JP2804769B2 - Internal reforming fuel cell - Google Patents

Internal reforming fuel cell

Info

Publication number
JP2804769B2
JP2804769B2 JP1013182A JP1318289A JP2804769B2 JP 2804769 B2 JP2804769 B2 JP 2804769B2 JP 1013182 A JP1013182 A JP 1013182A JP 1318289 A JP1318289 A JP 1318289A JP 2804769 B2 JP2804769 B2 JP 2804769B2
Authority
JP
Japan
Prior art keywords
fuel gas
electrolyte
flow path
reforming catalyst
gas electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1013182A
Other languages
Japanese (ja)
Other versions
JPH02195653A (en
Inventor
佳秀 言上
千賀 平井
槐 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1013182A priority Critical patent/JP2804769B2/en
Publication of JPH02195653A publication Critical patent/JPH02195653A/en
Application granted granted Critical
Publication of JP2804769B2 publication Critical patent/JP2804769B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、内部改質形燃料電池、特に、内部改質機
能の実現及び内部改質触媒の高性能化・長寿命化を図つ
た内部改質形燃料電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an internal reforming fuel cell, and more particularly, to an internal reforming fuel cell that realizes an internal reforming function and achieves high performance and long life of an internal reforming catalyst. The present invention relates to a reformed fuel cell.

〔従来の技術〕[Conventional technology]

第6図は例えば特公昭59−24504号公報に示されてい
る従来の内部改質形燃料電池の構成の一部を示す縦断面
図である。
FIG. 6 is a longitudinal sectional view showing a part of the configuration of a conventional internal reforming fuel cell disclosed in, for example, Japanese Patent Publication No. 59-24504.

図において、符号(1)は電解質層、(2)は電解質
層(1)に隣接する燃料ガス電極、(3)は電解質層
(1)を介して燃料ガス電極(2)と対向する酸化ガス
電極、(4a)は燃料ガス電極(2)を支持し且つ発生し
た電流を通過せしめる燃料ガス側集電板、(4b)は酸化
ガス電極(3)を支持し且つ発生した電流を通過せしめ
る酸化ガス側集電板、(5a)及び(5b)はそれぞれ燃料
ガス流路、酸化ガス流路を形成するための燃料ガス流路
形成材、及び、酸化ガス流路形成材、(6)は燃料ガス
電極(2)に対向して設けられている燃料ガス流路と、
酸化ガス電極(3)に対向して設けられている酸化ガス
流路とを分離するセパレータ板、(7)は燃料ガス流路
に設けられている改質触媒である。
In the drawing, reference numeral (1) denotes an electrolyte layer, (2) denotes a fuel gas electrode adjacent to the electrolyte layer (1), and (3) denotes an oxidizing gas opposed to the fuel gas electrode (2) via the electrolyte layer (1). The electrode, (4a) is a fuel gas side current collector supporting the fuel gas electrode (2) and passing generated current, and (4b) is an oxidation supporting the oxidized gas electrode (3) and passing generated current. The gas-side current collector, (5a) and (5b) are fuel gas flow path forming materials for forming a fuel gas flow path and an oxidizing gas flow path, respectively, and an oxidizing gas flow path forming material, and (6) is a fuel. A fuel gas flow path provided to face the gas electrode (2);
A separator plate for separating the oxidizing gas channel provided opposite to the oxidizing gas electrode (3), and (7) is a reforming catalyst provided in the fuel gas channel.

ここで、電解質層(1)、燃料ガス電極(2)及び酸
化ガス電極(3)により単電池が構成され、内部改質形
燃料電池は、この単電池、燃料ガス側集電板(4a)、酸
化ガス側集電板(4b)、燃料ガス流路形成材(5a)及び
酸化ガス流路形成材(5b)をセパレータ板(6)を介し
て複数積層した積層体を成し、第6図はその要部を示し
ているものである。なお、図中、矢印Aは酸化ガスの流
れ方向に示し、矢印Bは燃料ガスの流れ方向を示してい
る。
Here, a unit cell is constituted by the electrolyte layer (1), the fuel gas electrode (2), and the oxidizing gas electrode (3), and the internal reforming fuel cell includes the unit cell, the fuel gas side current collector (4a) And a oxidizing gas side current collector (4b), a fuel gas flow path forming material (5a), and an oxidizing gas flow path forming material (5b), which are stacked on each other with a separator plate (6) interposed therebetween. The figure shows the main part. In the drawing, arrow A indicates the flow direction of the oxidizing gas, and arrow B indicates the flow direction of the fuel gas.

次に動作について説明する。 Next, the operation will be described.

炭化水素又はアルコール類・スチームを主成分とする
燃料ガスが矢印B方向から供給され、酸素と二酸化炭素
とを主要成分とする酸化ガスが矢印A方向から供給され
て、十字流形式でそれぞれ燃料ガス流路、酸化ガス流路
に導入される。
Fuel gas mainly containing hydrocarbons or alcohols / steam is supplied in the direction of arrow B, and oxidizing gas mainly containing oxygen and carbon dioxide is supplied in the direction of arrow A. It is introduced into the flow path and the oxidizing gas flow path.

燃料ガス中の炭化水素は改質触媒(7)の作用によ
り、下式(1),(2),(3)に示すように水素及び
一酸化炭素を主成分とする燃料ガスに改質される。
Hydrocarbon in the fuel gas is reformed by the action of the reforming catalyst (7) into a fuel gas containing hydrogen and carbon monoxide as main components as shown in the following formulas (1), (2) and (3). You.

この反応は全体としては吸熱反応であり、燃料電池で
副生する熱エネルギーを直接利用する。
This reaction is an endothermic reaction as a whole, and directly uses heat energy produced as a by-product in the fuel cell.

CH4+H2O→CO+3H2+49.3kcal/mol …(1) CO+H2O→CO2+H2−9.8kcal/mol …(3) 式(1),(2),(3)に示す反応に従い、燃料ガ
ス流路内で生成した水素・一酸化炭素は、燃料ガス側集
電板(4a)の孔部分を通り、燃料ガス電極(2)に達
し、次式(4),(5)に示すような反応を起こす。
CH 4 + H 2 O → CO + 3H 2 + 49.3kcal / mol… (1) CO + H 2 O → CO 2 + H 2 −9.8 kcal / mol (3) According to the reactions shown in equations (1), (2) and (3), hydrogen and carbon monoxide generated in the fuel gas flow path The fuel gas passes through the hole of the gas-side current collector plate (4a), reaches the fuel gas electrode (2), and reacts as shown in the following equations (4) and (5).

CO+H2O→H2+CO2 …(5) 一方、矢印Aで供給された酸化ガス中の酸素・二酸化
炭素は酸化ガス側集電板(4b)の孔部分を通り、(6)
式に示すような反応を起こす。
CO + H 2 O → H 2 + CO 2 (5) On the other hand, oxygen and carbon dioxide in the oxidizing gas supplied by the arrow A pass through the hole of the oxidizing gas side current collector (4b), and (6)
The reaction shown in the equation occurs.

これらの化学・電気化学反応を通して燃料ガスの持つ
ている化学エネルギーが電気エネルギーと副生する熱エ
ネルギーとに変換される。
Through these chemical and electrochemical reactions, the chemical energy of the fuel gas is converted into electrical energy and by-product thermal energy.

先に述べたように、この副生する熱エネルギーの殆ん
どがガス流路内において炭化水素の分解の反応熱に利用
されて大巾な熱効率の改善をもたらし、これが内部改質
方式の特徴の一つとなつている。
As mentioned earlier, most of this by-product thermal energy is used for the reaction heat of hydrocarbon decomposition in the gas flow path, resulting in a large improvement in thermal efficiency, which is a feature of the internal reforming method. It has become one of.

ここで、改質触媒(7)は例えばアルミナ,マグネシ
アを主成分とする担体上に触媒としても活性を有するニ
ツケルを担持させたものであるが、一般にこのような改
質触媒(7)は電解質の汚染に対して弱く、電解質に汚
染されることにより触媒として活性が大巾に低下する。
Here, the reforming catalyst (7) is, for example, a carrier having nickel or magnesia as a main component, on which nickel having activity as a catalyst is supported. Generally, such a reforming catalyst (7) is composed of an electrolyte. , And its activity as a catalyst is greatly reduced by being contaminated by the electrolyte.

これは、電解質層(1)中の電解質が通常蒸気又は飛
沫の形で燃料ガス流路に移動して改質触媒(7)を汚染
し、改質触媒(7)の活性を低下せしめるからである。
This is because the electrolyte in the electrolyte layer (1) usually moves in the form of vapor or droplets to the fuel gas flow path and contaminates the reforming catalyst (7), thereby reducing the activity of the reforming catalyst (7). is there.

このような電解質による改質触媒(7)の活性低下を
防止する手段としては、改質触媒と燃料ガス電極との間
に電解質成分を燃料ガスから除去する電解質除去物質を
備えたものが発明されている。
As means for preventing such a decrease in the activity of the reforming catalyst (7) due to the electrolyte, a device provided with an electrolyte removing substance for removing an electrolyte component from the fuel gas between the reforming catalyst and the fuel gas electrode has been invented. ing.

第7図に示すものは、特開昭62−186471号公報に示さ
れている電解質除去物質(8)を備えた内部改質形燃料
電池の構成の一部を示す縦断面図である。
FIG. 7 is a longitudinal sectional view showing a part of the configuration of an internal reforming fuel cell provided with an electrolyte removing substance (8) disclosed in Japanese Patent Application Laid-Open No. 62-186471.

この電解質除去物質(8)は、例えば粒子状で、燃料
ガス側流路形成材(5a)により形成される燃料ガス流路
で燃料ガス側集電板(4a)に接した空間に配置されてい
る。また、燃料ガス流路のセパレータ板(6)に接した
空間には改質触媒(7)が配置されている。
The electrolyte removing substance (8) is, for example, in the form of particles and is disposed in a space in contact with the fuel gas side current collector plate (4a) in the fuel gas flow path formed by the fuel gas side flow path forming material (5a). I have. Further, a reforming catalyst (7) is disposed in a space in contact with the separator plate (6) in the fuel gas flow path.

この実施例においては、燃料ガス中に含まれる電解質
成分は電解質除去物質(8)と化学反応して除去され、
改質触媒(7)が電解質成分に汚染されるのを防ぎ、長
期に安定して改質触媒(7)の触媒活性を保持すること
が可能となる。
In this embodiment, the electrolyte component contained in the fuel gas is removed by a chemical reaction with the electrolyte removing substance (8),
It is possible to prevent the reforming catalyst (7) from being contaminated by the electrolyte component and to stably maintain the catalytic activity of the reforming catalyst (7) for a long period of time.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の内部改質電池は、電解質除去物質をガス流路の
燃料ガス側集電板(4a)に接した空間に配置し、改質触
媒をセパレータ板(6)に接した空間に配置し、燃料ガ
スの入口・出口において改質触媒充填部(12)と電解質
除去物質充填部(13)とが両方とも開口しているため、
電解質除去物質充填部(13)に流れ込んだ炭化水素スチ
ームを主成分とする燃料ガスは未改質のまま電池外へ排
出され、電池内の水素分圧が低下し、内部改質電池の出
力電圧が低下するという問題点があった。
In a conventional internal reforming battery, an electrolyte removing substance is arranged in a space in contact with a fuel gas side current collector plate (4a) of a gas flow path, and a reforming catalyst is arranged in a space in contact with a separator plate (6). Since the reforming catalyst filling section (12) and the electrolyte removal substance filling section (13) are both open at the inlet and outlet of the fuel gas,
The fuel gas containing hydrocarbon steam as a main component, which has flowed into the electrolyte removing material filling section (13), is discharged out of the cell without being reformed, the hydrogen partial pressure in the cell is reduced, and the output voltage of the internal reforming cell is reduced. However, there is a problem that the temperature is reduced.

また、燃料ガス電極で電池反応に供した燃料ガスが電
解質除去物質充填部に流れ、改質触媒充填部には流れに
くいため、内部改質電池の特徴である電池反応による改
質反応の促進が小さく、高効率発電が実現できないとい
う問題点があり、また、電解質除去物質充填部に改質触
媒を充填し、この問題点を回避しようとしても、この部
分の触媒は電解質による活性低下を生じるという問題点
があつた。従来装置は、このような問題点を解決したい
という課題を有していた。
In addition, since the fuel gas supplied to the battery reaction at the fuel gas electrode flows to the electrolyte removing substance filling portion and hardly to the reforming catalyst filling portion, the reforming reaction is promoted by the battery reaction which is a feature of the internal reforming battery. There is a problem that it is not possible to realize high-efficiency power generation due to its small size. There was a problem. The conventional device has a problem to solve such a problem.

この発明は、上記のような課題を解決するためになれ
たもので、電解質除去物質を使って電解質の悪影響によ
る改質触媒の活性低下を防ぎつつ、燃料ガスが未改質の
まま電池外へ排出されることのないように燃料ガス流路
を構成した内部改質形燃料電池を得ることを目的とす
る。
The present invention has been made to solve the above-described problems, and uses an electrolyte removing substance to prevent a reduction in the activity of a reforming catalyst due to an adverse effect of an electrolyte and to allow a fuel gas to escape from a cell without being reformed. It is an object of the present invention to obtain an internal reforming fuel cell having a fuel gas flow path so as not to be discharged.

〔課題を解決するための手段〕[Means for solving the problem]

この発明に係る内部改質形燃料電池は、燃料ガス流路
を改質触媒充填部とこれをはさんで両側に隣接して設け
た電解質除去物質充填部とに分割構成し、かつ改質触媒
充填部は燃料ガス電極から隔離された部分、電解質除去
物質充填部は燃料ガス電極に開口する部分であるように
それぞれ構成し、燃料ガスをまず触媒充填部に流して改
質反応を起こさせ、次いで、流路間に圧力差を生じさせ
て上記改質した燃料ガスを燃料ガス電極に流して電池反
応を起こさせ、次いで電解質除去物質により燃料ガス中
の電解質成分を除去した後、再び次の触媒充填部に流れ
るように燃料ガス流路を構成しているものである。
An internal reforming fuel cell according to the present invention is configured such that a fuel gas flow path is divided into a reforming catalyst filling section and electrolyte removing substance filling sections provided adjacently on both sides with the reforming catalyst filling section interposed therebetween. The filling portion is configured to be a portion separated from the fuel gas electrode, and the electrolyte removing substance filling portion is configured to be a portion opened to the fuel gas electrode, and the fuel gas is first flowed to the catalyst filling portion to cause a reforming reaction, Next, a pressure difference is generated between the flow paths to flow the reformed fuel gas to the fuel gas electrode to cause a cell reaction. Then, after the electrolyte component in the fuel gas is removed by the electrolyte removing substance, the next step is performed again. The fuel gas flow path is configured to flow to the catalyst filling section.

〔作 用〕(Operation)

この発明においては、電池反応に供した電解質成分を
含む燃料ガスは電解質除去物質により電解質成分のみを
除去された後、次の触媒充填部に流れるため、改質触媒
は電解質による悪影響を受けることなく長期に亘つて安
定に動作し、電池反応による改質反応の進行が促進され
る。
In the present invention, the fuel gas containing the electrolyte component subjected to the battery reaction flows to the next catalyst filling section after only the electrolyte component is removed by the electrolyte removing substance, so that the reforming catalyst is not adversely affected by the electrolyte. It operates stably for a long period of time, and promotes the progress of the reforming reaction by the battery reaction.

〔実施例〕〔Example〕

以下、この発明をその一実施例を示す図に基づいて説
明する。
Hereinafter, the present invention will be described with reference to the drawings showing one embodiment.

第1図において、従来例同様、(1)は電解質層、
(2)は燃料ガス電極、(3)は酸化ガス電極、(4a)
は燃料ガス側集電板、(4b)は酸化ガス側集電板、(5
a)は燃料ガス流路形成材、(5b)は酸化ガス流路形成
材、(6)はセパレータ板、(7)は改質触媒である。
In FIG. 1, (1) is an electrolyte layer,
(2) fuel gas electrode, (3) oxidizing gas electrode, (4a)
Is the fuel gas side current collector, (4b) is the oxidizing gas side current collector, (5
a) is a fuel gas flow path forming material, (5b) is an oxidizing gas flow path forming material, (6) is a separator plate, and (7) is a reforming catalyst.

次に符号(8)は燃料ガス中の電解質成分を除去する
機能を有する電解質除去物質である。また、図中の矢印
Aは、従来例と同様に酸化ガスの流れ方向を示し、矢印
Bは燃料ガスの流れ方向を示している。
Next, reference numeral (8) denotes an electrolyte removing substance having a function of removing an electrolyte component in the fuel gas. Arrow A in the figure indicates the flow direction of the oxidizing gas as in the conventional example, and arrow B indicates the flow direction of the fuel gas.

なお、従来例では燃料ガス電極(2)を上部に、ま
た、酸化ガス電極(3)を下部としていたが、この実施
例では電解質のしみ上りにより触媒への付着を防ぐため
に逆の構成にしている。
In the conventional example, the fuel gas electrode (2) is located at the upper part and the oxidizing gas electrode (3) is located at the lower part. However, in this embodiment, the structure is reversed in order to prevent the electrolyte from adhering to the catalyst due to soaking up. I have.

次に第2図にの実施例を燃料ガス側流路形成材(5a)
の構成を示す。
Next, the embodiment shown in FIG.
Is shown.

これは凹凸面が連続する波板状になつており、燃料ガ
ス入口(P)において燃料ガス電極に開口する凹面側の
流路の入口を閉塞し、燃料ガス電極から隔離された凸面
側の流路の入口を開口するように構成されている。凹面
側流路と凸面側流路の間には、ガスの流通が可能になる
ようスリツト(9)が設けられている。
This is a corrugated plate having a continuous concave and convex surface. The fuel gas inlet (P) closes the inlet of the concave-side flow path that opens to the fuel gas electrode, and the convex-side flow path isolated from the fuel gas electrode. It is configured to open the entrance of the road. A slit (9) is provided between the concave side flow path and the convex side flow path so that gas can flow.

第3図にこの実施例における燃料ガスの流れを示す。 FIG. 3 shows the flow of the fuel gas in this embodiment.

燃料ガスは燃料ガス入口(P)で凸面側流路の改質触
媒充填部(12)に入り、スリツト(9)を通過後、凹面
側流路の電解質除去物質充填部(13)を通つて、再び次
の改質触媒充填部(12)に流れる。
The fuel gas enters the reforming catalyst filling section (12) of the convex side flow path at the fuel gas inlet (P), passes through the slit (9), and then passes through the electrolyte removing substance filling section (13) of the concave side flow path. Again flows to the next reforming catalyst filling section (12).

次に、この実施例の内部改質形燃料電池の動作につい
て説明する。
Next, the operation of the internal reforming fuel cell of this embodiment will be described.

炭化水素又はアルコール類を主要な成分とする燃料ガ
スは、触媒充填部(12)の流路に流入し、改質触媒
(7)の作用により、式(1),(2),(3)に従つ
て、水素・一酸化炭素を主成分とするガスに改質され
る。
The fuel gas containing hydrocarbons or alcohols as main components flows into the flow path of the catalyst filling section (12), and is operated by the reforming catalyst (7) to obtain the equations (1), (2), and (3). Accordingly, the gas is reformed into a gas containing hydrogen and carbon monoxide as main components.

この改質触媒(7)は燃料ガス電極とは流路板により
隔離されており、電解質による悪影響を受けない。
The reforming catalyst (7) is separated from the fuel gas electrode by a flow path plate, and is not adversely affected by the electrolyte.

次に、改質された燃料ガスは、この流路の出口側が閉
塞されているため、圧力差を生じ、スリツト(9)を通
過して、燃料ガス電極に開口する凹面側の流路に流れ、
燃料ガス側集電板(4a)の孔部分を拡散し燃料ガス電極
(2)に供給される。
Next, since the outlet side of this flow path is closed, the reformed fuel gas generates a pressure difference, passes through the slit (9), and flows into the concave flow path opening to the fuel gas electrode. ,
The holes in the fuel gas side current collector (4a) are diffused and supplied to the fuel gas electrode (2).

燃料ガス電極(2)に供給された水素・一酸化炭素は
燃料ガス電極(2)において式(4),(5)に示すよ
うな電気化学・化学反応により消費され、電気エネルギ
ーと副生する熱エネルギーとを生み出すとともに、反応
生成物として水蒸気および二酸化炭素を生成する。
The hydrogen / carbon monoxide supplied to the fuel gas electrode (2) is consumed in the fuel gas electrode (2) by an electrochemical / chemical reaction represented by the formulas (4) and (5), and is produced as electric energy. It produces heat energy and produces steam and carbon dioxide as reaction products.

生成された水蒸気及び二酸化炭素中には電解質成分が
含まれ、このまま放置すると、これより下流側の改質触
媒の活性を低下させる。
The generated water vapor and carbon dioxide contain an electrolyte component, and if left as it is, the activity of the reforming catalyst downstream therefrom is reduced.

従つて、電解質成分を除去するために、燃料ガス電極
(2)に開口する流路に電解質除去物質(8)が充填さ
れている。電解質除去物質(8)としては、電解質成分
であるリチウム、カリウムあるいはナトリウム等アルカ
リ金属と反応性の強いSiO2,TiO2,B2O3,Al2O3等のうち少
なくとも1種類以上の成分を含有する多孔性酸化物粒子
を使用する。この電解質除去物質(8)の作用により電
解質成分が除去された燃料ガスは、第3図の燃料ガスの
流れに示すように、次の改質触媒充填部(12)へ流れ込
み、未反応の炭化水素が改質される。
Therefore, in order to remove the electrolyte component, the flow path opening to the fuel gas electrode (2) is filled with the electrolyte removing substance (8). As the electrolyte removing substance (8), at least one or more of SiO 2 , TiO 2 , B 2 O 3 , Al 2 O 3, etc., which are highly reactive with an alkali metal such as lithium, potassium or sodium as an electrolyte component Is used. The fuel gas from which the electrolyte components have been removed by the action of the electrolyte removing substance (8) flows into the next reforming catalyst filling section (12) as shown in the flow of the fuel gas in FIG. Hydrogen is reformed.

以上の作用を繰り返すことにより、改質触媒は、電解
質の悪影響を受けることなく、長時間に亘つて触媒活性
を維持し、電池反応による改質反応の進行を促進するこ
とができる。
By repeating the above operation, the reforming catalyst can maintain the catalytic activity for a long time without being adversely affected by the electrolyte, and can promote the progress of the reforming reaction by the battery reaction.

なお、上記実施例では燃料ガス流路形成材を凹凸の波
板状にして凹面側の入口と凸面側の出口を閉塞して流路
間に圧力差を生じさせたが、この発明を実現させるもの
としては、上記の方法に限らない。
In the above embodiment, the fuel gas flow path forming material is made corrugated with irregularities, and the inlet on the concave side and the outlet on the convex side are closed to generate a pressure difference between the flow paths. The method is not limited to the above method.

例えば、第4図に示すように、燃料ガス流路の凸面側
に流路方向に斜めの仕切板(10)を設け、2個の流路
(14)(15)に分割し、燃料ガスを第1の触媒充填部の
流路(14)に流し、流路の断面を下流方向に行くに従つ
て減少させ、その圧力差によつて、凹面側の電解質除去
物質(8)の流路(16)へ移動させた後、断面が下流方
向に増加する第2の触媒充填部の流路(15)に流すこと
によつても同等の効果を得ることができる。
For example, as shown in FIG. 4, a partition plate (10) that is inclined in the direction of the flow path is provided on the convex side of the fuel gas flow path, and divided into two flow paths (14) and (15). The fluid flows into the flow path (14) of the first catalyst-filled portion, and the cross section of the flow path decreases as going downstream, and the pressure difference causes the flow path ( After moving to 16), the same effect can be obtained by flowing the flow through the flow path (15) of the second catalyst filling section whose cross section increases in the downstream direction.

また、別の実施例として、第5図に示すような凹凸の
波板を半ピツチづつずらして千鳥配置にし、燃料ガスを
凸面側の触媒充填部から凹面側の電解質除去物質充填部
に流し、再び次の凸面側触媒充填部に流すことによつて
も同等の効果を得ることができる。
In another embodiment, corrugated corrugated sheets as shown in FIG. 5 are displaced by half pitch to form a zigzag arrangement, and fuel gas is flowed from the catalyst-filling portion on the convex side to the electrolyte-removing-material filling portion on the concave side, The same effect can be obtained by flowing again to the next convex-surface-side catalyst filling section.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、内部改質形燃料電
池において燃料ガス流路を改質触媒充填部と電解質除去
物質充填部とに分割し、流路間の圧力差により燃料ガス
が触媒充填部から電解質除去物質充填部に流れた後、再
び次の触媒充填部に流れるように構成して、燃料ガス中
の電解質を除去しているので、改質触媒は電解質の悪影
響を受けず、触媒活性を長期に亘つて維持し、内部改質
電池の特徴である電池反応による改質反応の進行を促進
し、ひいては、これより、長期に亘つて安定で高効率の
内部改質形燃料電池を得ることができる効果を有してい
る。
As described above, according to the present invention, in the internal reforming fuel cell, the fuel gas flow path is divided into the reforming catalyst filling section and the electrolyte removal substance filling section, and the fuel gas is catalyzed by the pressure difference between the flow paths. After flowing from the filling section to the electrolyte removing substance filling section, it is configured to flow again to the next catalyst filling section to remove the electrolyte in the fuel gas, so that the reforming catalyst is not adversely affected by the electrolyte, The catalyst activity is maintained for a long period of time, and the progress of the reforming reaction by the cell reaction, which is a characteristic of the internal reforming cell, is promoted. Is obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例による内部改質形燃料電池
の構成を示す部分斜視図、第2図は第1図の燃料ガス流
路材の配置図、第3図は第1図の動作時の燃料ガスの流
れを示した説明図、第4図及び第5図Aはこの発明の他
の2種類の実施例に係る燃料ガスの流れを示す説明図、
第5図Bは第5図Aの燃料ガス流路材を示す部分斜視
図、第6図は従来の内部改質電池の構成を示す部分斜視
図、第7図は従来の電解質除去物質を備えた内部改質形
燃料電池の部分斜視図である。 (1)……電解質層、(2)……燃料ガス電極、(3)
……酸化ガス電極、(4a)……燃料ガス側集電板、(4
b)……酸化ガス側集電板、(5a)……燃料ガス流路形
成材、(5b)……酸化ガス流路形成材、(6)……セパ
レータ板、(7)……改質触媒、(8)……電解質除去
物質、(9)……スリツト、(12)……改質触媒充填
部、(13)……電解質除去物質充填部。 なお、各図中、同一符号は同一又は相当部分を示す。
FIG. 1 is a partial perspective view showing the configuration of an internal reforming fuel cell according to one embodiment of the present invention, FIG. 2 is a layout view of the fuel gas flow path member of FIG. 1, and FIG. FIG. 4A and FIG. 5A are explanatory diagrams showing the flow of fuel gas during operation, and FIG. 4A is an explanatory diagram showing the flow of fuel gas according to two other embodiments of the present invention;
5B is a partial perspective view showing the fuel gas flow channel material of FIG. 5A, FIG. 6 is a partial perspective view showing the structure of a conventional internal reforming battery, and FIG. 7 is provided with a conventional electrolyte removing substance. FIG. 2 is a partial perspective view of the internal reforming fuel cell that has been used. (1) ... electrolyte layer, (2) ... fuel gas electrode, (3)
… Oxidizing gas electrode, (4a)… Fuel gas side current collector, (4
b) Oxidizing gas side current collector, (5a) ... fuel gas flow path forming material, (5b) ... oxidizing gas flow path forming material, (6) ... separator plate, (7) ... reforming Catalyst, (8) ... electrolyte removing substance, (9) ... slit, (12) ... reforming catalyst filling section, (13) ... electrolyte removing substance filling section. In the drawings, the same reference numerals indicate the same or corresponding parts.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 8/00 - 8/24──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 8/00-8/24

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電解質層を介して対向する燃料ガス電極と
酸化ガス電極とから成る単電池、及び、燃料ガス電極に
対向して設けられている燃料ガス流路と酸化ガス電極に
対向して設けられている酸化ガス流路とを分離するセパ
レータ板を交互に積層して成る燃料電池積層体におい
て、上記燃料ガス流路を、相互に隣接する複数個の改質
触媒充填部と電解質除去物質充填部とに分割構成すると
共に、上記改質触媒充填部は上記燃料ガス電極から隔離
された部分、上記電解質除去物質充填部は上記燃料ガス
電極に開口する部分であるように構成し、燃料ガスが上
記改質触媒充填部から電解質除去物質充填部へ流れた
後、再び次の改質触媒充填部に流れるように流路間に圧
力差を生ぜしめるように構成していることを特徴とする
内部改質形燃料電池。
1. A unit cell comprising a fuel gas electrode and an oxidizing gas electrode facing each other with an electrolyte layer interposed therebetween, and a fuel gas flow path provided opposite the fuel gas electrode and an oxidizing gas electrode facing the oxidizing gas electrode. In a fuel cell stack formed by alternately stacking separator plates separating an oxidizing gas flow path provided, the fuel gas flow path includes a plurality of adjacent reforming catalyst filling portions and an electrolyte removing material. And the fuel gas electrode, wherein the reforming catalyst filling portion is a portion separated from the fuel gas electrode, and the electrolyte removal substance filling portion is a portion opened to the fuel gas electrode. Flows from the reforming catalyst filling section to the electrolyte removal substance filling section, and then causes a pressure difference between the flow paths so as to flow again to the next reforming catalyst filling section. Internal reforming fuel cell.
JP1013182A 1989-01-24 1989-01-24 Internal reforming fuel cell Expired - Lifetime JP2804769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1013182A JP2804769B2 (en) 1989-01-24 1989-01-24 Internal reforming fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1013182A JP2804769B2 (en) 1989-01-24 1989-01-24 Internal reforming fuel cell

Publications (2)

Publication Number Publication Date
JPH02195653A JPH02195653A (en) 1990-08-02
JP2804769B2 true JP2804769B2 (en) 1998-09-30

Family

ID=11826038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1013182A Expired - Lifetime JP2804769B2 (en) 1989-01-24 1989-01-24 Internal reforming fuel cell

Country Status (1)

Country Link
JP (1) JP2804769B2 (en)

Also Published As

Publication number Publication date
JPH02195653A (en) 1990-08-02

Similar Documents

Publication Publication Date Title
AU685908B2 (en) Electrochemical fuel cell assembly with integral selective oxidizer
US7022430B2 (en) Compact fuel cell with improved fluid supply
JPH081810B2 (en) Internal reforming molten carbonate fuel cell
JP2581662B2 (en) Fuel cell generator
JPH03105865A (en) Inside reformed type fuel cell and power plant using it
JPH04355061A (en) Fuel cell
KR20150029646A (en) Solid oxide fuel cell or solid oxide electrolyzing cell and method for operating such a cell
WO2004038841A1 (en) Fuel cell
US4818639A (en) Molten carbonate electrolyte creepage barrier
JP2804769B2 (en) Internal reforming fuel cell
JPH0147863B2 (en)
JP2006114386A (en) Fuel cell
JPS63310574A (en) Internal reforming type fuel cell
JP2001006695A (en) Separator of fuel cell
US4704340A (en) Molten carbonate electrolyte creepage barrier
JP2604393B2 (en) Internal reforming molten carbonate fuel cell
JP3055227B2 (en) Fuel cell
JP4344584B2 (en) Fuel cell
JPH0773057B2 (en) Internal reforming fuel cell
JPH0240862A (en) Internal reforming type fuel cell
JP2004186139A (en) Fuel cell
JPH03216962A (en) Fuel cell
JPH02195654A (en) Internally reformed fuel cell
JP2751523B2 (en) Internal reforming fuel cell
JPH0656765B2 (en) Molten carbonate fuel cell