JP2734716B2 - Internal reforming fuel cell - Google Patents

Internal reforming fuel cell

Info

Publication number
JP2734716B2
JP2734716B2 JP2021675A JP2167590A JP2734716B2 JP 2734716 B2 JP2734716 B2 JP 2734716B2 JP 2021675 A JP2021675 A JP 2021675A JP 2167590 A JP2167590 A JP 2167590A JP 2734716 B2 JP2734716 B2 JP 2734716B2
Authority
JP
Japan
Prior art keywords
fuel gas
flow path
electrolyte
side electrode
gas side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2021675A
Other languages
Japanese (ja)
Other versions
JPH03225767A (en
Inventor
千賀 平井
佳秀 言上
光家 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2021675A priority Critical patent/JP2734716B2/en
Publication of JPH03225767A publication Critical patent/JPH03225767A/en
Application granted granted Critical
Publication of JP2734716B2 publication Critical patent/JP2734716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、内部改質形燃料電池に関し、特にその長
寿命化に関するものである。
Description: FIELD OF THE INVENTION The present invention relates to an internal reforming fuel cell, and more particularly to extending its life.

[従来の技術] 第2図は、例えば特開昭62-186471号公報に示された
従来の内部改質形電池の一実施例の一部を示す縦断面図
である。図において、(1)は電解質層、(2)は燃料
ガス側電極、(3)は電解質層(1)を介在して燃料ガ
ス側電極(2)と対向する酸化ガス側電極、(4a)は燃
料ガス側電極(2)を支持し且つ発生した電流を通過せ
しめる燃料ガス側集電板、(4b)は酸化ガス側電極
(3)を支持し且つ発生した電流を通過せしめる酸化ガ
ス側集電板、(5a)、(5b)はそれぞれ燃料ガス流路及
び酸化ガス流路を形成するための燃料ガス側流路形成材
及び酸化ガス側流路形成材、(6)は燃料ガス側電極
(2)に対向して設ける燃料ガス流路(7)と、酸化ガ
ス側電極(3)に対向して設ける酸化ガス流路(8)と
を分離するセパレータ板、(9)は改質触媒、(10)は
改質触媒(9)と燃料ガス側電極(2)の間に配置さ
れ、燃料ガスに含まれる電解質または電解質から生成し
た物質を燃料ガスから除去する機能を有する電解質除去
物質である。
[Prior Art] FIG. 2 is a longitudinal sectional view showing a part of one embodiment of a conventional internal reforming type battery disclosed in, for example, JP-A-62-186471. In the figure, (1) is an electrolyte layer, (2) is a fuel gas side electrode, (3) is an oxidizing gas side electrode facing the fuel gas side electrode (2) via the electrolyte layer (1), (4a) Is a fuel gas side current collector supporting the fuel gas side electrode (2) and passing generated current; and (4b) is an oxidizing gas side collector supporting the oxidized gas side electrode (3) and passing generated current. An electric plate, (5a) and (5b) are a fuel gas side flow path forming material and an oxidizing gas side flow path forming material for forming a fuel gas flow path and an oxidizing gas flow path, respectively, and (6) is a fuel gas side electrode. A separator plate for separating a fuel gas flow channel (7) provided to face (2) and an oxidizing gas flow channel (8) provided to face the oxidizing gas side electrode (3); (9) a reforming catalyst , (10) are disposed between the reforming catalyst (9) and the fuel gas side electrode (2), and the electrolyte or the electrolyte contained in the fuel gas. An electrolyte removing substance having a function of removing a substance generated from the decomposition from the fuel gas.

次に、動作について説明する。炭化水素またはアルコ
ール類・スチームを主成分とする燃料ガスが矢印B方向
から供給され、酸素と二酸化炭素を主要成分とする酸化
ガスが矢印A方向から供給されて、十字流形式でそれぞ
れ燃料ガス流路、酸化ガス流路に導入される。燃料ガス
中の炭化水素は改質触媒(9)の作用により下式
(1)、(2)、(3)に示すように水素及び一酸化炭
素を主成分とする燃料ガスに変質される。この反応は全
体としては吸熱反応であり、燃料電池で副生する熱エネ
ルギーを直接利用する。
Next, the operation will be described. Fuel gas mainly composed of hydrocarbons or alcohols / steam is supplied in the direction of arrow B, and oxidizing gas mainly composed of oxygen and carbon dioxide is supplied in the direction of arrow A. Channel and an oxidizing gas channel. Hydrocarbons in the fuel gas are transformed into a fuel gas containing hydrogen and carbon monoxide as main components as shown in the following formulas (1), (2) and (3) by the action of the reforming catalyst (9). This reaction is an endothermic reaction as a whole, and directly uses heat energy produced as a by-product in the fuel cell.

CH4+H2O→CO +3H2+49.3kcal/mol ……(1) CnHm+nH2O→nCO +{(m+2n)/2}H2 ……(2) CO+H2O→CO2 +H2−9.8kcal/mol ……(3) 式(1)、(2)、(3)に示す反応に従い、燃料ガ
ス流路内で生成した水素・一酸化炭素及び矢印Aで供給
された酸化ガス中の酸素・二酸化炭素はそれぞれ燃料ガ
ス側集電板(4a)酸化ガス側集電板(4b)の穴部分を拡
散し、燃料ガス側電極(2)、酸化ガス側電極(3)に
おいてそれぞれ次式(4)、(5)、(6)に示すよう
な反応を起こす。
CH 4 + H 2 O → CO + 3H 2 +49.3 kcal / mol… (1) CnHm + nH 2 O → nCO + (m + 2n) / 2} H 2 …… (2) CO + H 2 O → CO 2 + H 2 −9.8 kcal / mol (3) According to the reactions shown in the equations (1), (2) and (3), hydrogen / carbon monoxide generated in the fuel gas flow path and oxygen / oxygen in the oxidizing gas supplied by the arrow A The carbon dioxide diffuses through the holes of the fuel gas side current collector (4a) and the oxidant gas side current collector (4b), and the following formula (4) ), (5) and (6).

燃料ガス側電極 H2+CO3 2-→H2O+CO2+2e ……(4) CO+H2O→H2+CO2 ……(5) 酸化ガス側電極 1/2O2+CO2+2e→CO3 2- ……(6) これらの化学・電気化学反応を通して燃料ガスの持っ
ている化学エネルギーが電気エネルギーと副生する熱エ
ネルギーとに変換される。さきに述べたように副生する
熱エネルギーのほとんどがガス流路内において炭化水素
の分解の反応熱に利用され、大幅な熱効率の改善をもた
らし、これが内部改質方式の特徴の一つとなっている。
Fuel gas side electrode H 2 + CO 3 2- → H 2 O + CO 2 + 2e (4) CO + H 2 O → H 2 + CO 2 (5) Oxidizing gas side electrode 1 / 2O 2 + CO 2 + 2e → CO 3 2- (6) Through these chemical and electrochemical reactions, the chemical energy of the fuel gas is converted into electric energy and by-product thermal energy. As mentioned earlier, most of the by-product thermal energy is used for the reaction heat of hydrocarbon decomposition in the gas flow path, resulting in a significant improvement in thermal efficiency, which is one of the features of the internal reforming method. I have.

またそれと同時に、改質されたガスが燃料電極で利用
されるため、(1)(2)式の反応が右側に進み、内部
改質形燃料電池では、炭化水素の電池運転温度における
平衡以上に改質率の向上が起こり、供給された炭化水素
のほとんどが改質される。
At the same time, since the reformed gas is used for the fuel electrode, the reactions of equations (1) and (2) proceed to the right, and in the internal reforming fuel cell, the reaction temperature becomes higher than the equilibrium at the operating temperature of hydrocarbons. An improvement in the reforming rate occurs, and most of the supplied hydrocarbons are reformed.

ここで、改質触媒(9)は例えばアルミナ、マグネシ
アを主成分とする担体上に触媒としての活性を有するニ
ッケルを担持させたものである。一般にこのような改質
触媒(9)は電解質の汚染に対して弱く、微量の電解質
に汚染されることにより触媒としての活性が大幅に低下
する。この例では、電解質層(1)に保持されている例
えばLi2CO3やK2CO3などの電解質または例えばLiOHやKO
Hなどの電解質から生成した物質が、蒸気または飛沫の
形で改質触媒を汚染し、改質触媒(9)の活性を低下せ
しめることを防ぐため、改質触媒(9)と電極(2)と
の間に電解質除去物質(10)を配置している。
Here, the reforming catalyst (9) is, for example, a catalyst in which nickel having activity as a catalyst is supported on a carrier mainly composed of alumina and magnesia. Generally, such a reforming catalyst (9) is susceptible to electrolyte contamination, and its activity as a catalyst is greatly reduced by being contaminated by a trace amount of electrolyte. In this example, an electrolyte such as Li 2 CO 3 or K 2 CO 3 held in the electrolyte layer (1) or LiOH or KO
The reforming catalyst (9) and the electrode (2) are used to prevent substances generated from the electrolyte such as H from contaminating the reforming catalyst in the form of vapor or droplets and reducing the activity of the reforming catalyst (9). And the electrolyte removing substance (10) is arranged between them.

また、第3図は、特開平1-122569号公報に示された従
来の内部改質形電池の他の実施例の一部を示す斜視図で
ある。図において、(5a)は燃料ガス流路を形成するた
めの燃料ガス流路形成材、(7a)は燃料ガス側電極に面
している第1の燃料ガス流路、(7b)は燃料ガス流路形
成材(5a)によって燃料ガス側電極から隔離されている
第2の燃料ガス流路を示す。(9)は改質触媒、(10)
は電解質除去物質である。改質触媒(9)及び電解質除
去物質(10)は燃料ガス電極から隔離された第2の燃料
ガス流路(7b)に充填されているため、電解質または電
解質より生成した物質を含んだ燃料ガスは、第1の燃料
ガス流路(7a)より第2の燃料ガス流路(7b)に、燃料
ガス側流路形成材(5a)が備えた穿孔部を通じて供給さ
れ、電解質除去物質(10)により電解質を除去された後
改質触媒(9)に供給される。
FIG. 3 is a perspective view showing a part of another embodiment of the conventional internal reforming type battery disclosed in Japanese Patent Application Laid-Open No. 1-122569. In the figure, (5a) is a fuel gas flow path forming material for forming a fuel gas flow path, (7a) is a first fuel gas flow path facing a fuel gas side electrode, and (7b) is a fuel gas flow path. The second fuel gas flow path separated from the fuel gas side electrode by the flow path forming material (5a) is shown. (9) is a reforming catalyst, (10)
Is an electrolyte removing substance. Since the reforming catalyst (9) and the electrolyte removing substance (10) are filled in the second fuel gas flow path (7b) isolated from the fuel gas electrode, the fuel gas containing the electrolyte or the substance generated from the electrolyte is filled. Is supplied from the first fuel gas flow path (7a) to the second fuel gas flow path (7b) through the perforated portion provided in the fuel gas side flow path forming material (5a), and the electrolyte removal substance (10) After the electrolyte is removed by the above, it is supplied to the reforming catalyst (9).

[発明が解決しようとする課題] 従来の内部改質形燃料電池は以上のように構成されて
いるので、第2図のように燃料ガス流路のうち電極に面
する部分に電解質除去物質(10)が配置されている場
合、電解質除去物質によって、電解質または電解質から
生成した物質が燃料ガスより除去され、電極からの電解
質の蒸発を促進するという問題点があった。第2図で電
解質除去物質(10)が充填されている部分にかわりに改
質触媒(9)が充填されている場合も同様で、電解質を
取り込む性質のある改質触媒によって、電解質の蒸発が
促進される。
[Problems to be Solved by the Invention] Since the conventional internal reforming fuel cell is configured as described above, an electrolyte removing substance ( When 10) is arranged, there is a problem that the electrolyte or the substance generated from the electrolyte is removed from the fuel gas by the electrolyte removing substance, and the evaporation of the electrolyte from the electrode is promoted. The same applies to the case where the reforming catalyst (9) is filled instead of the portion filled with the electrolyte removing substance (10) in FIG. Promoted.

次に、第3図のように、燃料ガス流路のうち電極に接
する部分が空隙の流路になっている場合、空隙に燃料ガ
スが過大に流れ、燃料の分配にアンバランスを生じやす
い。それを避けるため第1の燃料ガス流路(7a)及び第
2の燃料ガス流路(7b)に例えば均等に燃料ガスを供給
できるような流路構成を採るとすると、第1の燃料ガス
流路の流路径を少なくとも0.5mm以下にする必要がある
が、この様な形状のコルゲート板を製作することは難し
く、また高価になるという欠点がある。また、空隙内の
燃料ガス流量が少ないと、流路内が層流になり燃料ガス
側電極と燃料ガス流路の間のガス交換が不十分になるこ
とがあるが、これを避けるためには流路内のガス流れに
乱れを生じさせることが望ましい。
Next, as shown in FIG. 3, when the portion of the fuel gas flow path that is in contact with the electrode is an air flow path, the fuel gas flows excessively into the air gap, and the fuel distribution tends to be unbalanced. In order to avoid this, if a flow path configuration that can supply the fuel gas uniformly to the first fuel gas flow path (7a) and the second fuel gas flow path (7b) is adopted, the first fuel gas flow path (7a) It is necessary to make the flow path diameter of the road at least 0.5 mm or less, but it is difficult to manufacture a corrugated plate of such a shape, and there is a disadvantage that it is expensive. Also, if the flow rate of the fuel gas in the gap is small, the inside of the flow path becomes laminar and the gas exchange between the fuel gas side electrode and the fuel gas flow path may be insufficient, but in order to avoid this, It is desirable to cause turbulence in the gas flow in the flow path.

この発明は上記のような問題点を解消するためになさ
れたもので、電解質の蒸発による電池特性の劣化を防ぎ
つつ、電池内で均一かつ十分に改質反応及び電池反応を
進行させることが可能な内部改質形燃料電池を得ること
を目的とする。
The present invention has been made in order to solve the above-described problems, and it is possible to uniformly and sufficiently advance a reforming reaction and a battery reaction in a battery while preventing deterioration of battery characteristics due to evaporation of an electrolyte. It is an object of the present invention to obtain a suitable internal reforming fuel cell.

[課題を解決するための手段] この発明に係る内部改質形燃料電池は、燃料ガス流路
が、燃料ガス側電極に面する第1の流路と燃料ガス側電
極から隔離された第2の流路とからなり、第1の流路に
は電解質との化学反応性がない低比表面積の流路抵抗制
御物質を充填し、第2の流路には少なくとも改質触媒を
充填したものである。
[Means for Solving the Problems] In the internal reforming fuel cell according to the present invention, the fuel gas flow path is separated from the first flow path facing the fuel gas side electrode and the second flow path separated from the fuel gas side electrode. Wherein the first channel is filled with a low specific surface area resistance control substance having no chemical reactivity with the electrolyte, and the second channel is filled with at least a reforming catalyst. It is.

[作用] この発明に於いて、燃料ガス流路は電極と面する第1
及び電極から隔離された第2の流路に分けられている。
これらの流路の流路抵抗の差は第1の流路に充填された
電解質に対し化学的に反応性がない低比表面積の流路抵
抗制御物質(以下、非反応性物質と称す)によって制御
されている。また、保持された非反応性物質は、燃料ガ
ス流路内のガス流れに乱れを起こして、反応ガスの交換
を促進する。燃料ガスが供給部から下流に流れるに従っ
て、第2の流路に充填された改質触媒によって改質され
たガス、及び電極で使用されたガスは、混合されつつ第
1及び第2の流路に適切な割合で流れるので、均一かつ
十分に改質反応及び電池反応を進行させることができ
る。
[Operation] In the present invention, the fuel gas flow path is formed on the first surface facing the electrode.
And a second flow path isolated from the electrode.
The difference between the channel resistances of these channels is caused by a low specific surface area channel resistance control substance (hereinafter, referred to as a non-reactive substance) which is not chemically reactive with the electrolyte filled in the first channel. Is controlled. In addition, the retained non-reactive substance causes a turbulence in the gas flow in the fuel gas flow path to promote exchange of the reactive gas. As the fuel gas flows downstream from the supply unit, the gas reformed by the reforming catalyst filled in the second flow path and the gas used in the electrode are mixed with the first and second flow paths. Therefore, the reforming reaction and the battery reaction can proceed uniformly and sufficiently.

[実施例] 以下、この発明の一実施例を図について説明する。第
1図において、(1)は電解質層、(2)は燃料ガス側
電極、(4a)は燃料ガス側集電板、(5a)は燃料ガス流
路形成材、(7a)は燃料ガス側電極に面している第1の
燃料ガス流路、(7b)は燃料ガス流路形成材(5a)によ
って燃料ガス側電極から隔離されている第2の燃料ガス
流路、(9)は改質触媒、(11)は非反応性物質であ
る。改質触媒(9)は第2の燃料ガス流路(7b)に、非
反応性物質(11)は第1の燃料ガス流路(7a)に充填さ
れている。
Embodiment An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, (1) is an electrolyte layer, (2) is a fuel gas side electrode, (4a) is a fuel gas side current collector, (5a) is a fuel gas flow path forming material, and (7a) is a fuel gas side. The first fuel gas passage facing the electrode, (7b) is a second fuel gas passage separated from the fuel gas side electrode by the fuel gas passage forming material (5a), and (9) is a modified fuel gas passage. Quality catalyst, (11) is a non-reactive material. The reforming catalyst (9) is filled in the second fuel gas passage (7b), and the non-reactive substance (11) is filled in the first fuel gas passage (7a).

次にこの一実施例による、非反応性物質(11)を備え
た内部改質形燃料電池の動作について説明する。炭化水
素またはアルコール類を主成分とする燃料ガスのうち、
第2の燃料ガス流路(7b)に流れ込んだガスは、充填さ
れた改質触媒(9)の作用により、式(1)、(2)、
(3)に従い水素、一酸化炭素を主成分とする燃料ガス
への変質が進み、下流のガス流路に流入する。第1の燃
料ガス流路(7a)に流入した燃料ガスの変質は進まない
が、ここでは上流で変質された水素・一酸化炭素を含む
ガスが燃料電極で電池反応に利用され、さらに下流の燃
料ガス流路へ供される。第1の燃料ガス流路(7a)及び
第2の燃料ガス流路(7b)の下流には、別の第1の燃料
ガス流路(7a)及び第2の燃料ガス流路(7b)が位置し
ており、下流側の第1の流路及び第2の流路においても
同様に改質反応・電池反応にガスが利用される。上流側
の燃料ガス流路より流出したガスが、下流において第1
の燃料ガス流路(7a)及び第2の燃料ガス流路(7b)に
流出する量の比率は、第1の燃料ガス流路(7a)に充填
された、非反応性物質(11)の充填率によって制御する
ことができる。第3図に示される従来例のように第1の
燃料ガス流路が空隙の場合、第1の燃料ガス流路(7a)
及び第2の燃料ガス流路(7b)に例えば均等に燃料ガス
を供給できるような流路構成を採るとすると、適する形
状のコルゲート板を製作することは難しく、また高価に
なるという欠点があったのに比べ、この発明によれば非
常に簡単な構造により同様の効果を得ることができる。
このように燃料ガスの第1・第2の流路への分配を制御
することによって、改質反応を均一化でき、温度分布の
小さい内部改質形燃料電池が得られる効果がある。
Next, the operation of the internal reforming fuel cell including the non-reactive substance (11) according to this embodiment will be described. Of fuel gas mainly composed of hydrocarbons or alcohols,
The gas flowing into the second fuel gas flow path (7b) is subjected to the action of the filled reforming catalyst (9) by the following equations (1), (2),
According to (3), the conversion to fuel gas containing hydrogen and carbon monoxide as main components proceeds, and flows into a downstream gas flow path. Although the alteration of the fuel gas flowing into the first fuel gas flow path (7a) does not proceed, here, the gas containing hydrogen and carbon monoxide altered upstream is used for the cell reaction at the fuel electrode, and further downstream. It is provided to the fuel gas flow path. Downstream of the first fuel gas passage (7a) and the second fuel gas passage (7b), another first fuel gas passage (7a) and another second fuel gas passage (7b) are provided. The gas is also used for the reforming reaction and the battery reaction in the first and second flow paths on the downstream side. The gas flowing out of the fuel gas flow path on the upstream side
The ratio of the amount flowing out to the fuel gas flow path (7a) and the second fuel gas flow path (7b) depends on the amount of the non-reactive substance (11) filled in the first fuel gas flow path (7a). It can be controlled by the filling rate. When the first fuel gas flow path is a gap as in the conventional example shown in FIG. 3, the first fuel gas flow path (7a)
If the second fuel gas flow path (7b) has a flow path configuration capable of uniformly supplying the fuel gas, for example, it is difficult to manufacture a corrugated plate having a suitable shape, and the cost becomes high. In contrast, according to the present invention, a similar effect can be obtained with a very simple structure.
By controlling the distribution of the fuel gas to the first and second flow paths as described above, the reforming reaction can be made uniform, and an internal reforming fuel cell having a small temperature distribution can be obtained.

また、内部改質形燃料電池においては、燃料ガスが改
質された後、すぐに電池反応に供されることによって改
質率の向上が起こることが特徴の一つであることはすで
に述べたが、この方法を利用し燃料ガスの流れを制御す
ることによって、燃料ガスの高い改質率を可能にするこ
とができる。さらに、燃料ガス流路内のガス流れに乱れ
を起こして、反応ガスの交換を促進する。
Also, it has already been mentioned that one of the features of the internal reforming fuel cell is that the fuel gas is reformed and immediately subjected to a cell reaction, thereby improving the reforming rate. However, by controlling the flow of the fuel gas using this method, a high reforming rate of the fuel gas can be achieved. Further, the gas flow in the fuel gas flow path is disturbed to promote the exchange of the reaction gas.

また、燃料ガス流路の電極側に充填した物質が、電解
質と反応しないので、電極から蒸発した電解質または電
解質から生成した物質がその場で直接燃料ガスより除去
されず、電解質の蒸発を促進することがない。
In addition, since the substance charged on the electrode side of the fuel gas flow path does not react with the electrolyte, the electrolyte evaporated from the electrode or the substance generated from the electrolyte is not directly removed from the fuel gas on the spot, thereby promoting the evaporation of the electrolyte. Nothing.

ここで、電解質と化学反応性を持たない低比表面積の
流路抵抗制御物質の例として、セラミックスでは例えば
MgOや低比表面積のLiAlO2、Al23を挙げることができ
る。これらの物質の粉末をペレット状あるいはディスク
状に成型した後、焼成することによって、第1の流路に
充填するのに適した材料を得ることができる。このよう
にして得られたMgOペレットを第1の燃料ガス流路(7
a)に配置したところ、約2000時間後の付着電解質量は
0.05wt%以下であり、例えばNi、γ−Al23を主成分と
する改質触媒の付着電解質量が、同様の条件下で8wt%
以上であったのと比較して十分小さく、電解質と非反応
性の物質としての使用に適している。また、Niなどの金
属も、第1の流路に充填する物質として用いることがで
きる。
Here, as an example of a flow path resistance control substance having a low specific surface area having no chemical reactivity with an electrolyte, for example, in ceramics,
Examples thereof include MgO and LiAlO 2 and Al 2 O 3 having a low specific surface area. A material suitable for filling the first flow path can be obtained by forming a powder or a disk of these substances into a pellet or a disk and then baking. The MgO pellets thus obtained are passed through the first fuel gas flow path (7
When placed in a), the attached electrolytic mass after about 2000 hours is
Or less 0.05 wt%, such as Ni, adhesion electrolyte amount of the reforming catalyst mainly composed of γ-Al 2 O 3 is, 8 wt% under similar conditions
Compared to the above, it is sufficiently small and suitable for use as a substance that is non-reactive with the electrolyte. Further, a metal such as Ni can also be used as a substance to be filled in the first channel.

このように、簡単な電池部材構成で、燃料ガスの高い
改質率を可能にするとともに、電解質または電解質から
生成した物質による汚染による改質触媒の活性低下を防
止し、且つ電解質のロスを押え、長期に安定して運転で
きる。
Thus, with a simple battery member configuration, a high reforming rate of the fuel gas is enabled, and a decrease in the activity of the reforming catalyst due to contamination by the electrolyte or a substance generated from the electrolyte is prevented, and loss of the electrolyte is suppressed. Can be operated stably for a long time.

[発明の効果] 以上のように、この発明によれば、燃料ガス流路が、
燃料ガス側電極に面する第1の流路と燃料ガス側電極か
ら隔離された第2の流路とからなり、第1の流路には電
解質との化学反応性がない低比表面積の流路抵抗制御物
質を充填し、第2の流路には少なくとも改質触媒を充填
したので、電解質の蒸発による電池特性の劣化を防ぎつ
つ、電池内で均一かつ十分に改質反応及び電池反応を進
行させることが可能な内部改質形燃料電池が得られる効
果がある。
[Effects of the Invention] As described above, according to the present invention, the fuel gas flow path
A first flow path facing the fuel gas side electrode and a second flow path isolated from the fuel gas side electrode, wherein the first flow path has a low specific surface area having no chemical reactivity with the electrolyte. Since the passage resistance control substance is filled and the second flow path is filled with at least the reforming catalyst, the reforming reaction and the battery reaction can be uniformly and sufficiently performed in the battery while preventing the deterioration of the battery characteristics due to the evaporation of the electrolyte. There is an effect that an internal reforming fuel cell that can be advanced is obtained.

【図面の簡単な説明】 第1図はこの発明の一実施例による内部改質形燃料電池
の要部を一部を切り欠いて示す斜視図、第2図は従来の
内部改質形燃料電池の要部を示す縦断面図、第3図は別
の従来の内部改質形燃料電池の要部を示す斜視図であ
る。 (1)……電解質層、(2)……燃料ガス側電極、
(3)……酸化ガス側電極、(4a)……燃料ガス側集電
板、(4b)……酸化ガス側集電板、(5a)……燃料ガス
流路形成材、(5b)……酸化ガス流路形成材、(6)…
…セパレータ板、(7)……燃料ガス流路、(7a)……
第1の燃料ガス流路、(7b)……第2の燃料ガス流路、
(8)……酸化ガス流路、(9)……改質触媒、(10)
……電解質除去物質、(11)……非反応性物質、A……
燃料ガス流れ方向、B……酸化ガス流れ方向。 なお、各図中同一符号は同一または相当部分を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view, partially cut away, of a main part of an internal reforming fuel cell according to an embodiment of the present invention, and FIG. 2 is a conventional internal reforming fuel cell. FIG. 3 is a perspective view showing a main part of another conventional internal reforming fuel cell. (1) ... electrolyte layer, (2) ... fuel gas side electrode,
(3) Oxidizing gas side electrode, (4a) ... fuel gas side current collector, (4b) ... oxidizing gas side current collector, (5a) ... fuel gas flow path forming material, (5b) ... ... Oxidizing gas flow path forming material (6)
... separator plate, (7) ... fuel gas flow path, (7a) ...
A first fuel gas flow path, (7b)... A second fuel gas flow path,
(8) oxidizing gas passage, (9) reforming catalyst, (10)
…… Electrolyte removing substance, (11) …… Non-reactive substance, A ……
Fuel gas flow direction, B ... Oxidizing gas flow direction. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電解質層を介在して対向する燃料ガス側電
極と酸化ガス側電極を有する単電池、及び燃料ガス側電
極に対向して設ける燃料ガス流路と酸化ガス側電極に対
向して設ける酸化ガス流路とを分離するセパレータ板を
交互に積層するものにおいて、上記燃料ガス流路が、上
記燃料ガス側電極に面する第1の流路と上記燃料ガス側
電極から隔離された第2の流路とからなり、第1の流路
には電解質との化学反応性がない低比表面積の流路抵抗
制御物質を充填し、第2の流路には少なくとも改質触媒
を充填したことを特徴とする内部改質形燃料電池。
1. A unit cell having a fuel gas side electrode and an oxidizing gas side electrode facing each other with an electrolyte layer interposed therebetween, and a fuel gas flow path provided opposite to the fuel gas side electrode and a fuel gas side electrode facing the oxidizing gas side electrode. The fuel gas flow path is a first flow path facing the fuel gas side electrode and the second flow path is separated from the fuel gas side electrode. The first flow path was filled with a low specific surface area resistance control substance having no chemical reactivity with the electrolyte, and the second flow path was filled with at least a reforming catalyst. An internal reforming fuel cell, comprising:
JP2021675A 1990-01-30 1990-01-30 Internal reforming fuel cell Expired - Fee Related JP2734716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021675A JP2734716B2 (en) 1990-01-30 1990-01-30 Internal reforming fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021675A JP2734716B2 (en) 1990-01-30 1990-01-30 Internal reforming fuel cell

Publications (2)

Publication Number Publication Date
JPH03225767A JPH03225767A (en) 1991-10-04
JP2734716B2 true JP2734716B2 (en) 1998-04-02

Family

ID=12061633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021675A Expired - Fee Related JP2734716B2 (en) 1990-01-30 1990-01-30 Internal reforming fuel cell

Country Status (1)

Country Link
JP (1) JP2734716B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492045B1 (en) * 2001-06-26 2002-12-10 Fuelcell Energy, Inc. Corrugated current collector for direct internal reforming fuel cells
EP1482585B1 (en) 2002-03-04 2012-06-20 Mitsubishi Materials Corporation Solid oxide type fuel cell and separator
JP7345267B2 (en) * 2019-03-29 2023-09-15 大阪瓦斯株式会社 Electrochemical elements, electrochemical modules, electrochemical devices and energy systems

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773057B2 (en) * 1986-02-12 1995-08-02 三菱電機株式会社 Internal reforming fuel cell

Also Published As

Publication number Publication date
JPH03225767A (en) 1991-10-04

Similar Documents

Publication Publication Date Title
US4647516A (en) Internal reforming type fuel cell
AU2002219941B2 (en) Multipurpose reversible electrochemical system
GB2025118A (en) Fuel cell thermal control and reforming of process gas hydocarbons
JP2581662B2 (en) Fuel cell generator
JP2002104807A (en) Operating method of fuel processor conbining partial oxidation with steam reforming
JPS6240824B2 (en)
JPH06310158A (en) Internally reformed fuel cell device and fuel cell power generating system
US4618543A (en) Fused carbonate-type fuel cell
US6238817B1 (en) Gas injection system for treating a fuel cell stack assembly
KR100339795B1 (en) Direct Internal Reforming Molten Carbonate Fuel Cell with Membrane for Intercepting Carbonate Vapor
JP2004247305A (en) Ventilation device, fuel cell, and fuel cell stack
JP2734716B2 (en) Internal reforming fuel cell
JP3999934B2 (en) Solid oxide fuel cell
JP2820165B2 (en) Reforming reactor
JPH0147863B2 (en)
CN100483825C (en) Shift reactor, fuel cell system employing the same, and operating method of the same
JPS63310574A (en) Internal reforming type fuel cell
JP2971543B2 (en) Internal reforming fuel cell
JP2005310793A (en) Membrane-electrode assembly for fuel cell, and fuel cell system including the same
JPH0240862A (en) Internal reforming type fuel cell
JPH06349504A (en) Solid electrolyte type fuel cell
JPH0615404Y2 (en) Internal reforming fuel cell
JP2751523B2 (en) Internal reforming fuel cell
JP2604393B2 (en) Internal reforming molten carbonate fuel cell
CA2021041A1 (en) Electrode for use in a gas fuel cell which contains a set of electrodes

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees