JP2971543B2 - Internal reforming fuel cell - Google Patents

Internal reforming fuel cell

Info

Publication number
JP2971543B2
JP2971543B2 JP2225201A JP22520190A JP2971543B2 JP 2971543 B2 JP2971543 B2 JP 2971543B2 JP 2225201 A JP2225201 A JP 2225201A JP 22520190 A JP22520190 A JP 22520190A JP 2971543 B2 JP2971543 B2 JP 2971543B2
Authority
JP
Japan
Prior art keywords
fuel gas
flow path
gas side
side electrode
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2225201A
Other languages
Japanese (ja)
Other versions
JPH04109561A (en
Inventor
千賀 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2225201A priority Critical patent/JP2971543B2/en
Publication of JPH04109561A publication Critical patent/JPH04109561A/en
Application granted granted Critical
Publication of JP2971543B2 publication Critical patent/JP2971543B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、内部改質形燃料電池に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to an internal reforming fuel cell.

[従来の技術] 第4図は、例えば特開昭59−24504号公報に示された
従来の内部改質形電池の一実施例の一部を示す縦断面図
である。図において、(1)は電解質層、(2)は燃料
ガス側電極、(3)は電解質層(1)を介在して燃料ガ
ス側電極(2)と対向する酸化ガス側電極、(4a)は燃
料ガス側電極(2)を支持しかつ発生した電流を通過せ
しめる燃料ガス側集電板、(4b)は酸化ガス側電極
(3)を支持しかつ発生した電流を通過せしめる酸化ガ
ス側集電板、(5a)・(5b)はそれぞれ燃料ガス流路・
酸化ガス流路を形成するための燃料ガス側流路形成材と
酸化ガス側流路形成材、(6)は燃料ガス側電極(2)
に対向して設ける燃料ガス流路と酸化ガス側電極(3)
に対向して設ける酸化ガス流路とを分離するセパレータ
板、(7)は改質触媒である。
[Prior Art] FIG. 4 is a longitudinal sectional view showing a part of an embodiment of a conventional internal reforming type battery disclosed in, for example, JP-A-59-24504. In the figure, (1) is an electrolyte layer, (2) is a fuel gas side electrode, (3) is an oxidizing gas side electrode facing the fuel gas side electrode (2) via the electrolyte layer (1), (4a) Is a fuel gas side current collector supporting the fuel gas side electrode (2) and passing generated current; and (4b) is an oxidizing gas side collector supporting the oxidized gas side electrode (3) and passing generated current. Electric plate, (5a) ・ (5b)
A fuel gas side flow path forming material and an oxidizing gas side flow path forming material for forming an oxidizing gas flow path, and (6) is a fuel gas side electrode (2)
Gas flow path and oxidizing gas side electrode (3)
(7) is a reforming catalyst.

次に、動作について説明する。炭化水素またはアルコ
ール類・スチームを主成分とする燃料ガスが矢印B方向
から供給され、酸素と二酸化炭素を主要成分とする酸化
ガスが矢印A方向から供給されて、十字流形式でそれぞ
れ燃料ガス流路、酸化ガス流路に導入される。燃料ガス
中の炭化水素は改質触媒(7)の作用により下式
(1)、(2)、(3)に示すように水素及び一酸化炭
素を主成分とする燃料ガスに改質される。この反応は全
体として吸熱反応であり、電池反応で副生する熱エネル
ギーを直接利用する。
Next, the operation will be described. Fuel gas mainly composed of hydrocarbons or alcohols / steam is supplied in the direction of arrow B, and oxidizing gas mainly composed of oxygen and carbon dioxide is supplied in the direction of arrow A. Channel and an oxidizing gas channel. Hydrocarbons in the fuel gas are reformed by the action of the reforming catalyst (7) into a fuel gas containing hydrogen and carbon monoxide as main components as shown in the following formulas (1), (2) and (3). . This reaction is an endothermic reaction as a whole, and directly uses thermal energy produced as a by-product of the battery reaction.

CH4+H2O→CO+3H2+49.3kcal/mol ‥(1) CnHm+nH2O→nCO+{(m+2n)/2}H2 ‥(2) CO+H2O→CO2+H2−9.8kcal/mol ‥(3) 式(1)、(2)、(3)に示す反応に従い、燃料ガ
ス流路内で生成した水素・一酸化炭素及び矢印Aで供給
された酸化ガス中の酸素・二酸化炭素はそれぞれ燃料ガ
ス側集電板(4a)、酸化ガス側集電板(4b)の孔部分を
拡散し、燃料ガス側電極(2)、酸化ガス側電極(3)
においてそれぞれ次式(4)、(5)、(6)に示すよ
うな反応を起こす。
CH 4 + H 2 O → CO + 3H 2 +49.3 kcal / mol ‥ (1) CnHm + nH 2 O → nCO + {(m + 2n) / 2} H 2 ‥ (2) CO + H 2 O → CO 2 + H 2 -9.8 kcal / mol ‥ ( 3) According to the reactions shown in the equations (1), (2) and (3), the hydrogen / carbon monoxide generated in the fuel gas flow path and the oxygen / carbon dioxide in the oxidizing gas supplied by the arrow A are converted into fuel, respectively. The holes on the gas-side current collector (4a) and the oxidizing gas-side current collector (4b) are diffused, and the fuel gas-side electrode (2) and the oxidizing gas-side electrode (3)
, The following reactions (4), (5) and (6) occur.

(燃料ガス側電極) H2+CO3 2-→H2O+CO2+2e ‥(4) CO+H2O→H2+CO2 ‥(5) (酸化ガス側電極) 1/202+CO2+2e→CO3 2- ‥(6) これらの化学・電気化学反応を通して燃料ガスの持っ
ている化学エネルギーが電気エネルギーと副生する熱エ
ネルギーとに変換される。さきに述べたように副生する
熱エネルギーのほとんどがガス流路内において炭化水素
の分解の反応熱に利用され、大幅な熱効率の改善をもた
らし、これが内部改質方式の特徴の一つとなっている。
(Fuel gas side electrode) H 2 + CO 3 2- → H 2 O + CO 2 + 2e ‥ (4) CO + H 2 O → H 2 + CO 2 ‥ (5) ( oxidizing gas electrode) 1/20 2 + CO 2 + 2e → CO 3 2- ‥ (6) Through these chemical and electrochemical reactions, the chemical energy of the fuel gas is converted into electric energy and by-product thermal energy. As mentioned earlier, most of the by-product thermal energy is used for the reaction heat of hydrocarbon decomposition in the gas flow path, resulting in a significant improvement in thermal efficiency, which is one of the features of the internal reforming method. I have.

またそれと同時に、改質されたガスが燃料電極で利用
されるため、(1)(2)式の反応が右側に進み、内部
改質形燃料電池では、炭化水素の電池運転温度における
平衡以上に改質率の向上が起こり、供給された炭化水素
のほとんどが改質される。
At the same time, since the reformed gas is used for the fuel electrode, the reactions of equations (1) and (2) proceed to the right, and in the internal reforming fuel cell, the reaction temperature becomes higher than the equilibrium at the operating temperature of hydrocarbons. An improvement in the reforming rate occurs, and most of the supplied hydrocarbons are reformed.

ここで、改質触媒(7)は例えばアルミナ、マグネシ
アを主成分とする担体上に触媒としての活性を有するニ
ッケルを担持させたものである。一般にこのような改質
触媒(7)は、電解質の汚染に対して弱く、微量の電解
質に汚染されることにより触媒としての活性が大幅に低
下する。このような燃料電池では、例えば650℃付近と
いう高温で動作する燃料電池であるため、電解質層
(1)に保持されている例えばLi2CO3やK2CO3などの電
解質、または例えばLiOHやKOHなどの電解質から生成し
た物質が、燃料ガス側集電板(4a)および燃料ガス側流
路形成材(5a)の孔部分を通って蒸気や飛沫の形で直
接、または電池構成部材を伝わってくる液体の形で改質
触媒(7)を汚染し、改質触媒(7)の活性を低下させ
る。
Here, the reforming catalyst (7) is obtained by supporting nickel having activity as a catalyst on a carrier mainly composed of, for example, alumina and magnesia. Generally, such a reforming catalyst (7) is susceptible to electrolyte contamination, and its activity as a catalyst is greatly reduced due to contamination by a trace amount of electrolyte. Since such a fuel cell operates at a high temperature of, for example, around 650 ° C., an electrolyte such as Li 2 CO 3 or K 2 CO 3 held in the electrolyte layer (1), or an electrolyte such as LiOH or Substances generated from the electrolyte, such as KOH, pass directly through the holes in the fuel gas side current collector (4a) and fuel gas side flow path forming material (5a) in the form of steam or droplets, or through the battery components. It contaminates the reforming catalyst (7) in the form of a coming liquid and reduces the activity of the reforming catalyst (7).

[発明が解決しようとする課題] 従来の内部改質形燃料電池は以上のように構成されて
いるので、燃料ガスに含まれる電解質、または電解質か
ら生成した物質の影響による改質触媒の活性低下が避け
られず、電池寿命が比較的短い期間に限定されると言う
問題点があった。
[Problems to be Solved by the Invention] Since the conventional internal reforming fuel cell is configured as described above, the activity of the reforming catalyst is reduced by the influence of the electrolyte contained in the fuel gas or the substance generated from the electrolyte. However, there is a problem that the battery life is limited to a relatively short period.

この発明は上記のような問題点を解消するためになさ
れたもので、活性低下を防ぎ、長期にわたつて安定な電
池特性が得られる内部改質形燃料電池を得ることを目的
とする。
The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide an internal reforming fuel cell that can prevent a decrease in activity and obtain stable cell characteristics over a long period of time.

[課題を解決するための手段] この発明に係る内部改質形燃料電池は、電解質層、こ
の電解質層を介在して対向した燃料ガス側電極および酸
化ガス側電極、前記燃料ガス側電極と燃料ガス流路との
間に設けられた燃料ガス側集電板、および前記酸化ガス
側電極と酸化ガス流路との間に設けられた酸化ガス側集
電板とを有する単電池と、燃料ガスが流れる前記燃料ガ
ス流路と酸化ガスが流れる前記酸化ガス流路とを分離す
るセパレータ板とを交互に積層してなる内部改質形燃料
電池において、前記燃料ガス流路は、前記燃料ガス側集
電板に形成された穿孔部を介して前記燃料ガス側電極に
連通した第1の流路部分と、前記燃料ガス側集電板の非
穿孔部を介して燃料ガス側電極と隔離されているととも
に改質触媒を備えた第2の流路部分とから構成されてお
り、前記燃料ガス側集電板の非穿孔部には、一端部が前
記穿孔部に連通しているとともに前記燃料ガス側電極に
面した燃料ガス流通手段を有しており、前記第1の流路
部分内の前記燃料ガスは、前記穿孔部および前記燃料ガ
ス流通手段を通じて前記燃料ガス側電極に拡散するよう
になっているものである。
Means for Solving the Problems An internal reforming fuel cell according to the present invention includes an electrolyte layer, a fuel gas side electrode and an oxidizing gas side electrode opposed to each other with the electrolyte layer interposed therebetween, and the fuel gas side electrode and the fuel. A fuel cell provided between the oxidizing gas side electrode and the oxidizing gas flow path, and a fuel cell provided between the oxidizing gas side electrode and the oxidizing gas flow path; In an internal reforming fuel cell in which the fuel gas flow passage through which the fuel gas flows and the oxidizing gas flow passage through which the oxidizing gas flows are alternately laminated, the fuel gas flow passage is provided on the fuel gas side. A first flow path portion communicating with the fuel gas side electrode via a perforated portion formed in the current collector plate, and being separated from the fuel gas side electrode via a non-perforated portion of the fuel gas side current collector plate; And a second flow path portion provided with a reforming catalyst. The fuel gas-side current collector plate has a non-perforated portion, the fuel gas-side current collector having one end communicating with the perforated portion and having a fuel gas distribution unit facing the fuel gas-side electrode. The fuel gas in the first flow path is diffused to the fuel gas side electrode through the perforated portion and the fuel gas distribution means.

[作 用] この発明において、燃料ガス流路のうち燃料ガス側電
極から隔離された第2の流路部分に改質触媒が充填され
ているので、改質触媒は電解質による汚染から保護さ
れ、活性低下が小さい。また、この第2の流路部分に面
する燃料ガス側電極には、第1の流路部分との流通手段
より燃料ガスが供給されるので、この部分の電極および
構造部材も安定に還元状態に保たれ、かつ電池として有
効に機能する。
[Operation] In the present invention, since the reforming catalyst is filled in the second flow path portion of the fuel gas flow path that is isolated from the fuel gas side electrode, the reforming catalyst is protected from contamination by the electrolyte, Small decrease in activity. Further, since the fuel gas is supplied to the fuel gas side electrode facing the second flow path portion from the flow means with the first flow path portion, the electrodes and the structural members in this portion are also stably reduced. And effectively functions as a battery.

[実施例] 以下、この発明の一実施例を第1図について説明す
る。図において、(1)は電解質層、(2)は燃料ガス
側電極、(4a)は燃料ガス側集電板、(7)は燃料ガス
第2の流路部分(9)に配置された改質触媒、(8)、
(9)は燃料ガス側流路形成材によって形成された燃料
ガスのそれぞれ第1の流路部分と第2の流路部分、矢印
Bは燃料ガス流れ方向を示す。集電板(4a)は、穿孔部
と非穿孔部からなり、穿孔部に面する燃料ガス流路は燃
料ガス側電極(2)と流通する第1の流路部分(8)と
なっている。非穿孔部では、燃料ガス流路は燃料ガス側
電極(2)から隔離された第2の流路部分(9)となっ
ている。第2の流路部分(9)には、改質触媒(7)が
充填されている。第2の流路部分(9)を形成する燃料
ガス側集電板(4a)の非穿孔部は、燃料ガス側電極
(2)に面する面に、一端が第1の流路部分(8)につ
ながる燃料ガス流通手段である溝(10a)を備えてい
る。電池全体では、矢印B方向にこのような第1の流路
部分(8)と第2の流路部分(9)が交互に形成されて
いる。
Embodiment An embodiment of the present invention will be described below with reference to FIG. In the figure, (1) is an electrolyte layer, (2) is a fuel gas side electrode, (4a) is a fuel gas side current collector, and (7) is a fuel gas second flow path portion (9). Quality catalyst, (8),
(9) shows the first flow path portion and the second flow path portion of the fuel gas formed by the fuel gas side flow path forming material, respectively, and arrow B shows the fuel gas flow direction. The current collector plate (4a) includes a perforated portion and a non-perforated portion, and the fuel gas flow path facing the perforated portion is a first flow path portion (8) that circulates with the fuel gas side electrode (2). . In the non-perforated portion, the fuel gas flow path is a second flow path portion (9) isolated from the fuel gas side electrode (2). The second channel portion (9) is filled with a reforming catalyst (7). One end of the non-perforated portion of the fuel gas side current collector plate (4a) forming the second flow path portion (9) is formed on the surface facing the fuel gas side electrode (2). ) Is provided with a groove (10a) which is a fuel gas distribution means leading to the above. In the whole battery, such first flow path portions (8) and second flow path portions (9) are formed alternately in the direction of arrow B.

次に、動作について説明する。炭化水素またはアルコ
ール類の主成分とする燃料ガスは、燃料ガス流路の第2
の流路部分に充填された改質触媒(7)の作用により、
式(1)、(2)、(3)に従い水素・一酸化炭素を主
成分とする燃料ガスに変質される。生成した水素・一酸
化炭素は矢印B方向に流れ、燃料ガス流路の第1の流路
部分(8)にくると、燃料ガス側集電板(4a)の孔部分
を拡散し、燃料ガス側電極(2)に供給される。燃料ガ
ス側電極(2)に供給された水素・一酸化炭素は燃料ガ
ス側電極(2)において、式(4)、(5)に示すよう
な反応により消費され、電気エネルギーと副生する熱エ
ネルギーを生み出すとともに、反応生成物として水蒸気
および二酸化炭素を生成する。生成された水蒸気および
二酸化炭素はガスの流れおよび拡散によって燃料ガス流
路の第1の流路部分(8)に戻り、燃料ガスと混合され
矢印B方向へ流れる。第2の流路部分(9)に面する燃
料ガス側電極(2)には通常の構成では燃料ガスが供給
されず、電極として機能しないばかりか、マトリクスを
介して酸素側から拡散してくる酸素により材料が酸化さ
れる傾向があった。このような電極または電極に隣接す
る構成部材の酸化は、次のような問題がある。
Next, the operation will be described. The fuel gas mainly composed of hydrocarbons or alcohols is supplied to the second fuel gas flow path.
The action of the reforming catalyst (7) filled in the flow path portion of
According to the formulas (1), (2) and (3), the fuel gas is transformed into a fuel gas containing hydrogen and carbon monoxide as main components. The generated hydrogen / carbon monoxide flows in the direction of arrow B. When the hydrogen / carbon monoxide reaches the first flow path portion (8) of the fuel gas flow path, it diffuses through the hole of the fuel gas side current collector (4a), It is supplied to the side electrode (2). The hydrogen / carbon monoxide supplied to the fuel gas side electrode (2) is consumed in the fuel gas side electrode (2) by a reaction represented by the formulas (4) and (5), and generates electric energy and heat generated as a by-product. It produces energy and produces steam and carbon dioxide as reaction products. The generated water vapor and carbon dioxide return to the first flow path portion (8) of the fuel gas flow path by the flow and diffusion of the gas, and are mixed with the fuel gas and flow in the direction of arrow B. The fuel gas is not supplied to the fuel gas side electrode (2) facing the second flow path portion (9) in a normal configuration and does not function as an electrode, but also diffuses from the oxygen side via a matrix. The material tended to be oxidized by oxygen. Oxidation of such an electrode or a component adjacent to the electrode has the following problems.

酸化に伴う部材の寸法変化が電解質層のクラツクを引
き起こし、一層の酸化を促す。
The dimensional change of the member caused by the oxidation causes cracking of the electrolyte layer, which promotes further oxidation.

酸化された構成部材は電解質にきわめて漏れ易く、表
面を伝う電解質によって改質触媒の汚染を促進し活性低
下をもたらす。
The oxidized components are very liable to leak into the electrolyte, which promotes contamination of the reforming catalyst by the electrolyte passing through the surface, resulting in reduced activity.

酸化により部材の構造強度が失われ、例えば第2の流
路部分を形成するガス隔離板の構造強度が失われ、触媒
が直接電解質に汚染される。
The structural strength of the member is lost due to the oxidation, for example, the structural strength of the gas separator forming the second flow path portion is lost, and the catalyst is directly contaminated by the electrolyte.

一方、この実施例では、第2の流路部分(9)を形成
する燃料ガス側集電板(4a)の非穿孔部の燃料ガス側電
極(2)に面する面には、一端が第1の流路部分(8)
につながる溝(10a)があるので、第1の流路部分
(8)に存在する燃料ガスは、溝(10a)を通じて燃料
ガス側電極(2)へ拡散する。そのため、燃料ガス側集
電板(4a)の非穿孔部に面する燃料ガス側電極(2)
は、面する位置の燃料ガス流路からは隔離されているに
もかかわらず、安定に還元状態を保つことができる。ま
た、この部分の電極では、拡散したガスの量に応じて負
荷が取れるので、電極を有効に利用できる。この部分に
充填された改質触媒(7)は、燃料ガス流路から安定し
て隔離されているため、電解質、または電解質から生成
した物質が、燃料ガス側集電板(4a)および燃料ガス側
流路形成材(5a)の孔部分を通って蒸気や飛沫の形で直
接改質触媒を汚染することがない。また、構造部材が電
解質に濡れにくい還元状態に保たれ、かつ電極からの距
離が遠いために、液体の形で電池構成部材を伝わってく
る電解質および電解質より生成した物質の量も少ない。
そのため改質触媒(7)の活性低下は小さい。また、こ
の電池構成では、燃料ガス側集電板(4a)の溝(10a)
は、それぞれ一端のみが第1の流路部分(8)と通じて
いるため、燃料ガスは溝(10a)を通じて矢印B方向に
流れることができない。そのため燃料ガスはすべて改質
触媒(7)の層を通過し、燃料ガスを効果的に改質する
ことができる。
On the other hand, in this embodiment, one end of the non-perforated portion of the fuel gas side current collector plate (4a) forming the second flow path portion (9) facing the fuel gas side electrode (2) has one end. 1 channel part (8)
The fuel gas existing in the first flow path portion (8) diffuses to the fuel gas side electrode (2) through the groove (10a). Therefore, the fuel gas side electrode (2) facing the non-perforated portion of the fuel gas side current collector (4a)
Can be stably maintained in a reduced state despite being isolated from the fuel gas flow path at the facing position. In addition, in the electrode in this portion, a load can be taken in accordance with the amount of the diffused gas, so that the electrode can be used effectively. Since the reforming catalyst (7) filled in this portion is stably isolated from the fuel gas flow path, the electrolyte or a substance generated from the electrolyte is supplied to the fuel gas side current collector (4a) and the fuel gas side. It does not directly contaminate the reforming catalyst in the form of vapor or droplets through the holes of the side channel forming material (5a). In addition, since the structural member is kept in a reduced state that is hardly wetted by the electrolyte, and the distance from the electrode is long, the amount of the electrolyte transmitted through the battery constituent members in a liquid form and the amount of the substance generated from the electrolyte are small.
Therefore, the decrease in the activity of the reforming catalyst (7) is small. In this battery configuration, the groove (10a) of the fuel gas side current collector (4a)
The fuel gas cannot flow in the direction of arrow B through the groove (10a) because only one end of each of them has communication with the first flow path portion (8). Therefore, all the fuel gas passes through the layer of the reforming catalyst (7), and the fuel gas can be effectively reformed.

第2図に他の実施例を示す。第2図において、第1図
と同様、(1)は電解質層、(2)は燃料ガス側電極、
(4a)は燃料ガス側集電板、(7)は燃料ガス流路に配
置された改質触媒、(8)、(9)は燃料ガス側流路形
成材によって形成された燃料ガスの第1の流路部分およ
び第2の流路部分、(11)はガス隔離板、矢印Bは燃料
ガス流れ方向を示す。
FIG. 2 shows another embodiment. 2, as in FIG. 1, (1) is an electrolyte layer, (2) is a fuel gas side electrode,
(4a) is a fuel gas side current collector, (7) is a reforming catalyst disposed in the fuel gas flow path, (8) and (9) are fuel gas formed by the fuel gas side flow path forming material. The first channel portion and the second channel portion, (11) indicates a gas separator, and arrow B indicates a fuel gas flow direction.

この集電板(4a)は、穿孔部と燃料ガス流れ方向にそ
って燃料ガス流通手段である長孔(10b)を持つ部分か
らなり、穿孔部に面する燃料ガス流路は燃料ガス側電極
(2)と流通する第1の流路部分(8)となっている。
長孔(10b)を持つ部分に面する部分の燃料ガス流路
は、ガス隔離板(11)によって燃料ガス側電極(2)か
ら隔離された第2の流路部分(9)となっている。燃料
ガス流路のうち、第2の流路部分(9)には、改質触媒
(7)が充填されている。第2の流路部分(9)を形成
するガス隔離板(11)は、長孔(10b)より短いため、
燃料ガス側集電板(4a)の長孔(10b)部分の一端を通
じて、燃料ガス側電極(2)は第1の流路部分(8)に
つながっている。
The current collector plate (4a) includes a perforated portion and a portion having a long hole (10b) serving as a fuel gas distribution means along the fuel gas flow direction, and the fuel gas flow path facing the perforated portion is provided with a fuel gas side electrode. A first flow path portion (8) that circulates with (2).
The portion of the fuel gas passage facing the portion having the long hole (10b) is a second passage portion (9) isolated from the fuel gas side electrode (2) by the gas separator (11). . The reforming catalyst (7) is filled in the second channel portion (9) of the fuel gas channel. Since the gas separator (11) forming the second flow path portion (9) is shorter than the long hole (10b),
The fuel gas side electrode (2) is connected to the first flow path portion (8) through one end of the long hole (10b) of the fuel gas side current collector (4a).

この実施例では、第2の流路部分を形成する燃料ガス
側集電板(4a)の長孔(10b)をもつ部分は、長孔(10
b)の一端が第1の流路部分(8)につながつているの
で、第1の流路部分(8)に存在する水素・一酸化炭素
は燃料ガス側電極(2)へ拡散する。そのため、燃料ガ
ス側集電板(4a)の長孔(10b)に面する燃料ガス側電
極(2)は、燃料ガス流路からは隔離されているにもか
かわらず、安定に還元状態を保ち、かつ電池反応を進行
させることができる。
In this embodiment, the portion of the fuel gas side current collector plate (4a) having the long hole (10b) forming the second flow passage portion is the long hole (10b).
Since one end of b) is connected to the first channel portion (8), the hydrogen / carbon monoxide present in the first channel portion (8) diffuses to the fuel gas side electrode (2). Therefore, the fuel gas-side electrode (2) facing the long hole (10b) of the fuel gas-side current collector (4a) stably maintains the reduced state despite being isolated from the fuel gas flow path. , And the battery reaction can proceed.

第3図にこの発明の参考例を示す。第3図において、
(1)は電解質層、(2)は燃料ガス側電極、(4a)は
燃料ガス側集電板、(7)は燃料ガス流路に配置された
改質触媒、(8)、(9)は燃料ガス側流路形成材によ
って形成された燃料ガスの第1の流路部分および第2の
流路部分、矢印Bは燃料ガス流れ方向を示す。
FIG. 3 shows a reference example of the present invention. In FIG.
(1) is an electrolyte layer, (2) is a fuel gas side electrode, (4a) is a fuel gas side current collector, (7) is a reforming catalyst arranged in a fuel gas flow path, (8), (9) Indicates a first flow path portion and a second flow path portion of the fuel gas formed by the fuel gas side flow path forming material, and arrow B indicates a fuel gas flow direction.

この集電板(4a)は、穿孔部と非穿孔部からなり、穿
孔部に面する燃料ガス流路は燃料ガス側電極(2)と流
通する第1の流路部分(8)になっている。非穿孔部で
は、燃料ガス流路は燃料ガス側電極(2)から隔離され
た第2の流路部分(9)になっている。燃料ガス流路の
うち、第2の流路部分(9)には改質触媒(7)が充填
されている。第2の流路部分(9)を形成する燃料ガス
側集電板(4a)の非穿孔部は、燃料ガス側電極(2)に
面する面に、両端が第1の流路部分(8)につながる溝
(10c)を備えている。
The current collector plate (4a) includes a perforated portion and a non-perforated portion, and the fuel gas flow path facing the perforated portion is a first flow path portion (8) flowing through the fuel gas side electrode (2). I have. In the non-perforated portion, the fuel gas flow path is a second flow path portion (9) isolated from the fuel gas side electrode (2). The reforming catalyst (7) is filled in the second flow path portion (9) of the fuel gas flow path. The non-perforated portion of the fuel gas side current collector plate (4a) forming the second flow path portion (9) has two ends on the surface facing the fuel gas side electrode (2). ) Is provided with a groove (10c).

この参考例においては、第2の流路部分(9)を形成
する燃料ガス側集電板(4a)の非穿孔部の燃料ガス側電
極(2)に面する面には、両端が第1の流路部分(8)
につながる溝(10c)があるので、燃料ガスは、溝(10
c)を通じて矢印B方向へ流れることができる。このよ
うな構成を取る場合、例えば溝(10c)の形状や形質触
媒の充填量によって改質触媒(7)の層および溝(10
c)に流れる燃料ガスの量の分配比率を変えることがで
き、したがって改質反応量も変えることができる。
In this reference example, both ends of the non-perforated portion of the fuel gas side current collector plate (4a) forming the second flow path portion (9) facing the fuel gas side electrode (2) are the first. Flow path part (8)
There is a groove (10c) leading to the fuel gas.
It can flow in the direction of arrow B through c). In such a configuration, for example, the layer of the reforming catalyst (7) and the groove (10c) are changed depending on the shape of the groove (10c) and the filling amount of the plasma catalyst.
The distribution ratio of the amount of fuel gas flowing to c) can be changed, and thus the reforming reaction amount can also be changed.

なお、上記各実施例では改質触媒(7)を燃料ガス第
2の流路部分(9)のみに充填した場合について説明し
たが、第1の流路部分にも充填してもよく、上記実施例
と同様の効果がある。
In each of the above-described embodiments, the case where the reforming catalyst (7) is filled only in the fuel gas second flow path portion (9) has been described. There is an effect similar to that of the embodiment.

[発明の効果] 以上のように、この発明の内部改質形燃料電池によれ
ば、燃料ガス流路は、燃料ガス側集電板に形成された穿
孔部を介して燃料ガス側電極に連通した第1の流路部分
と、前記燃料ガス側集電板の非穿孔部を介して燃料ガス
側電極と隔離されているとともに改質触媒を備えた第2
の流路部分とから構成されており、前記燃料ガス側集電
板の非穿孔部には、一端部が前記穿孔部に連通している
とともに前記燃料ガス側電極に面した燃料ガス流通手段
を有しており、前記第1の流路部分内の前記燃料ガス
は、前記穿孔部および前記燃料ガス流通手段を通じて前
記燃料ガス側電極に拡散するようになっているので、電
解質の汚染による改質触媒の活性低下が小さく、長期に
安定した電池特性を得られる効果がある。
[Effects of the Invention] As described above, according to the internal reforming fuel cell of the present invention, the fuel gas flow path communicates with the fuel gas side electrode via the perforated portion formed in the fuel gas side current collector. A first flow path portion, and a second flow path separated from the fuel gas side electrode via a non-perforated portion of the fuel gas side current collector plate and provided with a reforming catalyst.
A non-perforated portion of the fuel gas-side current collector plate, one end of which communicates with the perforated portion and a fuel gas distribution means facing the fuel gas-side electrode. And the fuel gas in the first flow path portion is diffused to the fuel gas side electrode through the perforated portion and the fuel gas distribution means. There is an effect that a decrease in the activity of the catalyst is small and stable battery characteristics can be obtained for a long time.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例の要部を示す(a)縦断面
図および(b)一部平面図、第2図は他の実施例の要部
を示す図、第3図はこの発明の参考例の要部を示す図、
第4図は従来の内部改質形燃料電池の要部を示す縦断面
図である。 (1)……電解質層、(2)……燃料ガス側電極、
(3)……酸化ガス側電極、(4a)……燃料ガス側集電
板、(4b)……酸化ガス側集電板、(5a)……燃料ガス
側流路形成材、(5b)……酸化ガス側流路形成材、
(6)……セパレータ板、(7)……改質触媒、(8)
……燃料ガス第1の流路部分、(9)……燃料ガス第2
の流路部分、(10a)……溝(燃料ガス流通手段)、(1
0b)……長孔(燃料ガス流通手段)、(11)……ガス隔
離板、A……酸化ガス流れ方向、B……燃料ガス流れ方
向。 なお、各図中、同一符号は同一又は相当部分を示す。
1 is a longitudinal sectional view and (b) a partial plan view showing a main part of one embodiment of the present invention, FIG. 2 is a view showing a main part of another embodiment, and FIG. Diagram showing a main part of a reference example of the invention,
FIG. 4 is a longitudinal sectional view showing a main part of a conventional internal reforming fuel cell. (1) ... electrolyte layer, (2) ... fuel gas side electrode,
(3) oxidizing gas side electrode, (4a)… fuel gas side current collector, (4b)… oxidizing gas side current collector, (5a)… fuel gas side channel forming material, (5b) …… Oxidizing gas side channel forming material,
(6) ... separator plate, (7) ... reforming catalyst, (8)
... Fuel gas first flow path part, (9)... Fuel gas second
(10a) ... groove (fuel gas distribution means), (1
0b) ... long hole (fuel gas distribution means), (11) ... gas separator, A ... oxidation gas flow direction, B ... fuel gas flow direction. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電解質層、この電解質層を介在して対向し
た燃料ガス側電極および酸化ガス側電極、前記燃料ガス
側電極と燃料ガス流路との間に設けられた燃料ガス側集
電板、および前記酸化ガス側電極と酸化ガス流路との間
に設けられた酸化ガス側集電板とを有する単電池と、 燃料ガスが流れる前記燃料ガス流路と酸化ガスが流れる
前記酸化ガス流路とを分離するセパレータ板と を交互に積層してなる内部改質形燃料電池において、 前記燃料ガス流路は、前記燃料ガス側集電板に形成され
た穿孔部を介して前記燃料ガス側電極に連通した第1の
流路部分と、前記燃料ガス側集電板の非穿孔部を介して
燃料ガス側電極と隔離されているとともに改質触媒を備
えた第2の流路部分とから構成されており、 前記燃料ガス側集電板の非穿孔部には、一端部が前記穿
孔部に連通しているとともに前記燃料ガス側電極に面し
た燃料ガス流通手段を有しており、 前記第1の流路部分内の前記燃料ガスは、前記穿孔部お
よび前記燃料ガス流通手段を通じて前記燃料ガス側電極
に拡散するようになっている内部改質形燃料電池。
1. An electrolyte layer, a fuel gas side electrode and an oxidizing gas side electrode facing each other with the electrolyte layer interposed therebetween, and a fuel gas side current collector provided between the fuel gas side electrode and the fuel gas flow path. A cell having an oxidizing gas side current collector plate provided between the oxidizing gas side electrode and the oxidizing gas flow path; and a fuel gas flow path through which fuel gas flows and the oxidizing gas flow through which oxidizing gas flows And a separator plate that separates the fuel gas passage from the fuel gas side current collector plate, wherein the fuel gas flow path is formed through a perforated portion formed in the fuel gas side current collector plate. A first flow path portion communicating with the electrode, and a second flow path portion provided with a reforming catalyst and isolated from the fuel gas side electrode via a non-perforated portion of the fuel gas side current collector plate. In the non-perforated portion of the fuel gas side current collector plate, One end communicates with the perforated portion and has fuel gas distribution means facing the fuel gas side electrode, and the fuel gas in the first flow path portion includes the perforated portion and the fuel An internal reforming type fuel cell adapted to diffuse to the fuel gas side electrode through gas distribution means.
JP2225201A 1990-08-29 1990-08-29 Internal reforming fuel cell Expired - Fee Related JP2971543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2225201A JP2971543B2 (en) 1990-08-29 1990-08-29 Internal reforming fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2225201A JP2971543B2 (en) 1990-08-29 1990-08-29 Internal reforming fuel cell

Publications (2)

Publication Number Publication Date
JPH04109561A JPH04109561A (en) 1992-04-10
JP2971543B2 true JP2971543B2 (en) 1999-11-08

Family

ID=16825563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2225201A Expired - Fee Related JP2971543B2 (en) 1990-08-29 1990-08-29 Internal reforming fuel cell

Country Status (1)

Country Link
JP (1) JP2971543B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4333550B2 (en) 2004-10-18 2009-09-16 ソニー株式会社 Laser light source device and hologram device
JP4902567B2 (en) * 2008-02-18 2012-03-21 オリンパス株式会社 Work procedure manual creation system and work procedure manual creation program

Also Published As

Publication number Publication date
JPH04109561A (en) 1992-04-10

Similar Documents

Publication Publication Date Title
EP0067423B1 (en) Electrochemical cell system with internal reforming
US4647516A (en) Internal reforming type fuel cell
CA2397682C (en) Multipurpose reversible electrochemical system
GB2025118A (en) Fuel cell thermal control and reforming of process gas hydocarbons
US6238817B1 (en) Gas injection system for treating a fuel cell stack assembly
US7163759B2 (en) Solid oxide fuel cell stack assembly having tapered diffusion layers
JP2971543B2 (en) Internal reforming fuel cell
JP2004247305A (en) Ventilation device, fuel cell, and fuel cell stack
JP2820165B2 (en) Reforming reactor
JPH0147863B2 (en)
JPS63310574A (en) Internal reforming type fuel cell
JP2734716B2 (en) Internal reforming fuel cell
JPH0240862A (en) Internal reforming type fuel cell
JP2009129701A (en) Fuel cell module
JP2000210554A (en) Chemical reactor
KR101162008B1 (en) Fuel cell with distribute plate
JPH0773057B2 (en) Internal reforming fuel cell
JP2604393B2 (en) Internal reforming molten carbonate fuel cell
JPH0656765B2 (en) Molten carbonate fuel cell
JPH0615404Y2 (en) Internal reforming fuel cell
JP2940108B2 (en) Internal reforming fuel cell
CA2021041A1 (en) Electrode for use in a gas fuel cell which contains a set of electrodes
JPH02195654A (en) Internally reformed fuel cell
JPS63158754A (en) Internal-reforming type fuel cell
JPS61193373A (en) Internally reformed type fuel cell laminate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees