JPS61193373A - Internally reformed type fuel cell laminate - Google Patents

Internally reformed type fuel cell laminate

Info

Publication number
JPS61193373A
JPS61193373A JP60030608A JP3060885A JPS61193373A JP S61193373 A JPS61193373 A JP S61193373A JP 60030608 A JP60030608 A JP 60030608A JP 3060885 A JP3060885 A JP 3060885A JP S61193373 A JPS61193373 A JP S61193373A
Authority
JP
Japan
Prior art keywords
fuel gas
gas side
fuel
fuel cell
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60030608A
Other languages
Japanese (ja)
Inventor
Mitsuie Matsumura
光家 松村
Tatsunori Okada
達典 岡田
Yoshihide Kotogami
佳秀 言上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60030608A priority Critical patent/JPS61193373A/en
Publication of JPS61193373A publication Critical patent/JPS61193373A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Composite Materials (AREA)

Abstract

PURPOSE:To aim at obtaining electric output stable over a long term, by making electrochemical characteristics of unit fuel cells at the entrance part of gas flow smaller than those at other parts, when laminating plural number of unit fuel cells in which reforming catalysts are arranged in a gas passage on the fuel gas side adjacent to an electrode on the same fuel gas side. CONSTITUTION:At the fuel gas entrance part of a fuel gas side perforated plate 14 with a number of openings 14a, opening ratio is made smaller, while gas diffusion resistance being made bigger, than those at other parts, in order to make electrochemical characteristics of fuel cells at the entrance part smaller than those at other parts. Thus, in the fuel gas, consisting mainly of hydrocarbon or alcohol group and steam, to be supplied to laminate of internally reformed, molten carbonates type fuel cells, reaction consuming hydrogen takes place in parallel with gas decomposition etc at the gas side passage 8 adjacent to the gas side electrode 2 keeping current density of cells at the entrance part as small as it used to be, even when a large amount of electric current is taken out. Accordingly, the activity of reforming catalysts 10 is made stable and even a small amount of filling load comes to do well.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、内部改質形燃料電池積層体に関するもので
あり、さらに詳しくいうと、燃料ガス側電極に隣接した
燃料ガス側ガス流路の内部K、改質触媒を配置した内部
改質形燃料電池積層体に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an internal reforming fuel cell stack, and more specifically, to a fuel gas flow path adjacent to a fuel gas side electrode. This invention relates to an internal reforming fuel cell stack in which an internal reforming catalyst is arranged.

〔従来の技術〕[Conventional technology]

第3図は従来の内部改質形溶融炭酸塩形燃料電池積層体
を示し、図において、(1)は電解質マ) IJクス、
(:1)は燃料ガス側電極、(3)は酸化ガス側電極で
ある。(4’)は燃料ガス側電極(コ)を支持し、かつ
、後述する改質触媒を燃料ガス側電極(2)から分離す
る燃料ガス側多孔板である。(左)は酸化ガス側電極(
3)を支持する酸化ガス側多孔板である。(6)は燃料
ガス側流路と酸化ガス側流路とを分離、形成し、かつ、
電解質マトリクス(/]、燃料ガス側電極(コ)。
Figure 3 shows a conventional internally reformed molten carbonate fuel cell stack, in which (1) is an electrolyte (IJ),
(:1) is the fuel gas side electrode, and (3) is the oxidizing gas side electrode. (4') is a fuel gas side porous plate that supports the fuel gas side electrode (c) and separates a reforming catalyst, which will be described later, from the fuel gas side electrode (2). (Left) is the oxidizing gas side electrode (
3) is a perforated plate on the oxidizing gas side that supports. (6) separates and forms a fuel gas side flow path and an oxidant gas side flow path, and
Electrolyte matrix (/), fuel gas side electrode (ko).

酸化ガス側電極(3)、燃料ガス側多孔板(す、酸化ガ
ス側多孔板(3)より構成される単位燃料電池(り)を
複数積層する際に単位燃料電池(り)相互を電気的直列
に接続する役目をするセパレータ板である。(ff)は
セパレータ板(4)VCより分離形成された燃料ガス側
ガス流路、(9)は酸化ガス側ガス流路である。燃料ガ
ス側ガス流路(r) Kは炭化水素またはアルコール類
を分解し水素を生成する反応を促進する改質触媒(10
)が配置されている。
When stacking multiple unit fuel cells consisting of an oxidizing gas side electrode (3), a fuel gas side perforated plate (3), and an oxidizing gas side perforated plate (3), the unit fuel cells (ri) are electrically connected to each other. This is a separator plate that serves to connect in series. (ff) is a gas flow path on the fuel gas side formed separately from the separator plate (4) VC, and (9) is a gas flow path on the oxidizing gas side. Fuel gas side Gas flow path (r) K is a reforming catalyst (10
) are placed.

以上の構成により、炭化水素またはアルコール類および
スチームを主成分とする燃料ガスと、酸素と二酸化炭素
を主要成分とする酸化ガスとは、十字流形式で内部改質
形溶融炭酸塩形燃料電池積層体に供給され、それぞれ燃
料ガス側ガス流路(1)、酸化ガス側ガス流路(9)に
導入される。燃料ガス側ガス流路(g)に供給された燃
料ガス中の炭化水素またはアルコール類は、燃料ガス側
ガス流路(ff)内部に配置された改質触媒(10)の
作用により下式に示すような化学反応をとおして水素お
よび一酸化炭素を主成分とする燃料ガスに改質される。
With the above configuration, the fuel gas containing hydrocarbons or alcohols and steam as the main components, and the oxidizing gas containing oxygen and carbon dioxide as the main components, are fed into the internal reforming molten carbonate fuel cell in a cross-flow manner. and introduced into the fuel gas side gas flow path (1) and the oxidizing gas side gas flow path (9), respectively. Hydrocarbons or alcohols in the fuel gas supplied to the fuel gas side gas flow path (g) are converted into the following formula by the action of the reforming catalyst (10) disposed inside the fuel gas side gas flow path (ff). Through the chemical reaction shown below, it is reformed into a fuel gas whose main components are hydrogen and carbon monoxide.

反応全体としては吸熱反応であり、単位燃料電池(り)
で副生ずる熱エネルギーを直接利用する。
The overall reaction is an endothermic reaction, and the unit fuel cell
directly utilizes the thermal energy that is produced as a by-product.

炭化水素+Hコ0→Hコ、Co、Coコ、CH2X(/
17/Iz:lff−に類+HJO→HayCO+CO
a+CH*    (J)CHダ + HJO−+CO
+、?Hコ       (3)CO+HコO→  C
OJ + Hコ       (り燃料ガス側ガス流路
tt)内部で生成した水素、および酸化ガス中の酸素と
二酸化炭素は、それぞれ燃料ガス側多孔板(Il)、酸
化ガス側多孔板(,1)の開口部分を拡散し、燃料ガス
側電極(コ)、酸化ガス側電極(J)においてそれぞれ
次式に示すような電気化学反応を起こす。
Hydrocarbon + H co0 → H co, Co, Co co, CH2X (/
17/Iz:lff-Ni kind+HJO→HayCO+CO
a+CH* (J)CH da + HJO-+CO
+,? H co (3) CO + H co O → C
The hydrogen generated inside the OJ + H (fuel gas side gas flow path tt) and the oxygen and carbon dioxide in the oxidizing gas are transferred to the fuel gas side porous plate (Il) and the oxidizing gas side porous plate (,1), respectively. The electrochemical reaction occurs at the fuel gas side electrode (C) and the oxidizing gas side electrode (J) as shown in the following formula.

(燃料ガス側電極) HJ+CO−+   HaO+ COJ +  2e 
        (&)(酸化ガス側電極) 仲コ+COコ+コθ→Co、       (A)これ
ら一連の化学、電気化学反応をとおして、炭化水素また
はアルコール類などの燃料ガスがもつている化学エネル
ギーが、電気エネルギーと副生ずる熱エネルギーとに変
換される。
(Fuel gas side electrode) HJ+CO-+ HaO+ COJ + 2e
(&) (Oxidizing gas side electrode) Nakako + CO + Ko θ → Co, (A) Through these series of chemical and electrochemical reactions, the chemical energy possessed by fuel gases such as hydrocarbons or alcohols is released. , converted into electrical energy and by-product thermal energy.

ここで改質触媒(10)は、たとえばアルミナ、!グネ
シアなどを主成分とする担゛体の上にニッケルなどの活
物質を担持させたものであり、改質触媒(lO)の活性
を紺持するためKは、下式に示すニッケルなどの活物質
の酸化を防ぎながら運転を行う必要 N1   +  HJO→   N1’O’+   H
コ             (り)がある。
Here, the reforming catalyst (10) is, for example, alumina! An active material such as nickel is supported on a carrier mainly composed of gnesia, etc., and in order to maintain the activity of the reforming catalyst (lO), K is an active material such as nickel as shown in the formula below. It is necessary to operate while preventing the oxidation of substances N1 + HJO → N1'O' + H
There is a ko (ri).

一般的な改質触媒(10)を用いた炭化水素またはアル
コール類の分解、水素生成には、式(1)〜(4I)k
示すようにスチームを添加しで行うが、生成した水素に
よりニッケルなどの層物質の酸化が防がれるため、長期
的に安定した運転が可能□となっている。
For decomposition of hydrocarbons or alcohols and hydrogen production using a general reforming catalyst (10), formulas (1) to (4I) k
As shown in the figure, this is done by adding steam, but the generated hydrogen prevents oxidation of layer materials such as nickel, making stable operation possible over a long period of time.

しかしながら、内部改質形溶融炭゛酸塩形燃料電池に□
おいては1式(3)を示したように、式Cl)〜(4t
)で植成した水素をそれと並行して消費してスチニムを
生成するため、水素濃度が低下し、改質触媒(10)の
活物質、たとえばニッケルの酸化が起こ(弘 ) す、改質触媒(10)の活性低下が起こり易くなる。
However, internally reforming molten carbonate fuel cells
As shown in formula 1 (3), the formula Cl) ~ (4t
) is consumed in parallel to produce stinium, the hydrogen concentration decreases and oxidation of the active material of the reforming catalyst (10), such as nickel, occurs (Hiroshi). The activity of (10) is more likely to decrease.

このような活物質が酸化する条件は、活物質の種類、担
体の種類および温度などKより異なるが、たとえば活物
質としてニッケルを用いた触媒では。
The conditions under which such an active material is oxidized differ from K, such as the type of active material, the type of support, and temperature, but for example, in the case of a catalyst using nickel as the active material.

一つの目安として水蒸気濃度の水素濃度に対する比がI
θ〜、20以上になるとニッケルの酸化が・起こり、触
媒の活性が低下することが知られている。
As a guideline, the ratio of water vapor concentration to hydrogen concentration is I
It is known that when θ~20 or more, oxidation of nickel occurs and the activity of the catalyst decreases.

水蒸気濃度の水素濃度に対する比は、燃料ガスの流れ方
向に分布をもっているが、燃料ガス入口部分において通
常量も大きくなり、その部分における水蒸気濃度に対す
る尿素濃度の比が改質触媒(’to)の安定性に最も重
要である。そしてその比は1式(3)の電気化学反応を
活発にするほど、□すなわも、より多くの電流を取り出
すほど、また、゛改質触媒(tO)の充てん量を低減し
式(1)〜(り)の化学反応を不活発にするほど大きく
なる。
The ratio of the water vapor concentration to the hydrogen concentration has a distribution in the flow direction of the fuel gas, but the amount is usually large at the fuel gas inlet, and the ratio of the urea concentration to the water vapor concentration at that part is the same as that of the reforming catalyst ('to). Most important for stability. The ratio increases as the electrochemical reaction in Equation (3) becomes more active, □In other words, as more current is extracted, and as the filling amount of the reforming catalyst (tO) decreases, ) to (ri) becomes larger as the chemical reactions become inactive.

したがって、従来のこの種の燃料電池積層体においては
、燃料ガス入口部分の燃料ガス側ガス□流路(f)に配
置した改質触媒(lO)の活性低下を防ぐため、取り出
し可能な電流、すなわち電気出力が小さい範囲に限定さ
れ、また、より大きな電流を取り出すためには多量の改
質触媒(10)を充てんする必要があった。
Therefore, in a conventional fuel cell stack of this type, in order to prevent a decrease in the activity of the reforming catalyst (lO) disposed in the fuel gas side gas flow path (f) at the fuel gas inlet part, the extractable current, That is, the electrical output is limited to a small range, and in order to extract a larger current, it is necessary to fill a large amount of reforming catalyst (10).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のような従来の内部改質形燃料電池積層体では、改
質触媒の酸化による活性低下を伴うため、長期的に大き
な出力を安定して得ることが難しく、また、逆に大きな
出力を得るためには高活性の改質触媒を燃料ガス側ガス
流路に多量に充てんする必要があるという問題点があっ
た。
With conventional internal reforming fuel cell stacks as described above, it is difficult to stably obtain large output over a long period of time because the activity of the reforming catalyst decreases due to oxidation. In order to achieve this, there was a problem in that it was necessary to fill the fuel gas side gas flow path with a large amount of a highly active reforming catalyst.

この発明は、上記のような問題点を解消するためKなさ
れたもので、改質触媒の酸化による活性低下を防ぎなが
ら、少量の改質触媒で長期的に安定して大きな出力を増
り出すことができる内部改質形燃料電池積層体を得るこ
とを目的とする。
This invention was made to solve the above-mentioned problems, and it is possible to stably increase output over a long period of time with a small amount of reforming catalyst while preventing the activity from decreasing due to oxidation of the reforming catalyst. The purpose is to obtain an internally reforming fuel cell stack that can be used.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る内部改質形燃料電池積層体は、単位燃料
電池の電気化学的活性を、燃料ガスの流れ方向に変化さ
せている。
The internal reforming fuel cell stack according to the present invention changes the electrochemical activity of the unit fuel cells in the direction of flow of fuel gas.

〔作 用〕[For production]

゛  この発明においては、燃料ガスの入口部分の燃料
電池の電気化学的活性が他の部分の燃料電池の電気化学
的活性より小さくなっているため、燃料電池全体として
大きな電流をとり出した場合でもそのほとんどは電気化
学的に高活性な燃料電池部分を通過し、燃料ガスの入口
部分の燃料電池を流れる電流密度は小さいまま保たれる
゛ In this invention, the electrochemical activity of the fuel cell at the fuel gas inlet portion is smaller than the electrochemical activity of the fuel cell at other portions, so even if a large current is drawn from the fuel cell as a whole, Most of it passes through the electrochemically highly active part of the fuel cell, and the current density flowing through the fuel cell in the fuel gas inlet part remains small.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図は燃料ガスの流れ方向に燃料電池の電気化学的活性を
変化させた燃料ガス側多孔板(ttI)を示し、第1図
は燃料ガス側多孔板(ta)を用いた内部改質形溶融炭
酸塩形燃料電池積層体を示す。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows a fuel gas side perforated plate (ttI) that changes the electrochemical activity of the fuel cell in the fuel gas flow direction, and Figure 1 shows an internal reforming type melting using a fuel gas side perforated plate (ta). A carbonate fuel cell stack is shown.

また、第3図におけると同一符号は同一部分を示してい
る。
Also, the same reference numerals as in FIG. 3 indicate the same parts.

多数の開口(lIIa)が形成された燃料ガス側多孔板
(t4t)は、第1図に示すように、燃料ガス入口部分
において開口比を他の部分より小さくし、燃料ガスの拡
散抵抗を大きくして、燃料ガス入口部分の燃料電池の電
気化学的活性を他の部分の燃(ワ  ) 料電池の電気化学的活性より小さくなるように形成され
ている。
As shown in Fig. 1, the fuel gas side perforated plate (t4t) in which a large number of openings (lIIa) are formed has a smaller opening ratio at the fuel gas inlet part than other parts, thereby increasing the diffusion resistance of the fuel gas. Thus, the electrochemical activity of the fuel cell in the fuel gas inlet portion is smaller than the electrochemical activity of the fuel cell in other portions.

以上の構成により、内部改質形溶融炭酸塩形燃料電池積
層体に供給された炭化水素またはアルコール類およびス
チームを主成分とした燃料ガスは燃料ガス側ガス流路(
ff)および燃料ガス側電極(2)において、式(/1
〜(4’)の燃料ガスの分解、水素生成反応および式(
61の電気化学反応、すなわち、水素消費反応を並行し
て行う。燃料ガスの流れ方向に関して各単位燃料電池(
?)においてそれぞれどの程度の電流が流れるか、すな
わち、どの程度の速さで式(&) (A)の電気化学反
応が起こるかは、各単位燃料電池(り)の電気化学的活
性および各部分における燃料ガス、酸化ガスの組成に依
存しているが、その中でも電気化学的活性の影響が大き
い。この実施例においては、燃料ガス入口部分における
各単位燃料電池(り)の電気化学的活性を他の部分より
小さくなるようにしてあり、その結果、燃料電池積層体
全体として大きな電流を取り出した場合でも。
With the above configuration, the fuel gas mainly composed of hydrocarbons or alcohols and steam supplied to the internally reformed molten carbonate fuel cell stack is transferred to the fuel gas side gas flow path (
ff) and the fuel gas side electrode (2), the formula (/1
~(4') Decomposition of fuel gas, hydrogen production reaction and formula (
61 electrochemical reactions, that is, hydrogen consuming reactions, are performed in parallel. Each unit fuel cell (with respect to the flow direction of fuel gas)
? ), in other words, how fast the electrochemical reaction of formula (&) (A) occurs depends on the electrochemical activity of each unit fuel cell (ri) and each part. Although it depends on the composition of the fuel gas and oxidizing gas, electrochemical activity has a large influence among them. In this embodiment, the electrochemical activity of each unit fuel cell at the fuel gas inlet section is made smaller than that at other sections, and as a result, when a large current is extracted from the fuel cell stack as a whole, but.

燃料ガスの入口部分の燃料電池を流れる電流密度は小さ
いまま保たれる。したがって、全体として大きな電流を
取り出した場合においても燃料ガス入口部分において水
素の消費量は小さく、すなわち、水蒸気濃度の水素濃度
に対する比は小さいまま保たれ、改質触媒(10)の活
性は安定なまま保たれる。この結果として、従来のもの
と比較して、取り出しうる電流量が大きくなり、逆に、
改質触媒(10)の充てん量の低減も可能となる。
The current density flowing through the fuel cell at the fuel gas inlet portion remains small. Therefore, even when a large current is drawn as a whole, the amount of hydrogen consumed at the fuel gas inlet is small, that is, the ratio of water vapor concentration to hydrogen concentration remains small, and the activity of the reforming catalyst (10) remains stable. It is kept as it is. As a result, the amount of current that can be taken out is larger than that of conventional ones, and conversely,
It is also possible to reduce the filling amount of the reforming catalyst (10).

なお、上記実施例では燃料ガス側多孔板(ta)の開口
比を燃料ガスの流れ方向に変化させることKより燃料電
池の電気化学的活性を変化させたが、周知のように燃料
ガス側電極(コ)の構造、たとえば、気孔率、細孔分布
、電極表面積等を変化させることによっても容易に燃料
電池の電気化学的活性を変化させることができ、同様の
効果を奏する。
In the above example, the electrochemical activity of the fuel cell was changed by changing the aperture ratio of the fuel gas side porous plate (ta) in the flow direction of the fuel gas, but as is well known, the fuel gas side electrode The electrochemical activity of the fuel cell can be easily changed by changing the structure of (g), for example, porosity, pore distribution, electrode surface area, etc., and similar effects can be obtained.

〔発明の効果〕〔Effect of the invention〕

この発明は、以上の説明から明らかなように、燃料電池
の電気化学的活性を燃料ガスの流れ方向に変化させたこ
とにより、長期に安定し【大きな電気出力を取り出すこ
とができ、また改質触媒の充てん量も低減できる。
As is clear from the above description, this invention changes the electrochemical activity of the fuel cell in the direction of the flow of fuel gas, resulting in long-term stability [large electrical output can be extracted, reforming] The amount of catalyst packed can also be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の要部平面図、第2図は同じく一部正
断面図、第3図は従来の内部改質形燃料電池積層体の正
断面図である。 (j)−Φ燃料ガス側電極、(ltI)e・燃料ガス側
多孔板、(/&B)@・開口、(り)・・単位燃料電池
。 (ff)・・燃料ガス側ガス流路、(10)・・改質触
媒。 なお、各図中、同一符号は同−又は相当部分を示す。 (ll) べ鱒
FIG. 1 is a plan view of essential parts of the present invention, FIG. 2 is a partially front sectional view, and FIG. 3 is a front sectional view of a conventional internal reforming fuel cell stack. (j)-Φfuel gas side electrode, (ltI)e・fuel gas side porous plate, (/&B)@・opening, (ri)・unit fuel cell. (ff)...Fuel gas side gas flow path, (10)...Reforming catalyst. In each figure, the same reference numerals indicate the same or corresponding parts. (ll) Trout

Claims (5)

【特許請求の範囲】[Claims] (1)燃料ガス側電極に隣接した燃料ガス側ガス流路の
内部に改質触媒を配置した複数の単位燃料電池でなる内
部改質形燃料電池積層体において、前記単位燃料電池の
電気化学的活性を燃料ガスの流れ方向に変化させたこと
を特徴とする内部改質形燃料電池積層体。
(1) In an internal reforming fuel cell stack consisting of a plurality of unit fuel cells in which a reforming catalyst is arranged inside a fuel gas side gas flow path adjacent to a fuel gas side electrode, the electrochemical An internal reforming fuel cell stack characterized in that the activity is changed in the direction of flow of fuel gas.
(2)内部改質形燃料電池が溶融炭酸塩形燃料電池であ
る特許請求の範囲第1項記載の内部改質形燃料電池積層
体。
(2) The internal reforming fuel cell stack according to claim 1, wherein the internal reforming fuel cell is a molten carbonate fuel cell.
(3)燃料ガスの入口部分で単位燃料電池の電気化学的
活性が他の部分より小さくなつている特許請求の範囲第
1項記載の内部改質形燃料電池積層体。
(3) The internal reforming fuel cell stack according to claim 1, wherein the electrochemical activity of the unit fuel cell is smaller at the fuel gas inlet portion than at other portions.
(4)燃料ガス側電極を支持する燃料ガス側多孔板の開
口比を燃料ガスの流れ方向に変化させた特許請求の範囲
第1項記載の内部改質形燃料電池積層体。
(4) The internal reforming fuel cell stack according to claim 1, wherein the aperture ratio of the fuel gas side porous plate supporting the fuel gas side electrode is changed in the flow direction of the fuel gas.
(5)気孔率、細孔分布および電極表面積の少なくとも
1つを燃料ガスの流れ方向に変化させた燃料ガス側電極
を備えた特許請求の範囲第1項記載の内部改質形燃料電
池積層体。
(5) The internal reforming fuel cell stack according to claim 1, comprising a fuel gas side electrode in which at least one of porosity, pore distribution, and electrode surface area is changed in the flow direction of the fuel gas. .
JP60030608A 1985-02-20 1985-02-20 Internally reformed type fuel cell laminate Pending JPS61193373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60030608A JPS61193373A (en) 1985-02-20 1985-02-20 Internally reformed type fuel cell laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60030608A JPS61193373A (en) 1985-02-20 1985-02-20 Internally reformed type fuel cell laminate

Publications (1)

Publication Number Publication Date
JPS61193373A true JPS61193373A (en) 1986-08-27

Family

ID=12308586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60030608A Pending JPS61193373A (en) 1985-02-20 1985-02-20 Internally reformed type fuel cell laminate

Country Status (1)

Country Link
JP (1) JPS61193373A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7291417B2 (en) 2003-01-16 2007-11-06 Hewlett-Packard Development Company, L.P. Compositional and structural gradients for fuel cell electrode materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7291417B2 (en) 2003-01-16 2007-11-06 Hewlett-Packard Development Company, L.P. Compositional and structural gradients for fuel cell electrode materials

Similar Documents

Publication Publication Date Title
US4647516A (en) Internal reforming type fuel cell
US5482680A (en) Electrochemical fuel cell assembly with integral selective oxidizer
CN100377402C (en) Stack having improved cooling structure and fuel cell system having the same
JPS5810374A (en) Fuel battery for causing internal modification for fuel battery gas
JP2002184426A (en) Fuel cell provided with complicated mea
JPS5931568A (en) Film cooling type fuel battery
JPWO2005053072A1 (en) Fuel cell
Kiros et al. Electrode R&D, stack design and performance ofbiomass-based alkaline fuel cell module
JP4682511B2 (en) Solid oxide fuel cell
JP4897273B2 (en) Fuel cell
JP2005142001A (en) Fuel cell having stack structure
JP3999934B2 (en) Solid oxide fuel cell
JPH0147863B2 (en)
JP4031952B2 (en) Fuel cell
JPS63310574A (en) Internal reforming type fuel cell
JPS61193373A (en) Internally reformed type fuel cell laminate
US6913846B2 (en) Integrated fuel cell system
JPH04243537A (en) Reforming device
JP2008171612A (en) Fuel cell
JP2971543B2 (en) Internal reforming fuel cell
US20100151342A1 (en) Tubular fuel cell design with improved construction and operating efficiency
JP2734716B2 (en) Internal reforming fuel cell
JPH05205765A (en) Laminated fuel cell
JP2008021533A (en) Fuel cell stack
JP2940108B2 (en) Internal reforming fuel cell