JPH01165768A - Formation of film by reactive sputtering - Google Patents

Formation of film by reactive sputtering

Info

Publication number
JPH01165768A
JPH01165768A JP32445587A JP32445587A JPH01165768A JP H01165768 A JPH01165768 A JP H01165768A JP 32445587 A JP32445587 A JP 32445587A JP 32445587 A JP32445587 A JP 32445587A JP H01165768 A JPH01165768 A JP H01165768A
Authority
JP
Japan
Prior art keywords
film
gas
thickness
time
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32445587A
Other languages
Japanese (ja)
Inventor
Yoshiaki Mori
義明 森
Haruo Saegusa
三枝 晴夫
Toshihiro Tomioka
富岡 俊浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP32445587A priority Critical patent/JPH01165768A/en
Publication of JPH01165768A publication Critical patent/JPH01165768A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve the adhesion of a film and to form the film having the desired characteristics with the film thickness or time by fixing the gas pumping speed, and changing the supply flow rates of an inert gas and/or an active gas with the film thickness or time. CONSTITUTION:A target 13 (metal) and a substrate 3 are arranged in a sputtering chamber 11 in opposition to each other, the inside of the chamber 11 is evacuated to a high vacuum, and the inert gas and active gas are introduced into the chamber 11 from respective inlets 14 and 16 through mass-flow controllers 15 and 17. When an electric discharge is started, a reactive insulating film 2 (oxide film and nitride film) incorporating a gaseous reactant molecule 4 is deposited on the substrate 3. The active gas flow rate is gradually decreased from the thickness or time 6, and finally diminished to zero at the thickness or time 5. In the region 7 between the times 6 and 5, the amt. of the molecule 4 to be incorporated into the film is gradually decreased in the thickness direction of the film, the interface 5 with the metal film 1 is not clear and forms a buffer layer, and the internal stress generated between the films 2 and 1 is relieved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は反応性スパッタリングの成膜方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a film forming method using reactive sputtering.

〔従来の技術〕[Conventional technology]

従来の反応性スパッタリングの成膜法としては、第3図
(b)に示すが如(膜厚あるいは時間に関係なく、ガス
排気速度および活性ガス、不活性ガスの流量を変化させ
ることなくスパッタ圧力を一定に保つ方法が一般的であ
る。
The conventional reactive sputtering film forming method is as shown in Figure 3(b) (the sputtering pressure is controlled without changing the gas exhaust speed and the flow rates of active gas and inert gas, regardless of film thickness or time). A common method is to keep the value constant.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前述の従来技術では第3図(alに示すが如く
反応性絶縁膜2と金属膜1とを基板3に重ねてスパッタ
成膜する場合、両者の接合部の界面5がはっきりしてい
て、内部応力などによる密着力の低下を招くという問題
点を有する。なお4は膜中の反応ガス分子である。そこ
で、本発明はこのような問題点を解決するもので、その
目的とするところは反応性絶縁膜成膜において、スパッ
タ中のガスコントロールにより、金属膜界面近傍では良
好な密着性を得ることを主眼とした膜質とし、膜厚ある
いはスパッタ時間と共に所望の特性を持つ絶縁膜を得る
ことが可能な反応性スパッタリング法を提供するところ
にある。
However, in the prior art described above, when the reactive insulating film 2 and the metal film 1 are layered on the substrate 3 and deposited by sputtering as shown in FIG. However, there is a problem in that adhesion strength is reduced due to internal stress, etc. Note that 4 is a reactive gas molecule in the film.Therefore, the present invention is intended to solve these problems, and its purpose is to In reactive insulating film formation, the film quality is focused on obtaining good adhesion near the metal film interface by controlling the gas during sputtering, and obtaining an insulating film with desired characteristics depending on the film thickness or sputtering time. The purpose of the present invention is to provide a reactive sputtering method that can perform the following steps.

c問題点を解決するための手段〕 本発明の反応性スパッタリング成膜法は、スパッタガス
である不活性ガスと、酸素又は窒素の活性ガスとを真空
槽内に導入して、酸化膜又は窒化膜を成膜する反応性ス
パッタリング法において、ガス排気速度は一定として、
不活性ガス又は活性ガス、あるいはその両方の導入ガス
流量を、膜厚あるいは大バッタ時間と共に変化させなが
ら成膜することを特徴とする。
Means for Solving Problem c] The reactive sputtering film forming method of the present invention introduces an inert gas as a sputtering gas and an active gas such as oxygen or nitrogen into a vacuum chamber to form an oxide film or a nitride film. In the reactive sputtering method for forming films, the gas exhaust speed is assumed to be constant.
The method is characterized in that the film is formed while changing the flow rate of an inert gas, an active gas, or both introduced gases along with the film thickness or the large batter time.

〔実施例〕〔Example〕

以下に本発明の実施例を図面にもとづいて説明する。第
1図はスパッタ装置の構成図である。スパッタチャンパ
ー11中にターゲット13と基板12が対向した位置に
配され、不活性ガスと活性ガス(反応ガス)は、それぞ
れ導入口14.16ヨリマスフローコントローラ(バリ
アプルバルブでも可能)15.17を介してスパンタチ
ャンバーへと導かれる。
Embodiments of the present invention will be described below based on the drawings. FIG. 1 is a configuration diagram of a sputtering apparatus. The target 13 and the substrate 12 are placed in opposing positions in the sputtering chamber 11, and the inert gas and active gas (reactive gas) are supplied through the inlet ports 14, 16 and 15, 17 (also possible with a barrier pull valve), respectively. and is led to the spanter chamber.

本実施例では、基板3にコーニング社製7059ガラス
、ターゲット13にタンタルを、また不活性ガスにアル
ゴン、活性ガス(反応ガス)に酸素を使用した。
In this example, 7059 glass manufactured by Corning Corporation was used for the substrate 3, tantalum was used for the target 13, argon was used as the inert gas, and oxygen was used as the active gas (reactive gas).

まず、スパッタチャンパー11内を高真空とした後、ア
ルゴンと酸素を80SCCMずつ流れ放電を開始する。
First, the inside of the sputtering chamber 11 is made into a high vacuum, and then 80 SCCM of argon and oxygen are supplied to start discharge.

すると基板3には第2図1alに示す様に反応ガス分子
4を取り込んだ反応性絶縁膜(酸化タンタル)2が堆積
される。
Then, a reactive insulating film (tantalum oxide) 2 containing reactive gas molecules 4 is deposited on the substrate 3, as shown in FIG. 2A.

そして第2図山)に示す様にある膜厚あるいは時間6よ
り徐々に反応ガスである酸素流量を減らし、最終的に膜
厚あるいは時間5で酸素流量を0とする。この時間6と
5の間7は反応ガス分子(酸素ガス分子)4が膜中に取
り込まれる量が膜厚方向に徐々に減少する層となり、金
属膜1との界面5ははっきりせず、いわば反応性絶縁膜
(M化タンタル)2とのバッファ層となる。この層は反
応性絶縁il!(酸化タンタル)2と金属膜1の間で、
内部応力により発生するはがそうとする力を緩和する。
Then, as shown in Figure 2, the flow rate of oxygen, which is a reactive gas, is gradually reduced from a certain film thickness or time 6, and finally the oxygen flow rate is brought to 0 at a certain film thickness or time 5. Between times 6 and 5, 7 becomes a layer in which the amount of reactive gas molecules (oxygen gas molecules) 4 taken into the film gradually decreases in the film thickness direction, and the interface 5 with the metal film 1 is not clear, so to speak. It becomes a buffer layer with the reactive insulating film (tantalum oxide) 2. This layer is a reactive insulator! Between (tantalum oxide) 2 and metal film 1,
Alleviates the force of peeling caused by internal stress.

従って密着力は向上するのである。Therefore, the adhesion is improved.

本実施例では金属膜1にタンタルを使用したところ、従
来法では、成膜後放置するだけで反応性絶縁膜(酸化タ
ンタル)2と金属膜(タンクル)lの間ではがれが生じ
た。これに比べ、本方法で成膜したものは、3M製スコ
ッチテープでの引きはがし試験でもはがれず良好な密着
力が得られた。
In this embodiment, tantalum was used for the metal film 1, but in the conventional method, peeling occurred between the reactive insulating film (tantalum oxide) 2 and the metal film (tankle) 1 just by leaving it after film formation. In comparison, the film formed by this method did not peel off even in a peel test using 3M Scotch tape, and good adhesion was obtained.

本発明は、密着性向上という目的のみではなく、膜中エ
ネルギー準位変化をゆるやかなスロープとするための目
的としても使用できることを付記しておく。
It should be noted that the present invention can be used not only for the purpose of improving adhesion, but also for making the change in energy level in the film a gentle slope.

〔発明の効果〕〔Effect of the invention〕

以上述べたように発明によれば、ガス排気速度は一定と
して、不活性ガス又は活性ガス、あるいはその両方の導
入ガス流量を、スパッタ時間あるいは膜厚と共に変化さ
せて反応性スパッタリングを行うことにより、膜中へ取
り込む反応ガス分子の量を変えることが可能となり、従
来密着性が悪いとされている絶縁膜と金属の積層スパッ
タが可能であるという効果を有する。また、膜界面での
シッットキーバリアをゆるやかとするためにも効果的で
ある。
As described above, according to the invention, by performing reactive sputtering by changing the introduced gas flow rate of inert gas, active gas, or both with sputtering time or film thickness while keeping the gas exhaust speed constant, It is possible to change the amount of reactive gas molecules taken into the film, and this has the effect of making it possible to perform laminated sputtering of an insulating film and a metal, which has conventionally been considered to have poor adhesion. It is also effective for softening the Schittky barrier at the film interface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかるスパッタ装置の構成図。 第2図1alは本発明により基板上に堆積する膜素性の
モデル図。 第2図山)は本発明の膜厚に対する酸素流量(酸素分圧
)の変化を表わす図。 第3図[a)は従来法により基板上に堆積する膜素性の
モデル図。 第3図(blは従来法の膜厚に対する酸素流量を表わす
図。 1・・・金属膜    2・・・反応性絶縁膜3・・・
基板     4・・・反応ガス分子5・・・金属膜と
反応性絶縁膜の界面 6・・・任意の膜厚あるいは時間 7・・・金属膜と反応性絶縁膜の間のバッファ層11・
・・スパンタチャンバー 13・・・ターゲット 14・・・不活性ガス導入口 15・・・不活性ガスマスフローコントローラ16・・
・活性ガス導入口 17・・・活性ガスマスフローコントローラ第1図 第2図(IL) 牒尼 第2図Cb〕 第3図(a、) 第3図(b)
FIG. 1 is a configuration diagram of a sputtering apparatus according to the present invention. FIG. 2 1al is a model diagram of the film structure deposited on a substrate according to the present invention. Figure 2 (mountain) is a diagram showing changes in oxygen flow rate (oxygen partial pressure) with respect to film thickness in the present invention. FIG. 3 [a] is a model diagram of the film structure deposited on a substrate by a conventional method. Figure 3 (bl is a diagram showing the oxygen flow rate with respect to film thickness in the conventional method. 1...Metal film 2...Reactive insulating film 3...
Substrate 4...Reactive gas molecules 5...Interface between metal film and reactive insulating film 6...Arbitrary film thickness or time 7...Buffer layer 11 between metal film and reactive insulating film
...Spanter chamber 13...Target 14...Inert gas inlet 15...Inert gas mass flow controller 16...
・Active gas inlet 17...Active gas mass flow controller Fig. 1 Fig. 2 (IL) Fig. 2 Cb] Fig. 3 (a,) Fig. 3 (b)

Claims (1)

【特許請求の範囲】[Claims] (1)スパッタガスである不活性ガスと、酸素又は窒素
の活性ガスとを真空槽内に導入して、酸化膜又は窒化膜
を成膜する反応性スパッタリング法において、ガス排気
速度は一定として、不活性ガス又は活性ガス、あるいは
その両方の導入ガス流量を、膜厚あるいはスパッタ時間
と共に変化させながら成膜することを特徴とする反応性
スパッタリング成膜法。
(1) In the reactive sputtering method in which an oxide film or a nitride film is formed by introducing an inert gas as a sputtering gas and an active gas such as oxygen or nitrogen into a vacuum chamber, the gas exhaust speed is assumed to be constant. A reactive sputtering film forming method characterized by forming a film while changing the flow rate of an inert gas, an active gas, or both introduced gases with the film thickness or sputtering time.
JP32445587A 1987-12-22 1987-12-22 Formation of film by reactive sputtering Pending JPH01165768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32445587A JPH01165768A (en) 1987-12-22 1987-12-22 Formation of film by reactive sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32445587A JPH01165768A (en) 1987-12-22 1987-12-22 Formation of film by reactive sputtering

Publications (1)

Publication Number Publication Date
JPH01165768A true JPH01165768A (en) 1989-06-29

Family

ID=18166001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32445587A Pending JPH01165768A (en) 1987-12-22 1987-12-22 Formation of film by reactive sputtering

Country Status (1)

Country Link
JP (1) JPH01165768A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375361A (en) * 1989-08-16 1991-03-29 Raimuzu:Kk Formation of film by sputtering
WO2012157202A1 (en) * 2011-05-13 2012-11-22 シャープ株式会社 Thin film-forming method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161063A (en) * 1981-03-31 1982-10-04 Nippon Sheet Glass Co Ltd Method and device for sticking metallic oxide film on substrate
JPS5844300A (en) * 1981-09-10 1983-03-15 Mitsubishi Electric Corp Manufacture of vane wheel
JPS6042822A (en) * 1983-08-19 1985-03-07 Nippon Telegr & Teleph Corp <Ntt> Method for forming electrode with multilayer structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161063A (en) * 1981-03-31 1982-10-04 Nippon Sheet Glass Co Ltd Method and device for sticking metallic oxide film on substrate
JPS5844300A (en) * 1981-09-10 1983-03-15 Mitsubishi Electric Corp Manufacture of vane wheel
JPS6042822A (en) * 1983-08-19 1985-03-07 Nippon Telegr & Teleph Corp <Ntt> Method for forming electrode with multilayer structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375361A (en) * 1989-08-16 1991-03-29 Raimuzu:Kk Formation of film by sputtering
WO2012157202A1 (en) * 2011-05-13 2012-11-22 シャープ株式会社 Thin film-forming method

Similar Documents

Publication Publication Date Title
US4572841A (en) Low temperature method of deposition silicon dioxide
US4576829A (en) Low temperature growth of silicon dioxide on silicon
JP3782608B2 (en) Thin film material and thin film preparation method
JPH03155625A (en) Manufacture of plasma cvd film
KR100241817B1 (en) Thin film forming method
CN101778962B (en) Method for thin film formation
JPH0864540A (en) Thin film forming method and device
US5116640A (en) Process for preparing an electroluminescent device
JPH01165768A (en) Formation of film by reactive sputtering
JPH01165766A (en) Formation of film by reactive sputtering
JPH01165767A (en) Formation of film by reactive sputtering
JPH1021933A (en) Electrode of solid oxide fuel cell and its forming method
JPS62250643A (en) Plasma etching method
JPH06232113A (en) Deposition of insulating film for semiconductor device
JP2524179B2 (en) Sputtering method
JPH0745610A (en) Manufacture of semiconductor device
JPH06172989A (en) Metal oxide film forming method
JP2978704B2 (en) Thin film formation method
JPS6039822A (en) Thin film forming device
JPH11131240A (en) Formation of thin coating film
JP2895981B2 (en) Silicon oxide film forming method
JPH01304735A (en) Method of forming protective film of semiconductor device
JPH0247255A (en) Production of thin oxide film
JPS6393861A (en) Method for depositing low-stress thin film
JPS59134821A (en) Method and device for manufacturing thin film