JPS6269470A - Internal-reformation fuel cell - Google Patents

Internal-reformation fuel cell

Info

Publication number
JPS6269470A
JPS6269470A JP60209896A JP20989685A JPS6269470A JP S6269470 A JPS6269470 A JP S6269470A JP 60209896 A JP60209896 A JP 60209896A JP 20989685 A JP20989685 A JP 20989685A JP S6269470 A JPS6269470 A JP S6269470A
Authority
JP
Japan
Prior art keywords
fuel
electrode
reforming
oxidizer
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60209896A
Other languages
Japanese (ja)
Inventor
Yohei Yamamoto
洋平 山本
Shoichi Kaneko
彰一 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP60209896A priority Critical patent/JPS6269470A/en
Publication of JPS6269470A publication Critical patent/JPS6269470A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To very easily and uniformly transfer heat between the place of heat generation in electrochemical reaction and that of heat absorption in reforming reaction, increase the production of reformed gas, simplify the construction of an internal-reformation fuel cell and make it compact, by directly reforming fuel in a fuel electrode also serving as a fuel reforming catalyst. CONSTITUTION:A fuel electrode 2-a, an oxidizer electrode 3-a facing the fuel electrode across an electrolyte matrix 1, fuel passages 9 defined by ribs located in contact with the fuel electrode, oxidizer passages 6 defined by ribs located in contact with the oxidizer electrode, and separators 4-a defining the fuel passages and the oxidizer passages together with the ribs are provided. Fuel is directly reformed in the fuel electrode 2-a also serving as a fuel reforming catalyst 10. As a result, heat is very easily and uniformly transferred between the place of heat absorption in reforming reaction and that of heat generation in electrochemical reaction.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、例えば炭化水素などの燃料を電池内部で改質
しながら発電を行なう内部改質型燃料電池に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an internal reforming fuel cell that generates power while reforming a fuel such as hydrocarbon inside the cell.

〔従来の技術〕[Conventional technology]

従来、内部改質型燃料電池として、例えば特開昭60−
32255号公報に記載されている内部改質型燃料電池
が知られている。上記した従来の内部改質型燃料電池に
ついて、第3図によシ以下説明する。第3図において、
lは多孔性のセラミックスで構成され、その空隙に炭酸
塩を含浸している電解質マトリックス、2は多孔性のニ
ッケル等で構成された燃料電極、3は多孔性の酸化ニッ
ケル等で構成された酸化剤電極であシ、燃料電極2と酸
化剤電極3は電解質マトリックス1を介して対向するよ
うだ配置され、これらで単電池が構成されている。4は
燃料ガスと酸化剤ガスを区分スルセパレーターであシ、
5のリブが設けられている。酸化剤電極3とリブ付セパ
レーター4の間に酸化剤通路6が形成されている。7は
燃料電極2に接して設けられ、燃料通過のため多数の穴
を有すると共にリブ8を設けた燃料側スペーサーである
。燃料側スペーサー7と七ノ’?レーク−4の間に燃料
通路9を形成している。10は燃料通路9に充填された
燃料改質触媒である。以上によシ内部改質型燃料電池が
構成される。
Conventionally, as an internal reforming type fuel cell, for example,
An internal reforming fuel cell described in Japanese Patent No. 32255 is known. The conventional internal reforming fuel cell described above will be explained below with reference to FIG. In Figure 3,
1 is an electrolyte matrix composed of porous ceramics and its voids are impregnated with carbonate, 2 is a fuel electrode composed of porous nickel, etc., and 3 is an oxide matrix composed of porous nickel oxide, etc. The agent electrode, the fuel electrode 2, and the oxidizer electrode 3 are arranged so as to face each other with an electrolyte matrix 1 interposed therebetween, and these constitute a single cell. 4 is a separator that separates fuel gas and oxidizing gas;
5 ribs are provided. An oxidant passage 6 is formed between the oxidant electrode 3 and the ribbed separator 4. Reference numeral 7 denotes a fuel side spacer which is provided in contact with the fuel electrode 2, has many holes for fuel passage, and is provided with ribs 8. Fuel side spacer 7 and Nanano'? A fuel passage 9 is formed between the lakes 4. 10 is a fuel reforming catalyst filled in the fuel passage 9. As described above, an internal reforming fuel cell is constructed.

上記構成を有する内部改質型燃料電池において、燃料通
路9に炭化水素などの燃料と水蒸気が供給されると、燃
料改質型触媒10の触媒反応によシ、炭化水素は水蒸気
と反応し、水素、−酸化炭素および二酸化炭素に変換さ
れる。炭化水素がメタンの場合には、この反応は以下の
式で表わされ、水素、−酸化炭素、二酸化炭素およびメ
タンの組成は、反応条件によって定まる平衡値となる。
In the internal reforming fuel cell having the above configuration, when fuel such as a hydrocarbon and steam are supplied to the fuel passage 9, the hydrocarbon reacts with the steam due to a catalytic reaction of the fuel reforming catalyst 10, Hydrogen, - converted to carbon oxide and carbon dioxide. When the hydrocarbon is methane, this reaction is expressed by the following formula, and the composition of hydrogen, carbon oxide, carbon dioxide, and methane is an equilibrium value determined by the reaction conditions.

CH4+H20oCO+3H2 H20十CO二CO2+H2 生成した水素および一酸化炭素は燃料側スペーサー7に
設けられた穴を通り、多孔性の燃料電極2の細孔内を拡
散する。一方、酸化剤通路6には空気と二酸化炭素が供
給され、多孔性の酸化剤電極3の細孔内を拡散する。電
解質マトリックスに含浸され、電池動作温度の650℃
付近では溶融状態となっている炭酸塩、電極2.3およ
び上記水素および一酸化炭素と、酸素による電気化学反
応によシ反応ガスが消費され、電極2および3間に電位
が生じ、外部に電力として取シ出される。
CH4+H20oCO+3H2 H20+CO2CO2+H2 The generated hydrogen and carbon monoxide pass through the holes provided in the fuel side spacer 7 and diffuse within the pores of the porous fuel electrode 2. On the other hand, air and carbon dioxide are supplied to the oxidant passage 6 and diffused within the pores of the porous oxidant electrode 3 . Impregnated with electrolyte matrix, cell operating temperature 650℃
Nearby, the reactive gas is consumed by an electrochemical reaction between the molten carbonate, electrode 2.3, and the hydrogen and carbon monoxide mentioned above, and oxygen, and a potential is generated between electrodes 2 and 3, causing an electric potential to flow outside. It is extracted as electricity.

燃料改質触媒上で起こる改質反応は吸熱反応であシ、反
応を持続させるために必要な熱量は、上記電気化学反応
に伴なう非可逆反応による発熱が燃料電極2および燃料
スペーサー・6を介I−で燃料改質触媒10に供給され
る。このように電池の中で発熱反応と吸熱反応を組合せ
ることによシ伝熱が効率的に行え、ために熱効率および
発電効率が高いことが内部改質型燃料電池の特徴である
The reforming reaction that occurs on the fuel reforming catalyst is an endothermic reaction, and the amount of heat required to sustain the reaction is due to the heat generated by the irreversible reaction accompanying the electrochemical reaction. The fuel is supplied to the fuel reforming catalyst 10 via I-. In this way, by combining exothermic and endothermic reactions in the cell, heat transfer can be carried out efficiently, and therefore, the internal reforming fuel cell is characterized by high thermal efficiency and high power generation efficiency.

ところが、単電池内部では電解質マトリックスおよびそ
の近傍の電極付近で電気化学反応に伴う発熱があシ高温
となるのに対し、燃料改質触媒部分では吸熱の改質反応
のため温度が低下することだなる。この結果、電解質マ
トリックスから燃料改質触媒に向って熱移動が起る。し
かしながら、炭化水素などの燃料ガスは燃料改質触媒上
で水素あるいは一酸化炭素に変換された後に燃料電極に
移動し発電するため、ガス(物質)の移動は熱移動と反
対方向になる。なめに、熱移動と物質移動が同方向で起
る場合に比較して熱移動が起シにくくなる。
However, inside a single cell, the electrolyte matrix and the vicinity of the electrodes generate heat due to electrochemical reactions, resulting in high temperatures, whereas the temperature in the fuel reforming catalyst decreases due to an endothermic reforming reaction. Become. This results in heat transfer from the electrolyte matrix towards the fuel reforming catalyst. However, since fuel gas such as hydrocarbon is converted into hydrogen or carbon monoxide on a fuel reforming catalyst and then transferred to a fuel electrode to generate electricity, the movement of gas (substance) is in the opposite direction to the movement of heat. In other words, heat transfer is less likely to occur than when heat transfer and mass transfer occur in the same direction.

また、炭化水素などの燃料ガスの水素および一酸化炭素
への改質が燃料改質触媒上で起った後に、燃料電極上で
その水素および一酸化炭素の消費が起る。すなわち、水
素および一酸化炭素の生成と消費が同時に起らないため
、生成する水素および一酸化炭素の生成量は化学平衡で
定まる量を越えることができないという限界があった。
Also, after reforming of a fuel gas, such as a hydrocarbon, to hydrogen and carbon monoxide occurs on a fuel reforming catalyst, consumption of the hydrogen and carbon monoxide occurs on the fuel electrode. That is, since the production and consumption of hydrogen and carbon monoxide do not occur simultaneously, there is a limit that the amount of hydrogen and carbon monoxide produced cannot exceed the amount determined by chemical equilibrium.

加えるに、従来の内部改質型燃料電池は燃料改質触媒お
よび燃料側スペーサーが必要なため、電池の薄層化が難
しい。また、燃料改質触媒は既存の水素製造用のペレン
ト状あるいはタブレット状の触媒を破砕、整粒して充填
するという工程を必要とすると共に、発電運転中にその
均一充填に留意する必要があった。
In addition, conventional internal reforming fuel cells require a fuel reforming catalyst and a spacer on the fuel side, making it difficult to make the cell thin. In addition, fuel reforming catalysts require the process of crushing, sizing, and filling existing pellet- or tablet-shaped catalysts for hydrogen production, and it is also necessary to pay attention to uniform filling during power generation operation. Ta.

以上は、前記特開昭60−32255号公報において、
従来技術として開示されたものについて説明したが、該
公開公報に記載された発明は、上記従来技術の改良に係
るものであるが、上記従来技術における内部改質型燃料
電池において、燃料通路の燃料の流れ方向に直角な断面
積を上記燃料の流れ方向に向かって拡大することによシ
上記燃、料の流れ方向に燃料改質反応を均一化し、ひい
ては電池内の温度分布を一様化することに止まり、また
該発明の範囲に包含されるものとして類似の技術につい
て簡単な記載がなされているが、共に前記した従来技術
における基本的な諸問題を解消するには至らず、しかも
構造がさらに複雑化している欠点がある。
The above is described in the above-mentioned Japanese Patent Application Laid-Open No. 60-32255,
What has been disclosed as the prior art has been described, and the invention described in the publication relates to an improvement on the above prior art. By enlarging the cross-sectional area perpendicular to the flow direction of the fuel toward the flow direction of the fuel, the fuel reforming reaction is made uniform in the flow direction of the fuel, and the temperature distribution within the cell is thereby made uniform. However, although similar techniques are briefly described as falling within the scope of the invention, they do not solve the basic problems of the prior art described above, and furthermore, the structure is There are drawbacks that make it even more complex.

〔発明の目的〕[Purpose of the invention]

本発明は、従来の内部改質型燃料電池における上記諸欠
点が同時に解消された内部改質型燃料電池を提供するこ
とを目的とするものである。
An object of the present invention is to provide an internal reforming fuel cell in which the above-mentioned drawbacks of conventional internal reforming fuel cells are simultaneously eliminated.

本発明は、第1に電気化学反応に伴う発熱と、改質反応
に伴う吸熱との間における熱移動が極めて容易、かつ均
等に行なわれる内部改質型燃料電池を提供することを目
的とするものである。
The first object of the present invention is to provide an internal reforming fuel cell in which heat transfer between the heat generated by the electrochemical reaction and the heat absorbed by the reforming reaction is carried out extremely easily and evenly. It is something.

本発明は、第2に改質ガスが生成後、改質反応条件下に
おける平衡状態に保持される場合に比べて改質がスの生
成量を増大せしめ、発電効率の高い内部改質型燃料電池
を提供することを目的とするものである。
Second, the present invention provides an internally reformed fuel that increases the amount of gas produced by reforming compared to the case where the reformed gas is maintained in an equilibrium state under reforming reaction conditions after it is generated, and has high power generation efficiency. The purpose is to provide batteries.

本発明は、第3に構造が簡単で、短時間で容易に製作す
ることが可能であシ、かつ特に複数個積層して用いた場
合に小型化することのできる内部改質型燃料電池を提供
することを目的とするものである。
Thirdly, the present invention provides an internal reforming fuel cell which has a simple structure, can be easily manufactured in a short time, and can be downsized especially when used in a stacked manner. The purpose is to provide

〔目的を達成するための技術的手段〕[Technical means to achieve the purpose]

すなわち、本発明は燃料電極と酸化剤電極とを電解質マ
トリックスを介して対向するように配置されてなる内部
改質型燃料電池において、燃料が燃料改質触媒を兼ねる
燃料電極内で直接改質されることを特徴とする内部改質
型燃料電池を提供するものである。
That is, the present invention provides an internal reforming fuel cell in which a fuel electrode and an oxidizer electrode are arranged to face each other with an electrolyte matrix interposed therebetween, in which fuel is directly reformed within the fuel electrode that also serves as a fuel reforming catalyst. The present invention provides an internal reforming fuel cell characterized by:

さらに詳しくは、本発明は燃料電極、該燃料電極と電解
質マトリックスを介して対向するように配置された酸化
剤電極、該燃料電極に接するリブによ多形成される燃料
通路、酸化剤電極に接するリブによ多形成される酸化剤
通路、および前記リブと共に前記燃料通路および前記酸
化剤通路を形成する七ノやレータ−よシなシ、燃料が燃
料改質触媒を兼ねる燃料電極内で直接改質されることを
特徴とする内部改質型燃料電池を提供するものである。
More specifically, the present invention provides a fuel electrode, an oxidizer electrode disposed to face the fuel electrode with an electrolyte matrix in between, a fuel passage formed by a rib in contact with the fuel electrode, and a fuel passageway in contact with the oxidizer electrode. The oxidizer passages formed by the ribs, and the oxidizer passages that form the fuel passages and the oxidizer passages together with the ribs, allow the fuel to be directly reformed in the fuel electrode that also serves as a fuel reforming catalyst. The present invention provides an internal reforming fuel cell characterized by:

本発明に用いられる燃料電極は、該電極内で改質反応を
行なわせることが可能な限り特に制限はなく、従来公知
の燃料電極、例えば平板状であって、多孔質のニッケル
、ニッケルとクロムの合金等で構成さる電極が使用可能
であり、多孔質の電極が好ましく、触媒作用の面からそ
の表面積の大きいものが特に好ましい。
The fuel electrode used in the present invention is not particularly limited as long as the reforming reaction can be carried out within the electrode, and it may be a conventionally known fuel electrode, for example, a flat plate-shaped fuel electrode made of porous nickel, nickel and chromium. Porous electrodes are preferred, and those with a large surface area are particularly preferred from the viewpoint of catalytic action.

本発明の内部改質型燃料電池に適用される燃料は、メタ
ン等の炭化水素である。
The fuel applied to the internal reforming fuel cell of the present invention is a hydrocarbon such as methane.

本発明の内部改質型燃料電池に用いられる酸化剤電極、
電解質マトリックス等であって、特に制限のないものは
従来公知のものを適用することができる。
Oxidizer electrode used in the internal reforming fuel cell of the present invention,
As the electrolyte matrix and the like, there are no particular limitations, and conventionally known ones can be used.

本発明の内部改質型燃料電池におけるセパレーターとし
ては、その両面にリブを有し、燃料電極に接する一方の
リブによシ燃料通路が形成され、酸化剤電極に接する他
方のリブによシ酸化剤通路が形成されるか、あるいは平
板状であって、燃料電極に接する一方の面と、燃料電極
と一体に形成されたリブとによシ燃料通路が形成され、
酸化剤!@に接する他の面と、酸化剤電極と一体に形成
されたリブとにより酸化剤通路が形成されるごとき構造
のものが好ましい。
The separator in the internal reforming fuel cell of the present invention has ribs on both sides, one rib in contact with the fuel electrode forms a fuel passage, and the other rib in contact with the oxidizer electrode forms a fuel passage. A fuel passage is formed in the fuel electrode, or a fuel passage is formed in a planar shape with one side in contact with the fuel electrode and a rib formed integrally with the fuel electrode,
Oxidant! It is preferable to have a structure in which an oxidizing agent passage is formed by the other surface in contact with @ and a rib formed integrally with the oxidizing agent electrode.

本発明の内部改質型燃料電池は、前記燃料電極、該燃料
電極と電解質マトリックスを介して対向するように配置
された酸化剤電極、前記燃料通路、前記酸化剤通路およ
び前記セ・ぞレータ−により構成され、この構成単位を
2細身上積層して用いるのに好適である。
The internal reforming fuel cell of the present invention includes the fuel electrode, the oxidizer electrode arranged to face the fuel electrode via an electrolyte matrix, the fuel passage, the oxidizer passage, and the separator. It is suitable for use by laminating two slender structural units.

〔実施例〕〔Example〕

以下添付図面によシ本発明をさらに具体的に説明する。 The present invention will be explained in more detail below with reference to the accompanying drawings.

第1図は、本発明の内部改質型燃料電池の第1の実施態
様の1例を示す説明のだめの概略図である。第1図にお
いて、1は多孔質のセラミックスで構成され、その空隙
に炭酸塩が含浸されている電解質マトリックスで17.
2−aは多孔質のニッケル等で構成された平板状の燃料
電極であり、3−aは多孔質の酸化ニッケル等で構成さ
れた平板状酸化剤電極であり、燃料電極2−aと酸化剤
電極3−aとは電解質マトリックス1を介して対向する
ように配置されている。4−aはその両面にそれぞれ燃
料電極2−aに接するリブ11および酸化剤電極3−a
K接するリブ5を有する七ノPレータ−であって、上記
リブ11とそれが接する燃料電極2−aの面とによシ燃
料通路9が形成され、上記リブ5とそれが接する酸化剤
電極3−aの面とによシ酸化剤通路6が形成される。こ
のようにして、本発明の第1の実施態様における内部改
質型燃料電池が構成される。
FIG. 1 is a schematic diagram for illustrating an example of the first embodiment of the internal reforming fuel cell of the present invention. In FIG. 1, 1 is an electrolyte matrix composed of porous ceramics whose voids are impregnated with carbonate; 17.
2-a is a flat fuel electrode made of porous nickel, etc.; 3-a is a flat oxidizer electrode made of porous nickel oxide, etc.; It is arranged to face the agent electrode 3-a with the electrolyte matrix 1 interposed therebetween. 4-a has a rib 11 and an oxidizer electrode 3-a on both sides of which are in contact with the fuel electrode 2-a, respectively.
A seven-point Plator having ribs 5 in contact with each other, a fuel passage 9 is formed between the rib 11 and the surface of the fuel electrode 2-a with which it contacts, and a fuel passage 9 is formed between the rib 5 and the surface of the fuel electrode 2-a with which it contacts. An oxidizing agent passage 6 is formed with the surface 3-a. In this way, the internal reforming fuel cell according to the first embodiment of the present invention is constructed.

第2図は本発明の内部改質型燃料電池の第2の実施態様
の1例全示す説明のための概略図である。
FIG. 2 is an explanatory schematic diagram showing an example of the second embodiment of the internal reforming fuel cell of the present invention.

第2図において、1は多孔質のセラミックスで構成され
、その空隙に炭酸塩が含浸されている電解質マトリック
スであり、2−bは多孔質のニッケル等で構成され、一
体に形成されたリブ13を有する燃料電極であり、3−
bは多孔質の酸化ニッケル等で構成され、一体に形成さ
れたリブ12を有する酸化剤電極であり、燃料電極2−
bと酸化剤電極3−bとは電解質マ) IJフックスを
介して対向するように配置されている。4−bは平板状
の七ノやレータ−であって、前記リブ13と該リブ13
に接するセパレーター4−bの一方の面とにより燃料通
路9が形成され、前記リブ12とリブ12に接する七ノ
やレータ−4−bの他の面とにより酸化剤通路6が形成
される。このようにして本発明の第2の実施態様におけ
る内部改質型燃料電池が構成される。
In FIG. 2, 1 is an electrolyte matrix made of porous ceramics whose voids are impregnated with carbonate, and 2-b is an integrally formed rib 13 made of porous nickel, etc. It is a fuel electrode having 3-
b is an oxidizer electrode made of porous nickel oxide or the like and has integrally formed ribs 12;
The oxidizer electrode 3-b and the electrolyte electrode 3-b are arranged to face each other via an IJ hook. 4-b is a flat plate-like lattice plate, which is connected to the rib 13 and the rib 13.
A fuel passage 9 is formed by one surface of the separator 4-b that is in contact with the rib 12, and an oxidizer passage 6 is formed by the rib 12 and the other surface of the separator 4-b that is in contact with the rib 12. In this way, the internal reforming fuel cell according to the second embodiment of the present invention is constructed.

上記した本発明の第1および第2の実施態様を示す第1
図および第2図により本発明の内部改質型燃料電池の作
用について以下説明する。第1図または第2図において
、炭化水素などの燃料と水蒸気が、燃料通路9より直接
燃料電極2−aまたは2−bに供給され、多孔質の該燃
料電極内で燃料の改質反応が直ちに起り、炭化水素など
の燃料は水蒸気と反応して水素、−酸化炭素および二酸
化炭素が生成される。このようにして生成された水素お
よび一酸化炭素は、生成と同時に該燃料電極内で前記電
解質マトリックスよシのイオンと電気化学的に反応して
直ちに消費される。この改質ガスの生成と消費は同時に
、かつ燃料電極内の実質上全域において起るため、改質
反応に基づく吸熱と電気化学反応に伴う発熱との間の熱
移動は極めて容易かつ均等であり、しかも生成された改
質ガスが生成と同時に消費されることなく平衡状態に保
持されている場合に比べて化学平衡の移動の原理にした
がって、よシ多量の改質ガス、すなわち水素および一酸
化炭素が生成され、発電のために用いられる。
A first embodiment showing the first and second embodiments of the present invention described above.
The operation of the internal reforming fuel cell of the present invention will be explained below with reference to the drawings and FIG. In FIG. 1 or 2, fuel such as hydrocarbon and water vapor are directly supplied to the fuel electrode 2-a or 2-b from the fuel passage 9, and a reforming reaction of the fuel occurs within the porous fuel electrode. Immediately, a fuel such as a hydrocarbon reacts with water vapor to produce hydrogen, carbon oxides and carbon dioxide. The hydrogen and carbon monoxide thus produced react electrochemically with the ions of the electrolyte matrix in the fuel electrode at the same time as they are produced, and are immediately consumed. Since the production and consumption of this reformed gas occur simultaneously and over substantially the entire area within the fuel electrode, heat transfer between the heat absorption due to the reforming reaction and the heat generated due to the electrochemical reaction is extremely easy and uniform. Moreover, according to the principle of shifting chemical equilibrium, a much larger amount of reformed gas, i.e., hydrogen and monoxide Carbon is produced and used to generate electricity.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、第1に燃料電極内で改質反応と電気化
学反応とが同時に行なわれるので、改質反応に伴う吸熱
と電気化学反応に伴う発熱との間だおける熱移動が極め
て容易、かつ均等に行なわれる内部改質型燃料電池、第
2に改質反応生成がスを、生成と同時に電気化学反応に
よって消費させるので、化学平衡の移動の原理にしたが
って、改質反応条件下における化学平衡状態に保持され
る場合に比べて改質ガスの生成量を増大せしめ、発電効
率の高い内部改質型燃料電池、および第3に燃料電極と
は別に燃料改質触媒に用いるという当該技術分野におけ
る従来の観念を打破し、従来の内部改質型燃料電池に訃
いて必須とされていた燃料改質触媒および燃料側スペー
サーを省略することができるため、構造が簡単で、短時
間で容易に製作することが可能であり、かつ特に複数個
積層して用いた場合に小型化することのできる内部改質
型燃料電池がそれぞれ提供される。
According to the present invention, firstly, the reforming reaction and the electrochemical reaction are performed simultaneously within the fuel electrode, so heat transfer between the heat absorption accompanying the reforming reaction and the heat generation accompanying the electrochemical reaction is extremely easy. , and an internal reforming fuel cell in which the reforming reaction is carried out evenly.Secondly, the reforming reaction produces gas and consumes it through an electrochemical reaction at the same time as it is produced. An internal reforming fuel cell that increases the amount of reformed gas produced and has high power generation efficiency compared to the case where the reformed gas is maintained in a chemical equilibrium state, and thirdly, this technology is used as a fuel reforming catalyst separate from the fuel electrode. Breaking away from conventional ideas in the field, it is possible to omit the fuel reforming catalyst and fuel side spacer, which were required in conventional internal reforming fuel cells, resulting in a simple structure that is quick and easy. The present invention provides an internal reforming fuel cell that can be manufactured in a number of ways, and that can be downsized, especially when used in a stacked manner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の内部改質型燃料電池の第1の実施態
様の1例を示す説明のための概略図である。第2図は、
本発明の内部改質型燃料電池の第2の実施態様の1例を
示す説明のための概略図である。第3図は、従来の内部
改質型燃料電池の説明のための概略図である。 第1図〜第3図において: 1・・・電解質マトリックス;2,2−a、2−b・・
・燃料電極:3,3−a、3−b・・・酸化剤電極:4
 、4− a 、 4− b−・・セパレーター: 5
,8,11 。 12.13・・・リブ;6・・・酸化剤通路;7・・・
燃料側ス被−サー;9・・・燃料通路;10・・・燃料
改質触媒。
FIG. 1 is a schematic diagram for explaining an example of a first embodiment of an internal reforming fuel cell of the present invention. Figure 2 shows
FIG. 3 is a schematic diagram for explaining an example of a second embodiment of the internal reforming fuel cell of the present invention. FIG. 3 is a schematic diagram for explaining a conventional internal reforming fuel cell. In Figures 1 to 3: 1... Electrolyte matrix; 2, 2-a, 2-b...
・Fuel electrode: 3, 3-a, 3-b... Oxidizer electrode: 4
, 4-a, 4-b-... Separator: 5
, 8, 11. 12.13... Rib; 6... Oxidizer passage; 7...
Fuel side cover; 9...Fuel passage; 10...Fuel reforming catalyst.

Claims (1)

【特許請求の範囲】[Claims] 1、燃料電極と酸化剤電極とを電解質マトリックスを介
して対向するように配置されてなる内部改質型燃料電池
において、燃料が燃料改質触媒を兼ねる燃料電極内で直
接改質されることを特徴とする内部改質型燃料電池。
1. In an internal reforming fuel cell in which a fuel electrode and an oxidizer electrode are arranged to face each other via an electrolyte matrix, the fuel is directly reformed within the fuel electrode which also serves as a fuel reforming catalyst. Features an internal reforming fuel cell.
JP60209896A 1985-09-20 1985-09-20 Internal-reformation fuel cell Pending JPS6269470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60209896A JPS6269470A (en) 1985-09-20 1985-09-20 Internal-reformation fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60209896A JPS6269470A (en) 1985-09-20 1985-09-20 Internal-reformation fuel cell

Publications (1)

Publication Number Publication Date
JPS6269470A true JPS6269470A (en) 1987-03-30

Family

ID=16580436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60209896A Pending JPS6269470A (en) 1985-09-20 1985-09-20 Internal-reformation fuel cell

Country Status (1)

Country Link
JP (1) JPS6269470A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864771A (en) * 1981-09-29 1983-04-18 ウエスチングハウス・エレクトリック・コーポレーション Fuel battery generating device and method of operating same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864771A (en) * 1981-09-29 1983-04-18 ウエスチングハウス・エレクトリック・コーポレーション Fuel battery generating device and method of operating same

Similar Documents

Publication Publication Date Title
US4454207A (en) Steam reforming of fuel to hydrogen in fuel cells
CN100377402C (en) Stack having improved cooling structure and fuel cell system having the same
US8034496B2 (en) Fuel cell
JP2005243647A (en) Reformer of fuel cell system and fuel cell system using the same
JP4956946B2 (en) Fuel cell
JP4682511B2 (en) Solid oxide fuel cell
JP4897273B2 (en) Fuel cell
JP4501367B2 (en) Fuel cell
JP2737535B2 (en) Internal reforming molten carbonate fuel cell
JP4513282B2 (en) Fuel cell
JPH03283266A (en) Solid electrolyte fuel cell of inside reformed type
JPS6032255A (en) Internally reformed type fuel cell
JP2001006695A (en) Separator of fuel cell
JPH1167258A (en) Fuel cell
JP3575650B2 (en) Molten carbonate fuel cell
JPS63310574A (en) Internal reforming type fuel cell
JPS6269470A (en) Internal-reformation fuel cell
JPS6298567A (en) Fuel cell
JP2001023651A (en) Separator for fuel cell
JP2005019034A (en) Solid oxide fuel cell
JPH10106592A (en) Module of solid electrolyte fuel cell
JP2816473B2 (en) Solid oxide fuel cell module
JPS6247968A (en) Molten carbonate fuel cell capable of internal reformation
JP4706191B2 (en) Solid oxide fuel cell
JP2604393B2 (en) Internal reforming molten carbonate fuel cell