JPH01167959A - Internally reforming type molten carbonate fuel cell - Google Patents

Internally reforming type molten carbonate fuel cell

Info

Publication number
JPH01167959A
JPH01167959A JP62327998A JP32799887A JPH01167959A JP H01167959 A JPH01167959 A JP H01167959A JP 62327998 A JP62327998 A JP 62327998A JP 32799887 A JP32799887 A JP 32799887A JP H01167959 A JPH01167959 A JP H01167959A
Authority
JP
Japan
Prior art keywords
fuel
passage
electrode
cell
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62327998A
Other languages
Japanese (ja)
Other versions
JP2604393B2 (en
Inventor
Yohei Yamamoto
洋平 山本
Hirofumi Takahashi
弘文 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP62327998A priority Critical patent/JP2604393B2/en
Publication of JPH01167959A publication Critical patent/JPH01167959A/en
Application granted granted Critical
Publication of JP2604393B2 publication Critical patent/JP2604393B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To lengthen the life of a cell by partitioning a fuel passage into an inlet side and an outlet side with a gas impermeable partition, reforming fuel with a reforming catalyst arranged in an inlet passage, and exhausting to a fuel outlet passage through a fuel cell. CONSTITUTION:Fuel containing hydrocarbon and steam are supplied to a fuel inlet passage 4-a from a fuel inlet manifold 9, and reformed with a reforming catalyst 8 to produce hydrogen, carbon monoxide, and carbon dioxide. The passage 4-a and a fuel outlet passage 4-b are partitioned with a gas impermeable partition 11, and the fuel diffuses from the passage to the pores of an adjacent fuel electrode 2. Part of hydrogen and that of carbon monoxide are consumed by electrochemical reaction to generate steam and carbon dioxide. These products and unreacted reforming gas are exhausted to the passage 4-b. The fuel supplied to a cell flows from the passage 4-a to the passage 4-b through the fuel electrode 2. Electrolyte vapor is difficult to move toward the reforming catalyst 8, and the condensation of the electrolyte vapor on the catalyst 8 is prevented and the life of a cell is lengthened.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば炭化水素を含む燃料を電池内部で改質
しながら発電を行う内部改質式溶融炭酸塩型燃料電池に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an internally reforming molten carbonate fuel cell that generates power while reforming a fuel containing, for example, hydrocarbons inside the cell.

[従来の技術1 従来の内部改質式溶融炭酸塩型燃料電池の断面図の例を
第3図に示す。この第3図において、lは多孔性のセラ
ミックで構成され、その空隙に炭酸塩を含浸している電
解質マトリックス、2は多孔性のニッケル等で構成さ・
れた燃料電極、3は多孔性の酸化ニッケル等で構成され
た酸化剤電極であり、燃料電極2と酸化剤電極3は電解
質マトリックスlを介して対向するように配置されてい
る。
[Prior Art 1] FIG. 3 shows an example of a cross-sectional view of a conventional internal reforming molten carbonate fuel cell. In this Figure 3, 1 is composed of porous ceramic, and an electrolyte matrix whose voids are impregnated with carbonate, 2 is composed of porous nickel, etc.
The fuel electrode 3 is an oxidizer electrode made of porous nickel oxide or the like, and the fuel electrode 2 and the oxidizer electrode 3 are arranged to face each other with an electrolyte matrix 1 interposed therebetween.

4は燃料通路であり、5は燃料側セパレータである。6
は酸化剤通路であり、7は酸化剤側セパレータである。
4 is a fuel passage, and 5 is a fuel side separator. 6
is an oxidizing agent passage, and 7 is an oxidizing agent side separator.

セパレータ5と7は一体となっていてもよい。8は改質
触媒であり、燃料通路4の少なくとも一部に配置されて
いる。従来の内部改質式溶融炭酸塩型燃料電池は以上の
如く構成されている。
Separators 5 and 7 may be integrated. 8 is a reforming catalyst, which is arranged in at least a part of the fuel passage 4. A conventional internal reforming molten carbonate fuel cell is constructed as described above.

丘記構成の内部改質式溶融炭酸塩型燃料電池は、燃料通
路4に炭化水素などの燃料と水蒋気が供給されると、改
質触媒9の触媒反応により炭化水素は水蒸気と反応し、
水素、−酸化炭素および二酸化炭素に改質される。炭化
水素がメタンの場合には、この反応は以下の式で表わさ
れる。
In the internal reforming type molten carbonate fuel cell having the configuration, when fuel such as hydrocarbon and water air are supplied to the fuel passage 4, the hydrocarbon reacts with water vapor through a catalytic reaction of the reforming catalyst 9. ,
Hydrogen, - reformed to carbon oxide and carbon dioxide. When the hydrocarbon is methane, this reaction is represented by the following equation.

C114+H20→31(2+GO(1)H2O+ C
o + ti2+C02(2)そして、生成した水素お
よび一酸化炭素は多孔性の燃料電極2の細孔内を電解質
マトリックスlの方へ拡散する。一方、酸化剤通路6に
は空気と二酸化炭素が供給され、多孔性の酸化剤電極3
の細孔内を電解質マトリックスlの方へ拡散する。電解
質マトリックスlに含浸されている炭酸塩と燃料電極2
との界面および炭酸塩と酸化剤電極3との界面でそれぞ
れ(3)、(4)式のような電気化学反応か起こり、燃
料電極2と酸化剤電極3の間に電圧か生じ、これを外部
に電力として取り出すことができる。
C114+H20→31(2+GO(1)H2O+C
o + ti2+C02 (2) The generated hydrogen and carbon monoxide then diffuse into the pores of the porous fuel electrode 2 toward the electrolyte matrix l. On the other hand, air and carbon dioxide are supplied to the oxidant passage 6, and the porous oxidant electrode 3
diffuses into the pores of the electrolyte matrix l. carbonate impregnated in electrolyte matrix l and fuel electrode 2
Electrochemical reactions as shown in equations (3) and (4) occur at the interface between the carbonate and the oxidizer electrode 3, respectively, and a voltage is generated between the fuel electrode 2 and the oxidizer electrode 3, which It can be extracted externally as electric power.

+12+GO:l’−−+H,0+(:02 +2e 
 (3)%02+C02+2e+GO,”−(4)改質
触媒上で起こる改質反応は吸熱反応てあり、この反応を
持続させるために必要な熱量は、上記電気化学反応に伴
なう非可逆反応による発熱か改質触媒に供給されること
てまかなわれている。このように電池の中で発熱反応と
吸熱反応を組合わせることにより熱利用が効率的に行え
、さらに生成した水素および一酸化炭素か直ちに電気化
学反応により消費されるために改質反応の化学平衡かよ
り多量の水素および一酸化炭素を生成する方向に移動し
、ために発電効率か高いことか内部改質式溶融炭酸塩型
燃料電池の特徴である。
+12+GO:l'--+H,0+(:02 +2e
(3)%02+C02+2e+GO,"-(4) The reforming reaction that occurs on the reforming catalyst is an endothermic reaction, and the amount of heat required to sustain this reaction is due to the irreversible reaction accompanying the electrochemical reaction. By combining exothermic and endothermic reactions in the battery, heat can be used efficiently, and the generated hydrogen and carbon monoxide can be used efficiently. The chemical equilibrium of the reforming reaction shifts towards producing more hydrogen and carbon monoxide, which are immediately consumed by the electrochemical reaction, resulting in higher power generation efficiency for internally reformed molten carbonate fuels. This is a characteristic of batteries.

[従来技術の問題点] しかしながら従来の内部改質式溶融炭酸塩型燃料電池に
おいては、電解質マトリックスlから電解質か蒸発して
燃料電極2を通過して燃料通路4に移動し、改質触媒8
に付着して該触媒の活性を低下させ、ために電池性能か
低下してしまうという問題かある。この問題は、改質触
媒層の中を電解質蒸気が下流側に流れてしまう燃料通路
構造をもつことか原因となって生じている。
[Problems with the Prior Art] However, in the conventional internal reforming type molten carbonate fuel cell, the electrolyte evaporates from the electrolyte matrix l, passes through the fuel electrode 2, moves to the fuel passage 4, and is transferred to the reforming catalyst 8.
There is a problem in that it adheres to the catalyst and reduces the activity of the catalyst, resulting in a decrease in battery performance. This problem is caused by the fuel passage structure in which electrolyte vapor flows downstream in the reforming catalyst layer.

本発明は、電池内のガスの流れを分離することによって
改質触媒に移動する電解質蒸気の量を低減することがで
き、ために電池の寿命を長くすることができる内部改質
式溶融炭酸塩型燃料電池を提供するのか目的である。
The present invention provides an internally reformed molten carbonate solution that can reduce the amount of electrolyte vapor transferred to the reforming catalyst by separating the gas flow within the cell, thereby increasing the battery life. The purpose is to provide type fuel cells.

[問題点を解決するための手段] 上記問題点を解決するために提案される本発明の構成は
以下のとおりである。
[Means for Solving the Problems] The configuration of the present invention proposed to solve the above problems is as follows.

電解質マトリックスを挟んで燃料電極と酸化剤電極が対
向し、前記燃料電極の他面にはその一部に改質触媒を充
填した燃料通路を、酸化剤電極の他面には酸化剤通路を
構成して成る燃料電池において、その燃料通路が燃料人
口マニホールドおよび燃料電極と連通ずるが、燃料出口
マニホールドと連通せず、かつ少なくともその一部に改
質触媒を配置した燃料入口通路、および燃料人口マニホ
ールドと連通せずに燃料出口マニホールドおよび燃料電
極と連通し、かつ燃料入口通路とはガス不透過性の隔壁
で仕切られている燃料出口通路により構成される内部改
質式溶融炭酸塩型燃料電池。
A fuel electrode and an oxidizer electrode face each other with an electrolyte matrix in between, and a fuel passage partially filled with a reforming catalyst is formed on the other side of the fuel electrode, and an oxidizer passage is formed on the other side of the oxidizer electrode. A fuel cell comprising: a fuel inlet passage whose fuel passage communicates with a fuel manifold and a fuel electrode, but does not communicate with a fuel outlet manifold, and in which a reforming catalyst is disposed at least in part; and a fuel manifold. An internal reforming molten carbonate fuel cell comprising a fuel outlet passage that communicates with a fuel outlet manifold and a fuel electrode without communicating with the fuel inlet passageway, and is separated from the fuel inlet passageway by a gas-impermeable partition wall.

[作用] 木発明は上記のように、燃料通路の入口側と出口側を区
分することによって、電池内のガスの流れは分離される
。すなわち燃料人口マニホールドから燃料入口通路内に
供給された燃料は燃料入口通路内に配置された改質触媒
で改質された後、その道が閉ざされているため、多孔質
の燃料電極中へ滲透流入し燃料電極内で電気化学反応を
起こししかる後燃料出口通路内に流出し、ここを通過し
て燃料出口マニホールド内に至り、排出される。
[Operation] As described above, in the present invention, the flow of gas within the battery is separated by dividing the inlet side and the outlet side of the fuel passage. In other words, the fuel supplied from the fuel manifold into the fuel inlet passage is reformed by the reforming catalyst disposed in the fuel inlet passage, and then, since the path is closed, it percolates into the porous fuel electrode. After an electrochemical reaction occurs within the fuel electrode, the fuel flows out into the fuel outlet passage, passes therethrough, reaches the fuel outlet manifold, and is discharged.

このため電解質マトリックスから蒸発した電解質蒸気が
燃料の流れに逆らって燃料入口通路の方に移動すること
を抑制でき、その結果、改質触媒に対する電解質蒸気の
付着量を低減するこ左かできる。
Therefore, it is possible to suppress electrolyte vapor evaporated from the electrolyte matrix from moving toward the fuel inlet passage against the flow of fuel, and as a result, it is possible to reduce the amount of electrolyte vapor adhering to the reforming catalyst.

[実施例コ 以下、第1.2図により本発明の実施例を具体的に説明
する。第1図は木発明に係る燃料電池の全体を示す平面
図、第2図は該電池の一部所面図である。実施例の燃料
通路は燃料入口マニホールド9と連通し、かつ燃料上ロ
マニホールト10と連通しない燃料入口通路4−aおよ
び燃料入口マニホールド9と連通せずに燃料上ロマニホ
ールト10とは連通している燃料出口通路4−bから構
成され、4−aと4−bとはガス不透過性の隔壁11で
仕切られている。改質触媒8は燃料入口通路4−aの中
の少なくとも一部に配置されている。符号の12は酸化
剤入口マニホールド、13は酸化削出ロマニホールトで
ある。図中符号の1.2,3.5.6.7は前記従来例
と同一構造なのでその説明を省略する。このようにして
、本発明の内部改質式溶融炭酸塩型燃料電池が構成され
る。
[Embodiment] Hereinafter, an embodiment of the present invention will be explained in detail with reference to FIG. 1.2. FIG. 1 is a plan view showing the entirety of the fuel cell according to the invention, and FIG. 2 is a partially sectional view of the cell. The fuel passage of the embodiment includes a fuel inlet passage 4-a that communicates with the fuel inlet manifold 9 and does not communicate with the fuel upper Romanifold 10, and a fuel outlet that does not communicate with the fuel inlet manifold 9 but communicates with the fuel upper Romanifold 10. It is composed of a passage 4-b, and 4-a and 4-b are partitioned by a gas-impermeable partition wall 11. The reforming catalyst 8 is disposed in at least a portion of the fuel inlet passage 4-a. Reference numeral 12 is an oxidant inlet manifold, and 13 is an oxidation cutting Roman manifold. Reference numerals 1.2, 3.5, 6.7 in the figure have the same structure as in the conventional example, so the explanation thereof will be omitted. In this way, the internal reforming molten carbonate fuel cell of the present invention is constructed.

上記実施例によると、燃料入口マニホールド9から炭化
水素を含む燃料と水蒸気か燃料入口通路4−a内に供給
されると、該通路に配置されている改質触媒8により改
質されて水素、−酸化炭素および二酸化炭素が生成され
る。燃料入口通路4−aと燃料出口通路4−bはガス不
透過性の隔壁11て仕切られているため、改質されたガ
スは燃料入口通路4−aから4−aに隣接する燃料電極
2の細孔中に拡散する。燃料電極2の中に拡散した水素
と一酸化炭素の一部は電気化学反応により消費されて、
水蒸気および二酸化炭素を生成する。
According to the embodiment described above, when fuel containing hydrocarbons and water vapor are supplied from the fuel inlet manifold 9 into the fuel inlet passage 4-a, they are reformed by the reforming catalyst 8 disposed in the passage, resulting in hydrogen and hydrogen. - Carbon oxides and carbon dioxide are produced. Since the fuel inlet passage 4-a and the fuel outlet passage 4-b are partitioned by a gas-impermeable partition wall 11, the reformed gas flows from the fuel inlet passage 4-a to the fuel electrode 2 adjacent to the fuel inlet passage 4-a. diffuses into the pores of the A part of the hydrogen and carbon monoxide diffused into the fuel electrode 2 are consumed by an electrochemical reaction,
Produces water vapor and carbon dioxide.

生成した水蒸気と二酸化炭素および未反応の燃料改質ガ
スは燃料電極2から燃料出口通路4−bに排出される。
The generated water vapor, carbon dioxide, and unreacted fuel reformed gas are discharged from the fuel electrode 2 to the fuel outlet passage 4-b.

4−bの中でまだ利用されず残っている水素と一酸化炭
素は4−bに接する燃料電極2の中に拡散し、電気化学
反応により消費され、水蒸気および二酸化炭素を生成す
る。これらの生成ガスは再び燃料出口通路4−bに排出
され、他の燃料出口通路4−b内のガスとともに燃料上
ロマニホールト10に排出される。このように未発明に
よる内部改質電池ては、該電池に供給される燃料は燃料
入口通路4−aから燃料″電極2を通って燃料出口通路
4−b e流れ出る。
Hydrogen and carbon monoxide remaining unused in 4-b diffuse into the fuel electrode 2 in contact with 4-b, are consumed by an electrochemical reaction, and produce water vapor and carbon dioxide. These generated gases are again discharged to the fuel outlet passage 4-b, and are discharged to the fuel upper Romanihole 10 together with the gases in the other fuel outlet passages 4-b. Thus, in the internal reforming cell according to the invention, the fuel supplied to the cell flows from the fuel inlet passage 4-a through the fuel electrode 2 to the fuel outlet passage 4-be.

−・方、電解質マトリックス1からは電解質か蒸発する
か、この電解質蒸気は燃料電極2の中で上記のような燃
料の流れに同伴されて燃料出口通路4−bに排出される
。このとき燃料は上記のごとく流れるため、電解質蒸気
は燃料の流れの上流側に位置する改質触媒8の方に移動
しにくくなり、したがって改質触媒8に対する電解質蒸
気の付着を抑制することができ、ために電池の寿命を長
くすることがてきる。酸化剤は酸化剤入口マニホールド
12から酸化剤通路6を通って酸化削出ロマニホールト
13に至り排出される。
- On the other hand, the electrolyte evaporates from the electrolyte matrix 1, and this electrolyte vapor is entrained in the fuel flow as described above in the fuel electrode 2 and discharged to the fuel outlet passage 4-b. At this time, since the fuel flows as described above, it becomes difficult for the electrolyte vapor to move toward the reforming catalyst 8 located on the upstream side of the fuel flow, and therefore it is possible to suppress the electrolyte vapor from adhering to the reforming catalyst 8. , which can extend the battery life. The oxidizing agent passes from the oxidizing agent inlet manifold 12 through the oxidizing agent passage 6 to the oxidizing removal manifold 13 and is discharged.

上記は本発明の実施態様の一例てあり、これ以外にも種
々の実施態様がある。例えば第1図は燃料通路と酸化剤
通路6が直交しているものを示したが、これらの通路は
平行していてもよく、各マニホールド9.10は外部マ
ニホールドても内部マニホールドでもよく、また燃料通
路あるいは酸化剤通路6は平板状のセパレータと波形状
の燃料通路用スペーサ或いは酸化剤通路用スペーサとて
構成されていてもよく、さらに改質触媒8の形状はベレ
ット状ても燃料通路の形状に成型されていてもよい。
The above is an example of the embodiment of the present invention, and there are various other embodiments. For example, although FIG. 1 shows the fuel passages and oxidizer passages 6 orthogonal, these passages may be parallel, and each manifold 9.10 may be an external manifold or an internal manifold; The fuel passage or oxidizer passage 6 may be configured with a flat separator and a wave-shaped spacer for the fuel passage or spacer for the oxidizer passage, and the shape of the reforming catalyst 8 may be a pellet shape, but the shape of the reforming catalyst 8 may be a pellet shape. It may be molded into a shape.

[発明の効果] 本発明によれば、燃料通路か人口側と出口側にガス不透
過性の隔壁で分類されているため、燃料は燃料入口通路
内に配置された改質触媒で改質された後、燃料電極内を
通って燃料出口通路に排出される。したがって電解質マ
トリックスから蒸発する電解質か改質触媒と接触するこ
とを効果的に抑制できるので、改質触媒に対する電解質
の付着量を低減することかでき、ために従来のものに比
較して電池の寿命が長くなる。
[Effects of the Invention] According to the present invention, since the fuel passage is separated into the intake side and the outlet side by gas-impermeable partition walls, the fuel is reformed by the reforming catalyst disposed in the fuel inlet passage. After that, it passes through the fuel electrode and is discharged to the fuel outlet passage. Therefore, contact between the electrolyte evaporated from the electrolyte matrix and the reforming catalyst can be effectively suppressed, reducing the amount of electrolyte attached to the reforming catalyst, thereby extending the battery life compared to conventional ones. becomes longer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る内部改質式溶融炭酸塩型燃料電池
の全体を示す平面図、第2図は一部断面図、第3図は従
来の内部改質式溶融炭酸塩型燃料゛電池の断面図である
。 l・・・・・・電解質マトリックス 2・・・・・・燃料゛1シ極 3・・・・・・酸化剤’itt極 4・・・・・・燃料通路 4−a・・・燃料入口通路 4−b・・・燃料出口通路 5・・・・・・燃料側セバレータ 6・・・・・・酸化剤通路 7・・・・・・酸化剤側セパレータ 8・・・・・・改質触媒 9・・・・・・燃料入ロマニホールト 10・・・燃料量ロマニホールト 11・・・隔壁
Fig. 1 is a plan view showing the entire internal reforming molten carbonate fuel cell according to the present invention, Fig. 2 is a partial sectional view, and Fig. 3 is a conventional internal reforming molten carbonate fuel cell. It is a sectional view of a battery. 1... Electrolyte matrix 2... Fuel '1' pole 3... Oxidizer'it electrode 4... Fuel passage 4-a... Fuel inlet Passage 4-b...Fuel outlet passage 5...Fuel side separator 6...Oxidizer passage 7...Oxidizer side separator 8...Reforming Catalyst 9...Fuel filled Romaniholt 10...Fuel amount Romaniholt 11...Partition wall

Claims (1)

【特許請求の範囲】[Claims] 電解質マトリックスを挟んで燃料電極と酸化剤電極が対
向し、前記燃料電極の他面にはその一部に改質触媒を充
填した燃料通路を、酸化剤電極の他面には酸化剤通路を
構成して成る燃料電池において、その燃料通路が燃料入
口マニホールドおよび燃料電極と連通するが、燃料出口
マニホールドと連通せず、かつ少なくともその一部に改
質触媒を配置した燃料入口通路、および燃料入口マニホ
ールドと連通せずに燃料出口マニホールドおよび燃料電
極と連通し、かつ燃料入口通路とはガス不透過性の隔壁
で仕切られている燃料出口通路により構成される内部改
質式溶融炭酸塩型燃料電池。
A fuel electrode and an oxidizer electrode face each other with an electrolyte matrix in between, and a fuel passage partially filled with a reforming catalyst is formed on the other side of the fuel electrode, and an oxidizer passage is formed on the other side of the oxidizer electrode. In a fuel cell, the fuel inlet passage communicates with the fuel inlet manifold and the fuel electrode, but does not communicate with the fuel outlet manifold, and has a reforming catalyst disposed in at least a portion thereof, and a fuel inlet manifold. An internal reforming molten carbonate fuel cell comprising a fuel outlet passage that communicates with a fuel outlet manifold and a fuel electrode without communicating with the fuel inlet passageway, and is separated from the fuel inlet passageway by a gas-impermeable partition wall.
JP62327998A 1987-12-23 1987-12-23 Internal reforming molten carbonate fuel cell Expired - Lifetime JP2604393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62327998A JP2604393B2 (en) 1987-12-23 1987-12-23 Internal reforming molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62327998A JP2604393B2 (en) 1987-12-23 1987-12-23 Internal reforming molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPH01167959A true JPH01167959A (en) 1989-07-03
JP2604393B2 JP2604393B2 (en) 1997-04-30

Family

ID=18205362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62327998A Expired - Lifetime JP2604393B2 (en) 1987-12-23 1987-12-23 Internal reforming molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JP2604393B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166423A (en) * 2003-12-02 2005-06-23 Nissan Motor Co Ltd Solid oxide fuel cell
CN110346442A (en) * 2019-08-06 2019-10-18 徐磊 A kind of monitoring device for pulverized-coal fired boiler working environment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122569A (en) * 1987-10-20 1989-05-15 Energy Res Corp Fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122569A (en) * 1987-10-20 1989-05-15 Energy Res Corp Fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166423A (en) * 2003-12-02 2005-06-23 Nissan Motor Co Ltd Solid oxide fuel cell
US7632594B2 (en) 2003-12-02 2009-12-15 Nissan Motor Co., Ltd. Solid oxide fuel cell with improved gas exhaust
JP4682511B2 (en) * 2003-12-02 2011-05-11 日産自動車株式会社 Solid oxide fuel cell
CN110346442A (en) * 2019-08-06 2019-10-18 徐磊 A kind of monitoring device for pulverized-coal fired boiler working environment

Also Published As

Publication number Publication date
JP2604393B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
US4647516A (en) Internal reforming type fuel cell
JPS6132361A (en) Fuel cell
JP2581662B2 (en) Fuel cell generator
JPH03210774A (en) Internally improved quality system molten carbonate type fuel cell
JPH0147863B2 (en)
JPH01167959A (en) Internally reforming type molten carbonate fuel cell
JP3575650B2 (en) Molten carbonate fuel cell
JP2820165B2 (en) Reforming reactor
JP2001006695A (en) Separator of fuel cell
JPS63310574A (en) Internal reforming type fuel cell
JPS6298567A (en) Fuel cell
JP2001023651A (en) Separator for fuel cell
JP2751523B2 (en) Internal reforming fuel cell
JPH01167958A (en) Internally reforming type molten carbonate fuel cell
JPH0615404Y2 (en) Internal reforming fuel cell
JPS61267272A (en) Molten carbonate type fuel cell
JPH03216962A (en) Fuel cell
JP2734716B2 (en) Internal reforming fuel cell
JP2804769B2 (en) Internal reforming fuel cell
JPS6329458A (en) Inside reformation type molten carbonate fuel cell
JPH0773057B2 (en) Internal reforming fuel cell
JP2001335785A (en) Carbon monoxide stripper
JPS62278766A (en) Operating method for phosphoric acid fuel cell
JPS6269470A (en) Internal-reformation fuel cell
JPH06314570A (en) Manifold structure of fuel cell