2 is attached to the exhaust gas discharge side of the combustor 1A; A refrigerant heater that uses the combustion exhaust gas as a heat source, 2a is an evaporation pipe installed in the refrigerant heater 2, and 3 is a pipe 10
This is a condenser that communicates with the top of the generator 1 via a condenser and through which a heat medium such as hot water 3a is passed.

4,5はシエル6内に対設されたフラツシユ蒸
発器および吸収器で、その一方の蒸発器4は棚段
または充填物4aを内蔵し、配管10を介して冷
媒加熱器2に、配管11を介して凝縮器3にそれ
ぞれ連通されており、他方の吸収器5は配管9を
介して発生器1の中間部に連通され、かつ熱媒体
例えば温水5aが通水されている。7は配管1
3,14を介して発生器1および吸収器5にそれ
ぞれ連通する溶液ポンプ、8は配管15,16を
介して冷媒加熱器2およびフラツシユ蒸発器4に
連通する冷媒ポンプである。
Reference numerals 4 and 5 designate a flash evaporator and an absorber installed oppositely in the shell 6. One of the evaporators 4 has a built-in tray or packing 4a, and is connected to the refrigerant heater 2 via a pipe 10 and a pipe 11. The other absorber 5 is connected to the intermediate portion of the generator 1 via a pipe 9, and a heat medium such as hot water 5a is passed therethrough. 7 is piping 1
A solution pump 8 communicates with the generator 1 and the absorber 5 via pipes 15 and 14, respectively, and a refrigerant pump 8 communicates with the refrigerant heater 2 and the flash evaporator 4 via pipes 15 and 16.

次に上記のような構成からなる本実施例の作用
について説明する。
Next, the operation of this embodiment configured as described above will be explained.

燃焼器1Aで発生した燃焼ガスは燃焼室1Aa
および蒸発管1Bの壁を介して発生器1内の水−
臭化リチウム溶液(以下溶液と称す)を加熱する
ため、冷媒蒸気すなわち水蒸気を発生する。この
水蒸気は配管10を経て凝縮器3に流入し、凝縮
器3内を通水する温水3aに熱を与えて凝縮し液
化する。
The combustion gas generated in combustor 1A is transferred to combustion chamber 1Aa.
and the water in the generator 1 through the wall of the evaporation tube 1B.
To heat the lithium bromide solution (hereinafter referred to as solution), refrigerant vapor, or water vapor, is generated. This water vapor flows into the condenser 3 via the pipe 10, gives heat to the hot water 3a flowing through the condenser 3, and is condensed and liquefied.

一方、フラツシユ蒸発器4の下部にたまつてい
る液冷媒は、冷媒ポンプ8により配管16,15
を経て冷媒加熱器2に流入し、蒸発管2aを介し
て発生器1からの燃焼排ガスにより加熱されて温
度上昇する。この温度上昇した液冷媒および凝縮
器3の液冷媒は、配管12,11をそれぞれ流通
して合流してフラツシユ蒸発器4に流入し、棚段
または充填物4aの表面で液冷媒自身の顕熱を奪
つて一部蒸発する。
On the other hand, the liquid refrigerant accumulated at the bottom of the flash evaporator 4 is pumped through the pipes 16 and 15 by the refrigerant pump 8.
The refrigerant flows into the refrigerant heater 2 through the evaporator tube 2a, and is heated by the combustion exhaust gas from the generator 1 to increase its temperature. The liquid refrigerant whose temperature has increased and the liquid refrigerant in the condenser 3 flow through the pipes 12 and 11, join together, and flow into the flash evaporator 4. is taken away and some of it evaporates.

一方、発生器1において冷媒蒸気を発生して濃
縮された溶液(以下濃溶液と称す)は、配管9を
経て吸収器5に導入され、この濃溶液の顕熱は一
部が自己蒸発により、一部が温水5aによりそれ
ぞれ冷却される。このため濃溶液の温度は低下し
て吸収能力を持つようになり、フラツシユ蒸発器
4で発生した冷媒蒸気および前記濃溶液から自己
蒸発した冷媒蒸気を吸収して吸収熱を温水5aへ
放出する。前記吸収の完了した溶液(以下希溶液
と称す)はポンプ12により配管14,13を経
て再び発生器1へ給送されると共に、フラツシユ
蒸発器4で冷媒自身の蒸発熱で冷却された液冷媒
も再びポンプ8により配管16,15を経て冷媒
加熱器2へ給送される。
On the other hand, a concentrated solution (hereinafter referred to as a concentrated solution) generated by generating refrigerant vapor in the generator 1 is introduced into the absorber 5 via a pipe 9, and a portion of the sensible heat of this concentrated solution is due to self-evaporation. A portion of each is cooled by hot water 5a. As a result, the temperature of the concentrated solution decreases and it has an absorption capacity, absorbs the refrigerant vapor generated in the flash evaporator 4 and the refrigerant vapor self-evaporated from the concentrated solution, and releases the absorbed heat to the hot water 5a. The absorbed solution (hereinafter referred to as a dilute solution) is sent to the generator 1 again via the pipes 14 and 13 by the pump 12, and the liquid refrigerant is cooled by the heat of evaporation of the refrigerant itself in the flash evaporator 4. The refrigerant is again supplied to the refrigerant heater 2 by the pump 8 via the pipes 16 and 15.

次に実験例について詳述する。 Next, an experimental example will be explained in detail.

吸収器5で吸収を完了した希溶液の濃度を63
%、温度を62℃とすると、希溶液の飽和圧力は約
12.7mmHgとなり、この圧力と平衡な冷媒の飽和
温度は約15℃となる。冷媒加熱器2における液冷
媒の温度上昇を5℃程度とすれば、冷媒加熱器2
から流出する液冷媒の温度は約20℃となり、冷媒
加熱器2としては例えばクロスフインチユーブ熱
交換器を用いれば、冷媒加熱器2から流出する排
出ガス温度を25℃程度とすることは容易である。
The concentration of the dilute solution that has been absorbed in absorber 5 is 63
%, and the temperature is 62℃, the saturation pressure of the dilute solution is approximately
This is 12.7mmHg, and the saturation temperature of the refrigerant in equilibrium with this pressure is approximately 15°C. If the temperature rise of the liquid refrigerant in the refrigerant heater 2 is about 5°C, the refrigerant heater 2
The temperature of the liquid refrigerant flowing out from the refrigerant heater 2 is approximately 20°C, and if a cross-finch tube heat exchanger, for example, is used as the refrigerant heater 2, it is easy to set the temperature of the exhaust gas flowing out from the refrigerant heater 2 to approximately 25°C. be.

燃焼ガス中には燃料に含まれている水素原子の
酸化した水蒸気が比較的に多量に含まれており、
燃焼排ガスの温度が25℃程度になると、前記水蒸
気の約80%は凝縮し液化する。このような条件で
は、燃料の有する顕熱分に相当する低位発熱量の
ほぼ全量と、水蒸気の潜熱分に相当する高位発熱
量および低位発熱量との差の約80%を回収するこ
とができる。すなわち高位発熱量基準におけるボ
イラ効率は約97〜98%となり、従来の温水機より
もエネルギー効率が約20%向上する。
The combustion gas contains a relatively large amount of water vapor, which is the oxidation of hydrogen atoms contained in the fuel.
When the temperature of the combustion exhaust gas reaches about 25° C., about 80% of the water vapor is condensed and liquefied. Under these conditions, it is possible to recover approximately 80% of the difference between almost all of the lower heating value, which corresponds to the sensible heat content of the fuel, and the higher and lower heating values, which correspond to the latent heat content of water vapor. . In other words, the boiler efficiency based on higher calorific value is approximately 97-98%, which is approximately 20% more energy efficient than conventional water heaters.

この場合、フラツシユ蒸発器4で蒸発した冷媒
を吸収する溶液の温度は、前記のように約62℃で
あるから、吸収器5における熱交換落差を考慮し
ても、温水5aの温度を約50℃以上の高温にする
ことが可能である。また、凝縮器3では、その凝
縮温度を約60℃とすればよく、このときの発生器
1の温度は約120℃であり、かつ発生器1および
凝縮器3の圧力は約150mmHgとなり、大気圧より
も十分に低く保持することができる。
In this case, the temperature of the solution that absorbs the refrigerant evaporated in the flash evaporator 4 is approximately 62°C as described above, so even if the heat exchange head in the absorber 5 is considered, the temperature of the hot water 5a is approximately 50°C. It is possible to make the temperature higher than ℃. In addition, in the condenser 3, the condensation temperature should be approximately 60°C, the temperature of the generator 1 at this time is approximately 120°C, and the pressure of the generator 1 and condenser 3 is approximately 150 mmHg, which is a large It can be maintained sufficiently lower than atmospheric pressure.

第2図に示す他の実施例は発生器1と吸収器5
を配管9の中間に熱媒体例えば温水17aの通水
する液熱交換器17を設け、発生器1で冷媒蒸気
を発生した高温の濃溶液が配管9を経て液熱交換
器17に流入し、温水17aに熱を与えた後に吸
収器5に流入するようにしたものである。すなわ
ち前記実施例(第1図)において吸収器5で放出
していた濃溶液の顕熱の一部を、液熱交換器17
で、温水17aに放出するようにしたものであ
る。その他の構成は前記実施例と同一であるから
説明を省略する。
Another embodiment shown in FIG. 2 includes a generator 1 and an absorber 5.
A liquid heat exchanger 17 through which a heat medium such as hot water 17a flows is provided in the middle of the piping 9, and a high temperature concentrated solution generated by generating refrigerant vapor in the generator 1 flows into the liquid heat exchanger 17 through the piping 9. The hot water 17a is configured to flow into the absorber 5 after being heated. In other words, part of the sensible heat of the concentrated solution that was released in the absorber 5 in the embodiment (FIG. 1) is transferred to the liquid heat exchanger 17.
The water is discharged into hot water 17a. Since the other configurations are the same as those of the previous embodiment, the explanation will be omitted.

このように構成すれば、前記実施例とほぼ同一
の温度で動作させた場合、発生器1から給送され
る濃溶液は約120℃となるので、液熱交換器17
に通水する温水17aの温度は、凝縮器3および
吸収器5に通水する温水3a,5aより高温とす
ることができる。
With this configuration, when operated at almost the same temperature as in the previous embodiment, the concentrated solution fed from the generator 1 will be approximately 120°C, so the liquid heat exchanger 17
The temperature of the hot water 17a passed through the condenser 3 and the absorber 5 can be set higher than that of the hot water 3a and 5a passed through the condenser 3 and the absorber 5.

以上説明したように、本発明によれば下記に列
記する諸効果がある。
As explained above, according to the present invention, there are various effects listed below.

(1) 吸収ヒートポンプ作用により、使用燃料の高
位発熱量の約97〜98%を有効に使用できるから
省エネルギー効果が顕著である。
(1) Due to the absorption heat pump action, approximately 97 to 98% of the higher calorific value of the fuel used can be used effectively, resulting in a significant energy saving effect.

(2) 冷媒加熱器で回収した熱の大部分を液冷媒の
顕著で回収し、フラツシユ蒸発器で自己蒸発さ
せると共に、その蒸発管と対設した吸収器で吸
収させるので、蒸気流動による圧力損失を小さ
くし、かつ冷媒加熱器を流通する液冷媒の温度
を、溶液の飽和圧力に見合つた飽和温度まで低
下させることにより、熱回収率を向上させると
共に冷媒加熱器の小形化をはかることができ
る。
(2) Most of the heat recovered by the refrigerant heater is recovered by the liquid refrigerant, self-evaporated by the flash evaporator, and absorbed by the absorber installed opposite the evaporation tube, reducing pressure loss due to vapor flow. By reducing the temperature of the liquid refrigerant flowing through the refrigerant heater to a saturation temperature commensurate with the saturation pressure of the solution, it is possible to improve the heat recovery rate and downsize the refrigerant heater. .

(3) 燃焼排ガス中の大部分の水蒸気を凝縮させる
ことにより、凝縮水に溶解した排ガス中に含ま
れるSO2、SO3、NOx、CO2などによる酸濃度
が相対的に低下すると共に、温度も20〜25℃に
低下するので、凝縮水中の酸分による冷媒加熱
器の腐食を軽減させることができる。
(3) By condensing most of the water vapor in the combustion exhaust gas, the acid concentration due to SO 2 , SO 3 , NO x , CO 2 etc. contained in the exhaust gas dissolved in the condensed water is relatively reduced, and Since the temperature also drops to 20-25°C, corrosion of the refrigerant heater due to acid content in the condensed water can be reduced.

(4) 従来の温水機内部は大気圧(1気圧)以上で
あるのに対し、本発明の温水機内部は大気圧以
下に保持されるから安全性が大である。
(4) While the interior of a conventional water heater is at atmospheric pressure (1 atm) or higher, the interior of the water heater of the present invention is kept at atmospheric pressure or lower, so safety is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ本発明の吸収式
温水機の実施例を示す系統図である。 1……発生器、1A……燃焼器、2……冷媒加
熱器、3……凝縮器、4……フラツシユ蒸発器、
5……吸収器、17……熱交換器。
FIG. 1 and FIG. 2 are system diagrams showing embodiments of the absorption type water heater of the present invention, respectively. 1... Generator, 1A... Combustor, 2... Refrigerant heater, 3... Condenser, 4... Flash evaporator,
5...Absorber, 17...Heat exchanger.

Claims (1)

【特許請求の範囲】 1 吸収式ヒートポンプサイクルをそなえる吸収
式温水機において、燃焼器付き発生器と、この発
生器に連設された冷媒加熱器と、前記発生器に連
通する凝縮器と、前記冷媒加熱器および凝縮器に
連通するフラツシユ蒸発器と、このフラツシユ蒸
発器に対設され、前記発生器に連通する吸収器と
からなることを特徴とする吸収式温水機。 2 燃焼器付き発生器と吸収器との間に熱交換器
を設け、この熱交換器を介して発生器から給送さ
れる溶液と熱媒体とを熱交換させるようにしたこ
とを特徴とする特許請求の範囲第1項記載の吸収
式温水機。
[Scope of Claims] 1. An absorption water heater equipped with an absorption heat pump cycle, comprising: a generator with a combustor; a refrigerant heater connected to the generator; a condenser communicating with the generator; An absorption type water heater comprising: a flash evaporator communicating with a refrigerant heater and a condenser; and an absorber installed opposite the flash evaporator and communicating with the generator. 2. A heat exchanger is provided between the generator with a combustor and the absorber, and heat is exchanged between the solution supplied from the generator and the heat medium via this heat exchanger. An absorption type water heater according to claim 1.
JP15960182A 1982-09-16 1982-09-16 Absorption type hot water machine Granted JPS5949463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15960182A JPS5949463A (en) 1982-09-16 1982-09-16 Absorption type hot water machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15960182A JPS5949463A (en) 1982-09-16 1982-09-16 Absorption type hot water machine

Publications (2)

Publication Number Publication Date
JPS5949463A JPS5949463A (en) 1984-03-22
JPH0364790B2 true JPH0364790B2 (en) 1991-10-08

Family

ID=15697260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15960182A Granted JPS5949463A (en) 1982-09-16 1982-09-16 Absorption type hot water machine

Country Status (1)

Country Link
JP (1) JPS5949463A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268962A (en) * 1985-05-23 1986-11-28 川重冷熱工業株式会社 Exhaust-heat recovery type absorption system heat pump
JPS61268961A (en) * 1985-05-23 1986-11-28 川重冷熱工業株式会社 Self-exhaust heat recovery device

Also Published As

Publication number Publication date
JPS5949463A (en) 1984-03-22

Similar Documents

Publication Publication Date Title
US4542629A (en) Variable effect desorber-resorber absorption cycle
JPS61119954A (en) Absorption heat pump/refrigeration system
US4546620A (en) Absorption machine with desorber-resorber
US20040261446A1 (en) Heat exchanger for high stage generator of absorption chiller
CN209165785U (en) A kind of lithium bromide heat pump boiler
JPH0364790B2 (en)
JPS6045328B2 (en) heating device
JP3318791B2 (en) Waste heat recovery system for direct-fired absorption chiller / heater
US5216891A (en) Solution flows in direct expansion lithium bromide air conditioner/heater
CN110220303A (en) A kind of low * damage heat exchanger
JP2005147447A (en) Ammonia-water non-azeotropic mixture medium circulation system
JPS6133483Y2 (en)
JPH0350373Y2 (en)
KR200144045Y1 (en) Absorption type cooler
JPS5849872A (en) Heat pump device
JPH0117009Y2 (en)
JPS6122225B2 (en)
JP4169318B2 (en) Exhaust gas type absorption chiller / heater
JPS6148064B2 (en)
JPH0783530A (en) Water and lithium bromide absorption refrigerator
JPS5852463Y2 (en) Water-lithium salt compact absorption refrigerator
JPH0429339Y2 (en)
JPH0820141B2 (en) Absorption refrigerator
JPH0429340Y2 (en)
JPS61268962A (en) Exhaust-heat recovery type absorption system heat pump