JP2940108B2 - Internal reforming fuel cell - Google Patents

Internal reforming fuel cell

Info

Publication number
JP2940108B2
JP2940108B2 JP2234688A JP23468890A JP2940108B2 JP 2940108 B2 JP2940108 B2 JP 2940108B2 JP 2234688 A JP2234688 A JP 2234688A JP 23468890 A JP23468890 A JP 23468890A JP 2940108 B2 JP2940108 B2 JP 2940108B2
Authority
JP
Japan
Prior art keywords
reforming reaction
reforming
fuel gas
reaction
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2234688A
Other languages
Japanese (ja)
Other versions
JPH04115463A (en
Inventor
光家 松村
佳秀 言上
千賀 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2234688A priority Critical patent/JP2940108B2/en
Publication of JPH04115463A publication Critical patent/JPH04115463A/en
Application granted granted Critical
Publication of JP2940108B2 publication Critical patent/JP2940108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、内部改質形燃料電池に関し、特にその改
質反応領域の構造に関するものである。
Description: TECHNICAL FIELD The present invention relates to an internal reforming fuel cell, and more particularly, to a structure of a reforming reaction region thereof.

[従来の技術] 第4図は、例えば特開昭60ー3255号公報に示された従
来の内部改質形燃料電池の一実施例の一部を示す斜視図
である。図において、(1)は電解質層、(2)は燃料
ガス電極、(3)は酸化ガス電極であり、燃料ガス電極
(2)と酸化ガス電極(3)とは電解質層(1)を介し
て対向するように配置され、これらで単電池を構成して
いる。(4)は燃料ガス電極(2)に対向して設けられ
た燃料ガス流路、(5)は酸化ガス電極(3)に対向し
て設けられた酸化ガス流路、(6)は燃料ガス流路
(4)を形成するための燃料ガス側流路形成材、(7)
は酸化ガス流路(5)を形成するための酸化ガス側流路
形成材である。(8)は単電池を複数積層する際に燃料
ガス流路(4)と酸化ガス流路(5)とを分離し且つ複
数の単電池を電気的に直列に接続する役目をするセパレ
ータ板である。(9)は燃料ガス流路(4)内部に保持
された改質触媒である。
[Prior Art] FIG. 4 is a perspective view showing a part of an embodiment of a conventional internal reforming fuel cell disclosed in, for example, JP-A-60-3255. In the figure, (1) is an electrolyte layer, (2) is a fuel gas electrode, (3) is an oxidizing gas electrode, and the fuel gas electrode (2) and the oxidizing gas electrode (3) are interposed through the electrolyte layer (1). And are arranged so as to face each other, and these constitute a unit cell. (4) is a fuel gas flow path provided facing the fuel gas electrode (2), (5) is an oxidizing gas flow path provided facing the oxidizing gas electrode (3), and (6) is a fuel gas flow path. Fuel gas side flow path forming material for forming flow path (4), (7)
Is an oxidizing gas side channel forming material for forming the oxidizing gas channel (5). (8) is a separator plate serving to separate the fuel gas flow path (4) and the oxidizing gas flow path (5) when stacking a plurality of cells and electrically connect the plurality of cells in series. is there. (9) is a reforming catalyst held inside the fuel gas flow path (4).

次に動作について説明する。燃料ガス流路(4)に炭
化水素などの燃料と水蒸気が供給されると、改質触媒
(9)との接触反応により炭化水素は水蒸気と反応して
水素、一酸化炭素、および炭酸ガスに変換される。炭化
水素がメタンの場合には、この反応は式−1で表され
る。
Next, the operation will be described. When a fuel such as a hydrocarbon and steam are supplied to the fuel gas flow path (4), the hydrocarbon reacts with the steam by a contact reaction with the reforming catalyst (9) to form hydrogen, carbon monoxide, and carbon dioxide gas. Is converted. When the hydrocarbon is methane, this reaction is represented by Formula-1.

CH4+H2O→CO+3H2 (式−1) 生成された水素および一酸化炭素は燃料ガス側流路形
成材(6)に設けられた孔を通り、多孔性の燃料ガス電
極(2)の細孔を拡散する。他方、酸化ガス流路(5)
には空気と炭酸ガスとの混合ガスが供給され、多孔性の
酸化ガス電極(3)の細孔を拡散する。電解質層(1)
に含浸され、動作温度である650℃付近では溶融状態に
なっている炭酸塩、電極(2)、(3)および上記水素
と酸素を主成分とする反応ガスの間に生ずる電気化学反
応により反応ガスが消費され電流コレクタ(図示せず)
間に電位が生じ、外部に電力が取り出される。なお、改
質触媒(9)上で起こる改質反応は吸熱反応であり、こ
の反応を持続させるのに必要な熱量は、上記電気化学反
応に伴う発熱より供給される。
CH 4 + H 2 O → CO + 3H 2 (Equation-1) The generated hydrogen and carbon monoxide pass through the holes provided in the fuel gas side flow path forming material (6) and pass through the porous fuel gas electrode (2). Diffuse the pores. On the other hand, the oxidizing gas flow path (5)
Is supplied with a mixed gas of air and carbon dioxide gas, and diffuses through the pores of the porous oxidizing gas electrode (3). Electrolyte layer (1)
At about 650 ° C, the operating temperature, which is in a molten state, reacts by an electrochemical reaction between the electrodes (2) and (3) and the above-mentioned reaction gas containing hydrogen and oxygen as main components. Gas consumed and current collector (not shown)
An electric potential is generated between them, and electric power is taken out to the outside. The reforming reaction occurring on the reforming catalyst (9) is an endothermic reaction, and the amount of heat required to maintain this reaction is supplied from the heat generated by the electrochemical reaction.

燃料電池の定常的な運転のためには改質反応による吸
熱量と電池反応による発熱量との熱のバランスをとるこ
とが付加欠であり、電池反応による発熱に見合うように
改質反応を進行させる必要がある。ここで、改質反応の
反応速度はメタンの分圧と改質触媒の活性・量とに依存
し、通常メタンの分圧が大きい程、また改質触媒の活性
・量が大きい程反応速度も大きい。典型的な例では、メ
タンの改質反応速度は式−2に示すようにメタンの分圧
と改質触媒の活性と改質触媒の量との積に比例する。
For steady operation of the fuel cell, it is essential to balance heat between the heat absorbed by the reforming reaction and the heat generated by the battery reaction, and the reforming reaction proceeds to match the heat generated by the battery reaction. Need to be done. Here, the reaction rate of the reforming reaction depends on the partial pressure of methane and the activity / amount of the reforming catalyst, and the reaction rate generally increases as the partial pressure of methane increases, and as the activity / amount of the reforming catalyst increases. large. In a typical example, the methane reforming reaction rate is proportional to the product of the partial pressure of methane, the activity of the reforming catalyst, and the amount of the reforming catalyst, as shown in Equation-2.

メタンの改質反応速度=k*メタンの分圧*触媒活性 *接触量 (式−2) (ただしk:比例定数) 従って、改質触媒を燃焼ガス流路全面に均一に保持し
た場合には燃料ガスの入口部分において改質反応速度が
大きくなり、改質反応が急激に進行することにより熱バ
ランスが崩れ、燃料電池の定常的な運転が行えない。従
来例では、燃料ガス流路(4)における燃料ガスの流れ
方向に直角な断面積を上記燃料ガスの流れ方向に変化さ
せ、改質触媒(9)の充填量の分布を適宜調節すること
により改質反応分布の適正化を行い、熱的のバランスお
よび温度分布の一様化を達成しようとしてている。この
ような方法は改質触媒の活性が一定であればうまく機能
し、設定どおりの均一な温度分布が得られる。しかしな
がら通常改質触媒の活性な一定ではなく経時的に変化す
る。一例として改質触媒の活性の経時変化の一例を第5
図に示す。図において縦軸は触媒活性を、横軸は運転時
間をそれぞれ示している。改質触媒は通常細孔構造を有
するセラミック担体上に微細な活性金属を保持させたも
ので、材料のシンタリング等に基ずく何らかの活性低下
は長期的には避けられない。この従来例では改質反応量
を制御するのに改質触媒上の改質反応速度そのもの制御
しているため、改質触媒の活性が低下するとそれによる
改質反応速度の低下はそのまま改質反応量の低下をもた
らし、長期にわたり一定の安定した改質反応量の分布を
得ることができない。従ってこのような設計では長期的
には改質反応量の分布の経時変化が避けられず、長期に
わたり安定して均一な温度分布を得ることが難しい。ま
た触媒活性の低下に伴う改質反応量の低下の悪影響は特
に燃料ガス入口部分において顕著となり、同部分におけ
る水素濃度の減少は電池特性の低下をもたらすとともに
改質触媒の活性金属の酸化を誘発し触媒活性のさらなる
低下をもたらす。
Methane reforming reaction rate = k * Partial pressure of methane * Catalytic activity * Contact amount (Equation-2) (k: proportional constant) Therefore, when the reforming catalyst is held uniformly over the entire combustion gas flow path At the fuel gas inlet, the reforming reaction speed increases, and the reforming reaction proceeds abruptly, thereby disturbing the heat balance and making it impossible to perform a steady operation of the fuel cell. In the conventional example, the cross-sectional area perpendicular to the flow direction of the fuel gas in the fuel gas flow path (4) is changed in the flow direction of the fuel gas, and the distribution of the filling amount of the reforming catalyst (9) is appropriately adjusted. We are trying to optimize the reforming reaction distribution to achieve a thermal balance and a uniform temperature distribution. Such a method works well if the activity of the reforming catalyst is constant, and a uniform temperature distribution as set can be obtained. However, the activity of the reforming catalyst is usually not constant but changes with time. As an example, an example of the change with time of the activity of the reforming catalyst is shown in FIG.
Shown in the figure. In the figure, the vertical axis indicates the catalyst activity, and the horizontal axis indicates the operation time. The reforming catalyst usually has a fine active metal retained on a ceramic carrier having a pore structure, and some decrease in activity based on sintering of the material or the like is inevitable in the long term. In this conventional example, since the reforming reaction rate on the reforming catalyst itself is controlled to control the reforming reaction amount, when the activity of the reforming catalyst decreases, the decrease in the reforming reaction rate due to the decrease in the activity of the reforming catalyst remains unchanged. As a result, it is impossible to obtain a stable and stable distribution of the reforming reaction over a long period of time. Therefore, in such a design, a temporal change in the distribution of the reforming reaction amount is inevitable in the long term, and it is difficult to obtain a stable and uniform temperature distribution over a long term. In addition, the adverse effect of the decrease in the amount of reforming reaction accompanying the decrease in catalytic activity is particularly remarkable at the fuel gas inlet, and a decrease in the hydrogen concentration in this portion causes a decrease in cell characteristics and induces oxidation of the active metal of the reforming catalyst. This leads to a further decrease in catalytic activity.

[発明が解決しようとする課題] 従来の内部改質形燃料電池は以上のように構成されて
いるので、長期的に安定して均一な温度分布を得ること
が難しく、また改質触媒の活性の低下がそのまま電池特
性の低下に結び付き、さらには改質触媒の一層の活性低
下を誘発するという問題点を有していた。
[Problems to be Solved by the Invention] Since the conventional internal reforming fuel cell is configured as described above, it is difficult to obtain a stable and uniform temperature distribution over a long period of time, and the activity of the reforming catalyst is high. This leads to a problem that the reduction in the battery performance directly leads to a reduction in the battery characteristics, and further induces a further reduction in the activity of the reforming catalyst.

この発明は上記のような問題点を解消するためになさ
れたもので、改質触媒の活性の変化に対して改質反応の
反応量の分布が殆ど変化すること無く、その結果長期に
わたり安定して均一な温度分布が得られ、かつ安定した
改質触媒の活性および電池特性が得られる内部活質形燃
料電池を得ることを目的とする。
The present invention has been made in order to solve the above problems, and the distribution of the reaction amount of the reforming reaction hardly changes in response to the change in the activity of the reforming catalyst, and as a result, the reaction is stable for a long time. It is an object of the present invention to obtain an internal active fuel cell which can obtain a uniform temperature distribution and stable activity and cell characteristics of the reforming catalyst.

[課題を解決するための手段] この発明に係る内部改質形燃料電池は、改質反応領域
を燃料ガス流路の内部で燃料ガスの流れ方向に直列に設
けた複数の改質反応部分より構成し、さらに上記改質反
応部分を改質反応が進行する改質反応小部分と改質反応
が進行しない非改質反応小部分とに分割して構成すると
ともに、圧力調節手段により両反応小部分に供給する燃
料ガスの流量の比を個々調節することにより各改質反応
部分に於ける改質反応の反応量を制御し、全体として改
質反応領域における燃料ガス流れ方向の改質反応量の分
布を制御するように構成したものである。
[Means for Solving the Problems] An internal reforming fuel cell according to the present invention comprises a plurality of reforming reaction sections in which a reforming reaction region is provided in series in a fuel gas flow direction inside a fuel gas flow path. Further, the reforming reaction portion is divided into a reforming reaction small portion in which the reforming reaction proceeds and a non-reforming reaction small portion in which the reforming reaction does not proceed. The amount of the reforming reaction in each reforming reaction section is controlled by individually adjusting the flow rate ratio of the fuel gas supplied to the section, and the reforming reaction amount in the fuel gas flow direction in the reforming reaction region as a whole is Are controlled so as to control the distribution.

[作用] この発明における改質反応小部分は改質反応を平衡状
態近くにまで進行させるに十分な改質触媒を有してお
り、改質反応小部分における改質反応量は上記反応小部
分に供給される燃料ガスの流量、組成、および動作条件
により決定され、触媒活性には殆ど無関係となる。改質
反応領域における燃料ガス流れ方向の改質反応量の分布
は、各改質反応部分における改質反応量を設定すること
により得られ、各改質反応部分における改質反応量は各
改質反応部分において改質反応小部分と非改質反応小部
分とに燃料ガスを分配供給する分配比を圧力調節手段に
より各々設定することにより決定される。従ってこのよ
うにして設定された改質反応分布は改質触媒の活性の変
化に対して鈍感であり、長期にわたり安定して均一な温
度分布が得られ、かつ安定した改質触媒の活性および電
池特性を得ることができる。
[Action] The reforming reaction portion in the present invention has a reforming catalyst sufficient to allow the reforming reaction to proceed to near the equilibrium state. It is determined by the flow rate, composition, and operating conditions of the fuel gas supplied to the catalyst, and is almost independent of the catalytic activity. The distribution of the amount of reforming reaction in the direction of fuel gas flow in the reforming reaction region can be obtained by setting the amount of reforming reaction in each reforming reaction portion. In the reaction portion, the distribution ratio of the fuel gas to the reforming reaction small portion and the non-reforming reaction small portion is determined by setting the distribution ratio by the pressure adjusting means. Therefore, the reforming reaction distribution set in this way is insensitive to a change in the activity of the reforming catalyst, a uniform temperature distribution can be obtained stably over a long period of time, and the stable activity of the reforming catalyst and the battery Properties can be obtained.

[実施例] 以下、この発明の一実施例を図について説明する。第
1図において、従来例同様(1)は電解質層、(2)は
燃料ガス電極、(3)は酸化ガス電極、(4)は燃料ガ
ス流路、(8)はセパレータ板、(9)は改質触媒であ
る。(10)は燃料ガス流路(4)内部に設けられた改質
反応領域であり、燃料ガスの流れ方向で上流側より、
(11a)、(11b)、(11c)、(11d)、(11e)の改質
反応部分を有する。(12)は改質触媒(9)を保持し燃
料ガス中の炭化水素類を改質する能力を有する改質反応
小部分であり、各改質反応部分(11a)〜(11e)の一部
分を成す。(13)は改質触媒を有せず従って改質反応を
進行させる能力の無い非改質反応小部分で、改質反応部
分(11a)〜(11e)の残る他の一部分を構成する。(1
4)は改質反応小部分(12)と非改質反応小部分(13)
とを分離するための隔離板である。(15)は圧力損失調
節手段であり、燃料ガスが改質反応小部分(12)と非改
質反応部小部分(13)とに分配供給される際のガス分配
比の調節手段である。本実施例では改質反応に対して触
媒機能を有しない非触媒充填粒子を圧力損失調節手段
(15)に採用し、非改質反応小部分(13)に非触媒充填
粒子(15)を適宜充填することによりガス分配比を調節
している。
Embodiment An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, (1) is an electrolyte layer, (2) is a fuel gas electrode, (3) is an oxidizing gas electrode, (4) is a fuel gas channel, (8) is a separator plate, and (9) as in the conventional example. Is a reforming catalyst. Reference numeral (10) denotes a reforming reaction region provided inside the fuel gas flow path (4), which is located upstream from the fuel gas flow direction.
(11a), (11b), (11c), (11d), and (11e). (12) is a reforming reaction small part which has the ability to reform the hydrocarbons in the fuel gas while holding the reforming catalyst (9), and a part of each of the reforming reaction parts (11a) to (11e). Make. (13) is a non-reforming reaction small portion which does not have a reforming catalyst and thus has no ability to advance a reforming reaction, and constitutes the remaining other portion of the reforming reaction portions (11a) to (11e). (1
4) is the reforming reaction small part (12) and the non-reforming reaction small part (13)
And a separator for separating the above. (15) is a pressure loss adjusting means for adjusting a gas distribution ratio when the fuel gas is distributed and supplied to the reforming reaction small part (12) and the non-reforming reaction part small part (13). In the present embodiment, non-catalyst-filled particles having no catalytic function for the reforming reaction are employed in the pressure-loss adjusting means (15), and the non-catalyst-filled particles (15) are appropriately added to the non-reforming reaction small portion (13). The gas distribution ratio is adjusted by filling.

次に動作について説明する。 Next, the operation will be described.

まず、改質反応の進行については次のとおりである。 First, the progress of the reforming reaction is as follows.

燃料ガス流路(4)に導入された炭化水素またはアル
コール類を主要な成分とする燃料ガスは、ある定められ
た比率に従って改質反応小部分(12)と非改質反応小部
分(13)とに分配供給される。改質反応小部分(12)に
は、供給された燃料ガスに含まれる炭化水素やアルコー
ル類が平衡近くまで改良されるに十分な改質触媒(9)
が保持されており、改質反応が進行する。一方、非改質
反応小部分(13)には改質触媒が保持されておらず、改
質反応は実質上殆ど進行しない。改質反応小部分(12)
と非改質反応小部分(13)とより成る改質反応部分(11
a)〜(11e)における改質反応量は改質反応小部分(1
2)における改質反応量に等しく、上記改質反応量は上
記改質反応小部分(12)に供給される燃料ガスの組成お
よび流量によりほぼ決定される。今、改質反応部分(11
a)〜(11e)への燃料ガス組成が一定であると仮定する
と、改質反応小部分(12)と非改質反応小部分(13)と
への燃料ガスの分配比を調節することにより改質反応部
分(11a)〜(11e)での改質反応量を調節することがで
きる。
The fuel gas containing hydrocarbons or alcohols as main components introduced into the fuel gas flow path (4) has a small reforming reaction portion (12) and a small non-reforming reaction portion (13) according to a predetermined ratio. And distributed. In the reforming reaction portion (12), there is sufficient reforming catalyst (9) to improve hydrocarbons and alcohols contained in the supplied fuel gas to near equilibrium.
Is maintained, and the reforming reaction proceeds. On the other hand, the non-reforming reaction small portion (13) does not hold the reforming catalyst, and the reforming reaction hardly proceeds. Reforming reaction small part (12)
And a non-reforming reaction portion (13)
The reforming reaction amount in a) to (11e) is a small part of the reforming reaction (1
The reforming reaction amount is equal to the reforming reaction amount in 2), and the reforming reaction amount is substantially determined by the composition and flow rate of the fuel gas supplied to the reforming reaction small portion (12). Now, the reforming reaction part (11
Assuming that the fuel gas composition in a) to (11e) is constant, by adjusting the distribution ratio of the fuel gas to the reforming reaction small part (12) and the non-reforming reaction small part (13), The amount of reforming reaction in the reforming reaction portions (11a) to (11e) can be adjusted.

上記燃料ガスの分配比は、本実施例では圧力損失調節
手段(15)を用いて、改質反応小部分(12)と比改質反
応小部分(13)とにおける各々の流路抵抗を調節するこ
とにより達成される。
In the present embodiment, the distribution ratio of the fuel gas is adjusted by using the pressure loss adjusting means (15) to adjust the flow resistance of each of the reforming reaction small portion (12) and the specific reforming reaction small portion (13). It is achieved by doing.

上流側の改質反応部分(11a)で炭素水素またはアル
コール類の一部が改質された燃料ガスは下流側の改質反
応部分(11e)へ順次供給され、下流側の改質反応小部
分(12)の改質触媒(9)の働きにより炭化水素または
アルコール類は更に改質される。
The fuel gas in which part of the hydrocarbons or alcohols has been reformed in the upstream reforming reaction section (11a) is sequentially supplied to the downstream reforming reaction section (11e), and the downstream reforming reaction small section. Hydrocarbons or alcohols are further reformed by the action of the reforming catalyst (9) of (12).

次に電池反応の進行については以下のとおりである。 Next, the progress of the battery reaction is as follows.

改質反応小部分(12)に保持された改質触媒(9)の
働きにより改質反応の結果生成された水素または一酸化
炭素は、燃料ガス電極(2)における電気化学反応に供
される。第1図においては改質反応小部分(12)は隔離
板(14)により隣接する燃料ガス電極(2)から空間的
に隔離されている。従って、ある改質反応小部分(12)
で改質反応の結果生み出された水素または一酸化炭素
は、更にその下流にある改質反応部分(11)の比改質反
応小部分(13)に流れて行き、そこで電気化学反応に供
される。改質触媒(9)は隣接する燃料ガス電極(2)
から隔離された空間に保持される必要は必ずしもない
が、一般に改質触媒は燃料ガス電極(2)から蒸発また
は飛散する電解質蒸気により被毒される傾向がある。従
って、長期に安定した運転を目指すためには改質触媒を
隣接する燃料ガス電極(2)から空間的に隔離して保持
することが好ましい。
Hydrogen or carbon monoxide generated as a result of the reforming reaction by the action of the reforming catalyst (9) held in the reforming reaction small portion (12) is subjected to an electrochemical reaction at the fuel gas electrode (2). . In FIG. 1, the reforming reaction sub-portion (12) is spatially separated from the adjacent fuel gas electrode (2) by a separator (14). Therefore, there is a small part of the reforming reaction (12)
The hydrogen or carbon monoxide produced as a result of the reforming reaction flows further down the specific reforming reaction portion (13) of the reforming reaction portion (11) further downstream, where it is subjected to an electrochemical reaction. You. The reforming catalyst (9) is connected to the adjacent fuel gas electrode (2).
Although not necessarily required to be kept in a space isolated from the fuel gas, the reforming catalyst generally tends to be poisoned by the electrolyte vapor evaporated or scattered from the fuel gas electrode (2). Therefore, in order to aim for stable operation for a long period, it is preferable to keep the reforming catalyst spatially separated from the adjacent fuel gas electrode (2).

ここで、本発明による内部改質形燃料電池において
は、燃料ガス流路での燃料ガスの改質反応率の分布は以
下のようにして決定される。一例として燃料ガスはメタ
ン、スチームカーボン比が2.0、650℃、大気圧動作で、
負荷状態にあるとする。一検討結果例による改質反応率
分布を模試的に示したのが第2図である。第2図では各
改質反応部分における改質反応率の変化を直線で近似し
て示している。実際には各改質反応部分では改質反応率
は入口から出口へ漸近的に変化している。
Here, in the internal reforming fuel cell according to the present invention, the distribution of the reforming reaction rate of the fuel gas in the fuel gas flow path is determined as follows. As an example, the fuel gas is methane, steam carbon ratio is 2.0, 650 ℃, atmospheric pressure operation,
It is assumed that there is a load. FIG. 2 schematically shows a reforming reaction rate distribution according to an example of the examination result. In FIG. 2, the change of the reforming reaction rate in each reforming reaction portion is shown by approximation with a straight line. Actually, in each reforming reaction portion, the reforming reaction rate asymptotically changes from the inlet to the outlet.

まず第一の改質反応部分(11a)について説明する。
燃料ガス入口部分での急激な改質反応の進行を防ぐため
第一の改質反応部分(11a)での改質反応小部分(12)
への燃料ガスの分配比率は1/8である。また、第一の改
質反応部分(11a)にある非改質反応小部分(13)を流
れる燃料ガスには水素が殆ど含まれないため、この部分
に面した燃料ガス電極(2)では電気化学反応はあまり
活発には進行しない。従って、第一の改質反応部分(11
a)については可能な範囲で小さく設定することが望ま
しい。通常セルの周辺部で例えば幅10−30mmにわたる外
周部分はウェットシール部分と呼ばれ、有効な電極部分
とは考えられていない。従って、第一の改質反応部分
(11a)を燃料ガスの入口部分のウェットシール部分に
設ければ、電池特性に悪影響を与えることなく燃料ガス
の改質が行える。
First, the first reforming reaction section (11a) will be described.
Small reforming reaction part (12) in first reforming reaction part (11a) to prevent rapid progress of reforming reaction at fuel gas inlet
The distribution ratio of fuel gas to fuel is 1/8. Further, since the fuel gas flowing through the non-reforming reaction small portion (13) in the first reforming reaction portion (11a) hardly contains hydrogen, the fuel gas electrode (2) facing this portion has an electric power. Chemical reactions do not proceed very actively. Therefore, the first reforming reaction part (11
It is desirable to set a) as small as possible. Usually, the outer peripheral portion of the peripheral portion of the cell, which extends over a width of, for example, 10 to 30 mm, is called a wet seal portion, and is not considered to be an effective electrode portion. Therefore, if the first reforming reaction portion (11a) is provided in the wet seal portion at the fuel gas inlet portion, the fuel gas can be reformed without adversely affecting the battery characteristics.

第一の改質反応部分(11a)では設定された分配比に
より、供給された燃料ガスのうち1/8の流量の燃料ガス
が改質反応小部分(12)を流れ、残る7/8の流量の燃料
ガスが非改質反応小部分(13)を流れる。ここで、改質
反応小部分(12)には供給された燃料ガスがほぼ平衡状
態近くにまで改質されるに十分な改質触媒(9)が保持
されている。必要な改質触媒量は従来の反応工学の手法
をもって算出される。燃料ガスがほぼ平衡状態近くにま
で改質されるというこのような反応条件では改質反応小
部分(12)での改質反応量は改質触媒(9)の活性の変
化には鈍感であったり、主として供給される燃焼ガス流
量により決定される。活性の変化に対してメタンの改質
率即ち改質反応量が変化する様子の検討結果例を第3図
に示す。第3図に示すように、改質触媒の活性が例えば
初期の1/10に低下しても改質反応量は初期値のほぼ6割
に低下するだけであり、本反応条件では改質反応量は触
媒活性に対して極めて安定であることがわかる。この理
由は、本発明例では各改質反応小部分(12)において改
質反応がほぼ平衡状態近くにまで進行するように設計さ
れているからで、触媒活性の変化による改質反応速度の
変化は各改質反応小部分(12)における改質反応量にさ
ほど大きな影響を与えない。このような改質反応量の安
定性の程度は改質反応小部分(12)の設計条件に依存し
ており、第3図に明らかなように改質反応小部分(12)
出口のガス組成が平衡状態に近いほど安定性が大きい。
実際には改質反応小部分(12)の設計条件例えば改質触
媒(9)の充填量は、改質触媒(9)の活性低下傾向や
改質反応小部分(12)の空間容積等を勘案して決定され
る。一方非改質反応小部分(13)には改質触媒を保持せ
ず、改質反応は実質上ほとんど進行しない。従って、改
質反応部分(11a)〜(11e)としての改質反応量は改質
反応小部分(12)での改質反応量に等しい。
In the first reforming reaction section (11a), according to the set distribution ratio, 1/8 of the supplied fuel gas flows through the reforming reaction small section (12), and the remaining 7/8 of the supplied fuel gas flows. A flow of fuel gas flows through the non-reforming reaction subsection (13). Here, the reforming reaction small portion (12) holds a reforming catalyst (9) sufficient to reform the supplied fuel gas to near the equilibrium state. The required amount of reforming catalyst is calculated by a conventional reaction engineering technique. Under such a reaction condition that the fuel gas is reformed to near the equilibrium state, the reforming reaction amount in the reforming reaction portion (12) is insensitive to the change in the activity of the reforming catalyst (9). And is determined mainly by the flow rate of the supplied combustion gas. FIG. 3 shows an example of the result of study on how the methane reforming rate, that is, the reforming reaction amount, changes with the change in the activity. As shown in FIG. 3, even if the activity of the reforming catalyst is reduced to, for example, 1/10 of the initial value, the reforming reaction amount is reduced to only about 60% of the initial value. It can be seen that the amount is very stable with respect to the catalytic activity. The reason for this is that, in the present invention, the reforming reaction is designed to proceed to near the equilibrium state in each reforming reaction small portion (12). Does not significantly affect the amount of reforming reaction in each reforming reaction subportion (12). The degree of stability of the reforming reaction amount depends on the design conditions of the reforming reaction portion (12), and as is apparent from FIG.
The closer the gas composition at the outlet is to the equilibrium state, the greater the stability.
Actually, the design conditions of the reforming reaction portion (12), for example, the filling amount of the reforming catalyst (9) are determined by the tendency of the activity of the reforming catalyst (9) to decrease and the space volume of the reforming reaction portion (12). Determined by taking into account. On the other hand, the non-reforming reaction small portion (13) does not hold the reforming catalyst, and the reforming reaction hardly proceeds. Therefore, the reforming reaction amount as the reforming reaction portions (11a) to (11e) is equal to the reforming reaction amount in the reforming reaction small portion (12).

以上、改質反応部分(11a)〜(11e)としての改質反
応量は改質反応小部分(12)への燃料ガスのガス分配比
を適宜設定することにより調節することができる。さら
には、このようにして設定された改質反応量は改質触媒
(9)の触媒活性の変化に対して鈍感であり、長期にわ
たり安定した改質反応量を得ることができる。
As described above, the reforming reaction amounts of the reforming reaction portions (11a) to (11e) can be adjusted by appropriately setting the gas distribution ratio of the fuel gas to the reforming reaction small portion (12). Furthermore, the reforming reaction amount set in this manner is insensitive to a change in the catalytic activity of the reforming catalyst (9), and a stable reforming reaction amount can be obtained over a long period of time.

本検討例では、第二の改質反応部分(11b)でのガス
の分配比を1/4に第三の改質反応部分(11c)でのガスの
分配比を1/3に第四の改質反応部分(11d)でのガスの分
配比を1/2に設定し、第2図に示すように燃料ガス流れ
方向におおむね均一な改質反応の分布が得られるように
した。平面内において均一な温度分布を得るためには電
池反応による発熱量に見合って改質反応を進行させる必
要がある。このような好ましい改質反応量の分布は別途
実験的にまたは反応工学の手法により決定される。その
ような改質反応量の分布は、本発明による手法により、
設定する改質反応部分の数、各改質部分の大きさ、各改
質反応部分に於けるガス分配比、等を適宜調節すること
により得ることができる。
In the present investigation example, the gas distribution ratio in the second reforming reaction section (11b) was reduced to 1/4 and the gas distribution ratio in the third reforming reaction section (11c) was reduced to 1/3. The distribution ratio of the gas in the reforming reaction section (11d) was set to 1/2, so that a substantially uniform distribution of the reforming reaction in the fuel gas flow direction was obtained as shown in FIG. In order to obtain a uniform temperature distribution in a plane, the reforming reaction needs to proceed according to the amount of heat generated by the battery reaction. Such a preferable distribution of the reforming reaction amount is determined separately experimentally or by a technique of reaction engineering. Such a distribution of the reforming reaction amount is determined by the method according to the present invention.
It can be obtained by appropriately adjusting the number of reforming reaction portions to be set, the size of each reforming portion, the gas distribution ratio in each reforming reaction portion, and the like.

また、本検討例では第五の改質反応部分(11e)は改
質反応小部分(12)のみで構成した。燃料ガス流路の下
流になるに従い残メタン濃度が希薄になり、(式−2)
にも明らかなように改質反応速度が小さくなる。このよ
うな条件では改質反応の速度の進行を抑えるための非改
質反応小部分(13)の存在の必要性は相対的に小さくな
る。第五の改質反応部分(11e)から排出された燃料ガ
スはさらに下流側に位置する燃料ガス電極(2)におい
て電気化学反応に利用される。
In the present study example, the fifth reforming reaction part (11e) was composed of only the reforming reaction small part (12). As the downstream side of the fuel gas flow path decreases, the residual methane concentration decreases, and (Equation 2)
As is clear from the above, the reforming reaction rate is reduced. Under such conditions, the necessity of the non-reforming reaction small portion (13) to suppress the progress of the speed of the reforming reaction becomes relatively small. The fuel gas discharged from the fifth reforming reaction part (11e) is used for an electrochemical reaction at a fuel gas electrode (2) located further downstream.

なお、上記実施例では圧力損失調節手段(15)として
非改質反応小部分(13)に非触媒充填粒子を充填し非改
質反応小部分(13)での圧力損失を調節することにより
燃料ガスの分配比を調整した例について説明した。他
に、改質反応小部分(12)と非改質反応小部分(13)と
の流路断面積の比を調節することによってもガスの分配
比を調整でき、上記実施例と同様の効果を奏する。
In the above embodiment, the non-reforming reaction small portion (13) is filled with non-catalyst-filled particles as the pressure loss adjusting means (15), and the pressure loss in the non-reforming reaction small portion (13) is adjusted. The example in which the gas distribution ratio is adjusted has been described. Alternatively, the gas distribution ratio can be adjusted by adjusting the ratio of the cross-sectional area of the flow passage between the reforming reaction small portion (12) and the non-reforming reaction small portion (13). To play.

また、燃料ガス側流路形成材(6)として第4図に示
す酸化ガス側流路側形成材(7)のような波板状の形成
材を用いれば、その片面の流路を改質反応小部分(1
2)、残る片面の流路を非改質反応小部分(13)と設定
でき、容易に本実施例を実現できる。
Also, if a corrugated plate-like forming material such as the oxidizing gas-side flow path forming material (7) shown in FIG. 4 is used as the fuel gas-side flow path forming material (6), the flow path on one side is reformed. Small part (1
2) The remaining one-side channel can be set as the non-reforming reaction small portion (13), and this embodiment can be easily realized.

[発明の効果] 以上のように、この発明によれば、改質反応領域を燃
料ガスの内部で燃料ガスの流れ方向に直列に設けた複数
の改質反応部分より構成し、さらに上記改質反応部分を
改質反応が進行する改質反応小部分と改質反応が進行し
ない非改質反応小部分とに分割して構成するとともに、
圧力調節手段により両反応小部分に供給する燃料ガスの
流量の比を個々調節することにより各改質反応部分に於
ける改質反応の反応量を制御し、全体として改質反応領
域における燃料ガス流れ方向の改質反応量の分布を制御
するように構成したので、長期にわたり安定して均一な
温度分布が得られ、かつ安定した改質触媒の活性および
電池特性を有する内部改質形燃料電池を得ることができ
る。
[Effects of the Invention] As described above, according to the present invention, the reforming reaction region includes a plurality of reforming reaction portions provided in series in the fuel gas flow direction inside the fuel gas, and further includes the reforming reaction region. The reaction portion is divided into a reforming reaction small portion where the reforming reaction proceeds and a non-reforming reaction small portion where the reforming reaction does not proceed, and
By controlling the ratio of the flow rate of the fuel gas supplied to both reaction small portions individually by the pressure adjusting means, the reaction amount of the reforming reaction in each reforming reaction portion is controlled, and the fuel gas in the reforming reaction region as a whole is controlled. An internal reforming fuel cell that is configured to control the distribution of the amount of reforming reaction in the flow direction, so that a stable and uniform temperature distribution is obtained over a long period of time, and that the activity and cell characteristics of the reforming catalyst are stable. Can be obtained.

【図面の簡単な説明】 第1図はこの発明の一実施例による内部改質形燃料電池
の主要部を示す断面図、第2図はこの発明の一実施例に
よる内部改質形燃料電池における燃料ガス流路での燃料
ガスの改質率の分布を示す特性図、第3図はこの発明の
一実施例による内部改質形燃料電池における改質反応小
部分での改質反応量の触媒活性依存性を示す特性図、第
4図は従来の内部改質形燃料電池の構造を示す斜視図、
第5図は改質触媒の活性の経時変化を示す特性図であ
る。 図において、(1)は電解質層、(2)は燃料ガス電
極、(3)は酸化ガス電極、(4)は燃料ガス経路、
(5)は酸化ガス流路、(9)は改質触媒、(11a)〜
(11e)は改質反応部分、(12)は改質反応小部分、(1
3)は非改質反応小部分、(14)は隔離板である。 なお、図中同一符号は同一または相当部分を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing a main part of an internal reforming fuel cell according to an embodiment of the present invention, and FIG. FIG. 3 is a characteristic diagram showing the distribution of the reforming rate of the fuel gas in the fuel gas flow path, and FIG. 3 is a catalyst showing the amount of the reforming reaction in a small reforming reaction in the internal reforming fuel cell according to one embodiment of the present invention. FIG. 4 is a characteristic diagram showing activity dependency, FIG. 4 is a perspective view showing the structure of a conventional internal reforming fuel cell,
FIG. 5 is a characteristic diagram showing the change over time in the activity of the reforming catalyst. In the figure, (1) is an electrolyte layer, (2) is a fuel gas electrode, (3) is an oxidizing gas electrode, (4) is a fuel gas path,
(5) is an oxidizing gas flow path, (9) is a reforming catalyst, (11a) to
(11e) is the reforming reaction part, (12) is the reforming reaction small part, (1
3) is a small part of the non-reforming reaction, and (14) is a separator. In the drawings, the same reference numerals indicate the same or corresponding parts.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−140560(JP,A) 特開 昭61−58174(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 8/02 H01M 8/06 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-140560 (JP, A) JP-A-61-58174 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 8/02 H01M 8/06

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】燃料ガス電極と酸化ガス電極とを電解質層
を介して対向するように配置した単電池、上記燃料ガス
電極に対して設けられ改質触媒を保持することにより改
質反応を進行せしめる機能を有する燃料ガス流路、及び
上記酸化ガス電極に対して設けられた酸化ガス流路を備
える燃料電池において、 上記改質触媒を保持し改質反応が進行する改質反応小部
分と、改質触媒を保持せずに改質反応が進行しない非改
質反応小部分と、上記改質反応小部分と上記非改質反応
小部分への燃料ガスの分配比を制御する圧力損失調節手
段とよりなり、所定の燃料ガスの分配比をもって燃料ガ
スの一部が上記改質反応小部分に分配供給されるととも
に燃料ガスの残部が上記非改質反応小部分に分配供給さ
れる改質反応部分を、上記燃料ガス流路の内部で燃料ガ
スの流れ方向に沿って複数個直列に設け、上記燃料ガス
流路における燃料ガス流れ方向の改質反応量の所定の分
布が得られるよう、上記各改質反応部分における燃料ガ
スの分配比を相互に調節するようにしたことを特徴とす
る内部改質型燃料電池。
1. A unit cell in which a fuel gas electrode and an oxidizing gas electrode are arranged to face each other with an electrolyte layer interposed therebetween, and a reforming reaction proceeds by holding a reforming catalyst provided for the fuel gas electrode. A fuel gas flow path having a function of squeezing, and a fuel cell including an oxidizing gas flow path provided for the oxidizing gas electrode, wherein a reforming reaction small portion in which a reforming reaction proceeds while holding the reforming catalyst; A non-reforming reaction small portion in which the reforming reaction does not proceed without holding the reforming catalyst; and a pressure loss adjusting means for controlling a distribution ratio of the fuel gas to the reforming reaction small portion and the non-reforming reaction small portion. And a reforming reaction in which a part of the fuel gas is distributed and supplied to the small reforming reaction portion with a predetermined fuel gas distribution ratio, and the remainder of the fuel gas is distributed and supplied to the non-reforming reaction small portion. Part inside the fuel gas flow path A plurality of fuel gas distribution directions are provided in series along the flow direction of the fuel gas, and the distribution ratio of the fuel gas in each of the reforming reaction portions is adjusted so that a predetermined distribution of the reforming reaction amount in the fuel gas flow direction in the fuel gas flow path is obtained. The internal reforming fuel cell is characterized in that the fuel cell and the fuel cell are mutually adjusted.
【請求項2】圧力損失調節手段は、改質反応に関与しな
い非触媒充填粒子であることを特徴とする請求項1記載
の内部改質型燃料電池。
2. The internal reforming fuel cell according to claim 1, wherein the pressure loss adjusting means is non-catalyst-filled particles that do not participate in the reforming reaction.
【請求項3】圧力損失調節手段は、改質反応小部分と非
改質反応小部分との流路断面積の比を調節するものであ
ることを特徴とする請求項1記載の内部改質型燃料電
池。
3. The internal reforming apparatus according to claim 1, wherein the pressure loss adjusting means adjusts a ratio of a cross-sectional area of the flow passage between the small reforming reaction portion and the small non-reforming reaction portion. Type fuel cell.
JP2234688A 1990-09-04 1990-09-04 Internal reforming fuel cell Expired - Fee Related JP2940108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2234688A JP2940108B2 (en) 1990-09-04 1990-09-04 Internal reforming fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2234688A JP2940108B2 (en) 1990-09-04 1990-09-04 Internal reforming fuel cell

Publications (2)

Publication Number Publication Date
JPH04115463A JPH04115463A (en) 1992-04-16
JP2940108B2 true JP2940108B2 (en) 1999-08-25

Family

ID=16974872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2234688A Expired - Fee Related JP2940108B2 (en) 1990-09-04 1990-09-04 Internal reforming fuel cell

Country Status (1)

Country Link
JP (1) JP2940108B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7638226B2 (en) * 2004-07-13 2009-12-29 Ford Motor Company Apparatus and method for controlling kinetic rates for internal reforming of fuel in solid oxide fuel cells
KR101155910B1 (en) * 2005-03-16 2012-06-20 삼성에스디아이 주식회사 Stack capable of reforming action and fuel cell system with the same

Also Published As

Publication number Publication date
JPH04115463A (en) 1992-04-16

Similar Documents

Publication Publication Date Title
US5843195A (en) Apparatus for reducing carbon monoxide concentration, apparatus for reducing methanol concentration, and fuel reformer utilizing the same
US4647516A (en) Internal reforming type fuel cell
RU2186019C2 (en) Method and device for reduction of carbon monoxide concentration and catalyst for selective oxidation of carbon monoxide
EP1770813B1 (en) Fuel cell system
US4615955A (en) Fuel cell
US20020031458A1 (en) Method of and apparatus for reforming fuel and fuel-cells system with fuel-reforming apparatus incorporated therein
JPS62252077A (en) Fule cell generator
KR100964054B1 (en) Catalytic combustor
US6238817B1 (en) Gas injection system for treating a fuel cell stack assembly
JP2940108B2 (en) Internal reforming fuel cell
JPH07296834A (en) Fuel cell power plant and operating method for reformer of plant
JPH11310402A (en) Carbon monoxide concentration reducing system, carbon monoxide concentration reduction, and production of carbon monoxide selectively oxidative catalyst
JPS6032255A (en) Internally reformed type fuel cell
JPH05325996A (en) Fuel cell of internally reform type fused carbonate
JPH0622144B2 (en) Fuel cell
JP2002151098A (en) Fuel cell
JP2676995B2 (en) Reforming reactor
JP4747469B2 (en) Combustion device
JP3575650B2 (en) Molten carbonate fuel cell
JPH0240862A (en) Internal reforming type fuel cell
JPS63310574A (en) Internal reforming type fuel cell
JP2734716B2 (en) Internal reforming fuel cell
JPH08138697A (en) Fuel cell
JPH06267562A (en) Solid high polymer electrolyte fuel cell
JP2971543B2 (en) Internal reforming fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees