JPH0375361A - Formation of film by sputtering - Google Patents

Formation of film by sputtering

Info

Publication number
JPH0375361A
JPH0375361A JP21014789A JP21014789A JPH0375361A JP H0375361 A JPH0375361 A JP H0375361A JP 21014789 A JP21014789 A JP 21014789A JP 21014789 A JP21014789 A JP 21014789A JP H0375361 A JPH0375361 A JP H0375361A
Authority
JP
Japan
Prior art keywords
substrate
film
sputtering
target
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21014789A
Other languages
Japanese (ja)
Inventor
Hideaki Murata
秀明 村田
Takaharu Yonemoto
米本 隆治
Kenichi Sano
謙一 佐野
Takashi Ebisawa
孝 海老沢
Taiichi Mori
泰一 森
Tsugio Miyagawa
宮川 亞夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAIMUZU KK
Original Assignee
RAIMUZU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAIMUZU KK filed Critical RAIMUZU KK
Priority to JP21014789A priority Critical patent/JPH0375361A/en
Publication of JPH0375361A publication Critical patent/JPH0375361A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To control force per unit width of a thin film and to obtain a thin film hardly causing peeling or cracking by changing vias voltage on a substrate, the interval between a target and the substrate, the rate of film formation or the pressure of sputtering during film formation. CONSTITUTION:A target 2 and a sample stand 3 for setting a substrate 4 are arranged in the vacuum vessel 1 of a dipole magnetron sputtering device and a thin film is formed on the surface of the substrate 4 by sputtering. During this film formation, the substrate 4 is moved up or down by vertically driving a driving mechanism 6 for moving the stand 3 up or down to change the interval between the target 2 and the substrate 4. The pressure of gaseous Ar fed from a tank 9 may be changed with a mass flow controller 11. Layers with applied compressive force and layers with applied tension are alternately formed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、特に1μm以上程度の薄膜を形成する際に用
いられるスパッタリング成膜方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a sputtering film forming method used particularly for forming a thin film of about 1 μm or more.

[従来の技術と課題] 従来、半導体装置の製造、高機能薄膜の研究、あるいは
金属の表面改質等において、イオン粒子等のスパッタリ
ング作用を応用したスパッタリング薄膜形成装置が盛ん
に使用されている。ところで、近年LSIに利用される
薄膜では歪みの少ないことが要求されつつある。又、金
属表面改質への応用では膜厚として1μm以上が要求さ
れることが多いので、クラックの発生や剥離防止のため
歪みの小さい薄膜を作製することは極めて重要である。
[Prior Art and Problems] Conventionally, sputtering thin film forming apparatuses that apply the sputtering action of ion particles have been widely used in the manufacture of semiconductor devices, research into highly functional thin films, surface modification of metals, and the like. Incidentally, in recent years, thin films used in LSIs are required to have less distortion. Further, in applications to metal surface modification, a film thickness of 1 μm or more is often required, so it is extremely important to produce a thin film with small distortion in order to prevent cracking and peeling.

最近、スパッタリングによって形成された薄膜の一般的
な性質が研究されている。内部応力についてみれば、ス
パッタガス圧力依存性は第4図(成膜速度r+’+JE
板バイアス電圧0.ターゲット・基板間距離り、)で、
成膜速度依存性は第5図(スパッタガス圧力PL、基板
バイアス電圧O。
Recently, the general properties of thin films formed by sputtering have been investigated. Regarding internal stress, the dependence on sputtering gas pressure is shown in Figure 4 (film deposition rate r+'+JE
Plate bias voltage 0. The distance between the target and the board is ),
The film formation rate dependence is shown in Figure 5 (sputtering gas pressure PL, substrate bias voltage O.

ターゲット・基板間距離り、)で、基板にかけるバイア
ス電圧依存性は第6図(スパッタガス圧力P l +成
膜速度r0.ターゲット・基板間距離り、)で、ターゲ
ット基板間距離依存性は第7図(スパッタガス圧力Pl
、成膜速度r9.ターゲット・基板間距離り、)で表わ
されることは周知の事実である。第4図より、僅かなス
パッタガス圧力の変動で引張りまたは圧縮の内部応力が
かかりやすい事が明らかである。第5図より、僅かな成
膜速度の変動で引張りまたは圧縮の内部応力がかかりや
すい事が明らかである。第6図より、僅かな基板バイア
ス電圧の変動で引張りまたは圧縮の内部応力がかかりや
すい事が明らかである。第7図より、僅かなターゲット
基板距離の変動で引張りまたは圧縮の内部応力がかかり
やすい事が明らかである。こうしたことから、内部応力
を小さくするためには狭い成膜条件の範囲内に厳密に制
限した成膜が必要である。また、内部応力σと膜厚dの
積は単位幅当りの力とか全応力と呼ばれ、下地のたわみ
に比例し種類等によらない量である。
The dependence on the bias voltage applied to the substrate is shown in Figure 6 (sputtering gas pressure P l + deposition rate r0. target-substrate distance), and the dependence on the target-substrate distance is Figure 7 (Sputtering gas pressure Pl
, film formation rate r9. It is a well-known fact that the distance between the target and the substrate is expressed as: It is clear from FIG. 4 that tensile or compressive internal stress is likely to be applied due to slight fluctuations in sputtering gas pressure. It is clear from FIG. 5 that tensile or compressive internal stress is likely to be applied due to slight variations in the film forming rate. It is clear from FIG. 6 that tensile or compressive internal stress is likely to be applied due to slight variations in substrate bias voltage. From FIG. 7, it is clear that tensile or compressive internal stress is likely to be applied due to slight variations in the target substrate distance. For this reason, in order to reduce the internal stress, it is necessary to form a film strictly within a narrow range of film forming conditions. Further, the product of internal stress σ and film thickness d is called force per unit width or total stress, which is proportional to the deflection of the substrate and is independent of the type.

しかし、この単位幅当りの力(全応力)の膜厚依存性は
、例えば「応用物理、第57巻第12号(1988)、
p1856〜1867) Jから明らかのように、膜厚
に伴なって次第に増加する。しかも、上記のような内部
応力σとスパッタリング薄膜の膜厚dとの関係は後述す
る第8図に示す通りであり、単位幅当りの力(全応力)
σ・dと膜厚の関係は第9図に示す通りである。
However, the film thickness dependence of this force per unit width (total stress) is
p1856-1867) As is clear from J, it gradually increases with the film thickness. Moreover, the relationship between the internal stress σ and the film thickness d of the sputtered thin film as described above is as shown in Figure 8, which will be described later, and the force per unit width (total stress)
The relationship between σ·d and film thickness is as shown in FIG.

このように、内部応力を小さい値に抑えておくには厳密
な成膜条件の制限が必要である。しかし、内部応力は膜
厚の増加によって僅かしか変化しないが、単位幅当たり
の力(全応力)は膜厚の増加に伴なって著しく大きくな
っていく。そして、単位幅当たりの力(全応力)の増大
に伴い、膜を厚く付けるとクラックが生じたり剥離しや
すくなりやすい。また、内部応力は薄膜成長の機構等と
複雑に結びついており、例えば第4図に基づいてスパッ
タガス圧を内部応力がゼロになる付近で周期的に変化さ
せるというような単純な方法では十分な改善はなされな
かった。
Thus, in order to suppress the internal stress to a small value, it is necessary to strictly limit the film forming conditions. However, although the internal stress changes only slightly as the film thickness increases, the force per unit width (total stress) increases significantly as the film thickness increases. As the force per unit width (total stress) increases, the thicker the film is, the more likely it is to crack or peel off. Furthermore, internal stress is intricately linked to the thin film growth mechanism, and a simple method such as periodically changing the sputtering gas pressure near zero internal stress based on Figure 4 is not sufficient. No improvements were made.

本発明は上記事情に鑑みてなされたもので、薄膜の単位
幅当りの力(全応力)を小さい範囲に抑え、剥離(脹れ
)やクラック(ひび割れ)の生じにくい薄膜を作製しえ
るスパッタリング成膜方法を提供することを目的とする
The present invention was made in view of the above circumstances, and is a sputtering method that suppresses the force per unit width of the thin film (total stress) within a small range and produces a thin film that is less prone to peeling (swelling) and cracking. The purpose is to provide a membrane method.

[課題を解決するための手段] 本発明は、真空槽と、この真空槽内に配置されたターゲ
ットと、前記真空槽内券瞥會がセットされる試料台とを
具備したスパッタリング装置を用いて前記基板主面にス
パッタリング成膜を形成する方法において、成膜中、前
記基板にかけるバイアス電圧、タラゲットと基板間の距
離、成膜速度、あるいはスパッタガス圧力の少なくとも
いずれかを変化させることを特徴とするスパッタリング
成膜方法゛である。
[Means for Solving the Problems] The present invention uses a sputtering apparatus that includes a vacuum chamber, a target placed in the vacuum chamber, and a sample stage on which the vacuum chamber in-vacuum viewing table is set. The method of forming a sputtering film on the main surface of the substrate is characterized in that during film formation, at least one of the bias voltage applied to the substrate, the distance between the target and the substrate, the film formation rate, or the sputtering gas pressure is changed. This is a sputtering film forming method.

[作用] 本発明において、薄膜の単位幅当たりの力(全応力)を
常に小さくしておくためには製膜開始から所望する膜厚
まで一定の条件で成膜せずに、成膜中に膜厚に応じてス
パッタガス圧、成膜速度、バイアス電圧、ターゲット・
基板間の距離の少なくとも一つを変化させればよい。つ
まり、薄膜を剥離やクラックのないようにするためには
単位幅当たりの力(全応力)を許される範囲内に抑えて
おけばよいので、所望する膜厚まで一定の条件とせず、
何回に分けて条件を変えて成膜したり、予め設定した膜
厚に達したら成膜条件を変化させるようにして、成膜条
件に応じて引っ張り力を有する層と圧縮力を有する層が
交互に積み重ねるようにすれば良い。これにより、薄膜
全体の単位幅当たりの力(全応力)を小さな範囲内にす
ることができ、その結果剥離や割れを回避できる。
[Function] In the present invention, in order to keep the force per unit width of the thin film (total stress) small at all times, it is necessary to keep the force (total stress) per unit width of the thin film small. Depending on the film thickness, the sputtering gas pressure, deposition rate, bias voltage, target
It is sufficient to change at least one of the distances between the substrates. In other words, in order to prevent a thin film from peeling or cracking, it is sufficient to keep the force per unit width (total stress) within an allowable range, so it is not necessary to keep the conditions constant until the desired film thickness.
The film can be formed by changing the conditions several times, or by changing the film forming conditions when a preset film thickness is reached, so that a layer with tensile force and a layer with compressive force can be formed depending on the film forming conditions. It is best to stack them alternately. As a result, the force per unit width (total stress) of the entire thin film can be kept within a small range, and as a result, peeling and cracking can be avoided.

更に、相反する力をもつ層間の結晶学的構造や応力の遷
移の急峻性は、成膜条件の変化のさせかたを滑らかにす
る事によって最適化を図る事もできる。
Furthermore, the steepness of the crystallographic structure and stress transition between layers having opposing forces can be optimized by smoothing the way in which the film forming conditions are varied.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

[実施例1] 第1図は、本発明に係る2極マグネトロンスパツタ装置
の説明図である。
[Example 1] FIG. 1 is an explanatory diagram of a two-pole magnetron sputtering device according to the present invention.

図中の1は真空槽で、図示しない排気系によって真空排
気がなされる。前記真空槽1の排気系側(下部側)には
、ターゲット2が配置されている。
1 in the figure is a vacuum chamber, which is evacuated by an exhaust system (not shown). A target 2 is arranged on the exhaust system side (lower side) of the vacuum chamber 1.

前記真空槽1の上部側には、接地に対して電位を変化さ
せることのできる試料台3が前記ターゲット2の主面と
平行に配置されている。前記試料台3の下部には、基板
(商品名コーニング7059ガラス、コーニング社製)
4がセットされている。前記ターゲット2と試料台3間
には、シャッター5が配置されている。このシャッター
5は、前記基板4に成膜を開始する前に、ターゲット2
からの飛来粒子が前記基板4に堆積するのを防止する働
きを有する。
On the upper side of the vacuum chamber 1, a sample stage 3 whose potential can be varied with respect to ground is arranged parallel to the main surface of the target 2. At the bottom of the sample stage 3, a substrate (trade name: Corning 7059 glass, manufactured by Corning Incorporated) is installed.
4 is set. A shutter 5 is arranged between the target 2 and the sample stage 3. This shutter 5 closes the target 2 before starting film formation on the substrate 4.
It has the function of preventing flying particles from being deposited on the substrate 4.

前記真空槽1の上部には、前記試料台3を上下させる上
下駆動機構6が設けられている。この上下駆動機構6が
上下に駆動することにより、基板4が上下し、ターゲッ
ト2と基板4間の距離が変化する。前記上下駆動機構6
にはデジタルアナログ変換器(D/A)7が電気的に接
続されている。
A vertical drive mechanism 6 for moving the sample stage 3 up and down is provided at the top of the vacuum chamber 1. By vertically driving this vertical drive mechanism 6, the substrate 4 moves up and down, and the distance between the target 2 and the substrate 4 changes. The vertical drive mechanism 6
A digital-analog converter (D/A) 7 is electrically connected to.

また、前記試料台3と前記変換器7間には、両極性直流
電源8が接続されている。この直流電源8は、前記試料
台3の電位を変化させる働きを有する。
Further, a bipolar DC power source 8 is connected between the sample stage 3 and the converter 7. This DC power supply 8 has the function of changing the potential of the sample stage 3.

前記真空槽1の側壁には、タンク9中のスパッタガス例
えばArガスlOの流量を制御するマスフローコントロ
ーラ(MFC)11が設けられている。
A mass flow controller (MFC) 11 is provided on the side wall of the vacuum chamber 1 to control the flow rate of sputtering gas such as Ar gas IO in the tank 9 .

ここで、排気系のA「ガスの排気量は一定であるので、
MFCllからのガス流量を大きくすればスパッタガス
圧が大きくなり、Arガスの流量を小さくすればスパッ
タガス圧が小さくなる。前記MFCIIにも、前記変換
器7が接続されている。
Here, A of the exhaust system "Since the amount of gas exhaust is constant,
Increasing the gas flow rate from MFCll increases the sputtering gas pressure, and decreasing the Ar gas flow rate decreases the sputtering gas pressure. The converter 7 is also connected to the MFCII.

前記ターゲット2と前記変換器7は、スパッタ用電力源
12を介して電気的に接続されている。ここで、スパッ
タ用電力源12の出力を大きくすれば成膜速度が大きく
なり、スパッタ用電力源12の出力を小さくすれば成膜
速度は小さくなる。前記変換器7より、上下駆動機構6
、前記両極性直流電源8、マスフローコントローラ11
及びスパッタ用電力源12にターゲットと基板の距離、
バイアス電圧。
The target 2 and the converter 7 are electrically connected via a sputtering power source 12. Here, if the output of the sputtering power source 12 is increased, the film formation rate will be increased, and if the output of the sputtering power source 12 is decreased, the film formation rate will be decreased. From the converter 7, the vertical drive mechanism 6
, the bipolar DC power supply 8 and the mass flow controller 11
and the distance between the target and the substrate for the sputtering power source 12,
Bias voltage.

A「ガスの圧力、成膜速度を調節する信号が送られる。A: “Signals are sent to adjust the gas pressure and film formation speed.

前記変換器7には、前記信号を制御するマイクロコンピ
ュータ13が接続されている。
A microcomputer 13 that controls the signal is connected to the converter 7.

本実施例1では、第1図図示の装置を用い、スパッタガ
スとしてはArガスを用いた。そして、0.25μm成
膜するごとに前記マスフローコントローラ11によりA
rガスの圧力を変化させ(第3図図示)、圧縮力がかか
った層と引っ張力がかかった層を交互に形成し、前記基
板4に総厚5μmのTil32薄WI4(スパッタリン
グ薄膜)を成膜した。
In Example 1, the apparatus shown in FIG. 1 was used, and Ar gas was used as the sputtering gas. Then, every time a film of 0.25 μm is formed, the mass flow controller 11
A Til32 thin WI4 (sputtered thin film) with a total thickness of 5 μm was formed on the substrate 4 by changing the pressure of r gas (as shown in Figure 3) and alternately forming layers to which compressive force was applied and layers to which tensile force was applied. It was filmed.

実施例1によれば、真空槽1の側壁にマスフローコント
ローラ11を設け、0,25μm成膜するごとに前5己
マスフローコントローラ111こよりArガスの圧力を
変化させて基板41:TiB、薄膜を成膜するため、最
終的に剥1MやクラックのないTiB、薄膜を得る事が
できる。事実、上記条件でいくつかの基板について適当
な膜厚のTiB2薄膜を形成した後、基板を取り出し、
基板の反りを測定して単位幅当りの力(全応力)を求め
たところ、第3図に示す特性図が得られた。同図より、
全応力が±0.5 K g f /cm程度の小さい範
囲内に抑さえられている事が明らかである。
According to Example 1, a mass flow controller 11 is provided on the side wall of the vacuum chamber 1, and the pressure of Ar gas is changed from the mass flow controller 111 every time a film of 0.25 μm is formed to form a thin film on the substrate 41: TiB. As a result of forming a film, it is possible to finally obtain a TiB thin film with 1M peeling and no cracks. In fact, after forming TiB2 thin films of appropriate thickness on several substrates under the above conditions, the substrates were taken out and
When the warpage of the substrate was measured and the force per unit width (total stress) was determined, the characteristic diagram shown in FIG. 3 was obtained. From the same figure,
It is clear that the total stress is suppressed within a small range of about ±0.5 K g f /cm.

C実施例2〕 本実施例2では、0.25μm成膜するごとに成膜速度
を変化させ、前記基板4に総厚5μmのTiB、薄膜を
成膜した。この実施例2によれば、実施例1と同様な効
果を得ることができる。
C Example 2] In this Example 2, a TiB thin film having a total thickness of 5 μm was formed on the substrate 4 by changing the film forming rate every time a film of 0.25 μm was formed. According to this second embodiment, the same effects as in the first embodiment can be obtained.

[実施例3] 本実施例3では、0o25μm成膜するごとに両極性直
流電源8によりバイアス電圧を変化させ、前記基板4に
総厚5μmのTiB2薄膜を成膜した。
[Example 3] In this Example 3, a TiB2 thin film having a total thickness of 5 μm was formed on the substrate 4 by changing the bias voltage using the bipolar DC power supply 8 every time a 0.times.25 μm film was formed.

なお、実施例3では薄膜との導通をとるように基板4の
縁に銅を薄くコーティングした。実施例3によれば、実
施例1と同様な効果を得ることができる。
In Example 3, the edge of the substrate 4 was thinly coated with copper to establish electrical conduction with the thin film. According to the third embodiment, effects similar to those of the first embodiment can be obtained.

[実施例4] 本実施例4では、0.25μm成膜するごとに上下駆動
機構6によりターゲット2と基板4間に距離を変化させ
、前記基板4に総厚5μmのTiB2薄膜を成膜した。
[Example 4] In this Example 4, the distance between the target 2 and the substrate 4 was changed by the vertical drive mechanism 6 every time 0.25 μm was deposited, and a TiB2 thin film with a total thickness of 5 μm was deposited on the substrate 4. .

この実施例4によれば、実施例1と同様な効果を得るこ
とができる。
According to this fourth embodiment, effects similar to those of the first embodiment can be obtained.

[実施例5] 本実施例5では、0.25μm成膜するごとにArガス
を圧力を第2図に示すように変化させながら、前記基板
4に総厚5μmのTiB2薄膜を成膜した。この実施例
5によれば、実施例1と同様な効果を得ることができる
他、成膜条件の変化に伴う膜組織の変化がゆるやかな薄
膜が形成された。
[Example 5] In Example 5, a TiB2 thin film having a total thickness of 5 μm was formed on the substrate 4 while changing the pressure of Ar gas as shown in FIG. 2 every time a film of 0.25 μm was formed. According to this Example 5, in addition to being able to obtain the same effects as in Example 1, a thin film was formed in which the film structure gradually changed as the film forming conditions changed.

〔比較例〕[Comparative example]

2極マグネトロンスパツタ装置を用いて、基板にTiB
2薄膜21を成膜し、基板の反りを測定して薄膜の内部
応力σを求めたところ、第8図に示す結果が得られた。
TiB was deposited on the substrate using a two-pole magnetron sputtering device.
2 thin film 21 was formed, and the warpage of the substrate was measured to determine the internal stress σ of the thin film, and the results shown in FIG. 8 were obtained.

また、比較のため膜厚dと全応力σ・dとの関係も求め
たところ、第9図に示すような特性図が得られた。第8
図より、膜厚が増加しても内部応力があまり変化しない
ことが明らかである。一方、第9図より、全応力は膜厚
の増加に伴って著しく変化することが明らかである。
For comparison, the relationship between the film thickness d and the total stress σ·d was also determined, and a characteristic diagram as shown in FIG. 9 was obtained. 8th
From the figure, it is clear that the internal stress does not change much even when the film thickness increases. On the other hand, it is clear from FIG. 9 that the total stress changes significantly as the film thickness increases.

但し、両図において、直線(イ)はArガス圧5 m 
T orrの場合、直I!(ロ)はA「ガス圧5 m 
T orrの場合である。また、(イ)、(ロ)ともに
、成膜速度11.5λ、基板バイアスOv1ターゲット
基板間50svである。ちなみに、薄膜の厚みが1.8
μmの場合は第1O図に示す如く剥離22が生じ、薄膜
の厚みが2.0μmの場合は第11図に示す如くひび割
れ23が生じた。
However, in both figures, the straight line (A) is at an Ar gas pressure of 5 m.
In case of T orr, direct I! (B) is A “Gas pressure 5 m
This is the case for Torr. Further, in both (a) and (b), the film formation rate was 11.5λ, and the substrate bias Ov1 was 50 sv between target and substrate. By the way, the thickness of the thin film is 1.8
When the thickness of the thin film was 2.0 μm, peeling 22 occurred as shown in FIG. 1O, and when the thickness of the thin film was 2.0 μm, cracks 23 occurred as shown in FIG. 11.

なお、上記実施例では、基板としてコーニング7059
ガラスを用いた場合について述べたが、これに限らず、
銅等の金属板を用いた場合について上記各実施例と同様
な効果が得られる。
In the above embodiment, Corning 7059 is used as the substrate.
Although the case using glass has been described, it is not limited to this.
Effects similar to those of the above embodiments can be obtained when a metal plate such as copper is used.

また、上記各実施例では、スパッタガス圧力。Furthermore, in each of the above embodiments, the sputtering gas pressure.

成膜速度、基板にかけるバイアス電圧、ターゲットと基
板間の距離を夫々単独で変化させた場合について述べた
が、これに限らず、各変動ファクターを複数個任意に組
合わせて変化させてもよい。
The case where the film formation rate, the bias voltage applied to the substrate, and the distance between the target and the substrate are individually varied has been described; however, the present invention is not limited to this, and it is also possible to vary any number of each variation factor in any combination. .

[発明の効果] 以上詳述した如く本発明によれば、薄膜の単位幅当りの
力(全応力)を小さい範囲に抑え、剥離(脹れ)やクラ
ック(ひび割れ)の生じにくい薄膜を作成しえる信頼性
の高いスパッタリング成膜方法を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, the force per unit width of the thin film (total stress) can be suppressed to a small range, and a thin film that is less prone to peeling (swelling) or cracking can be created. It is possible to provide a highly reliable sputtering film-forming method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る2極マグネトロンスパツタ装置の
説明図、第2図は本発明の実施例5に係る膜厚とA「ガ
ス圧との関係を示す特性図、第3図は膜厚と全応力、A
rガス圧との関係を示す特性図、第4図はスパッタガス
圧力と膜中応力との関係を示す特性図、第5図は成膜速
度と膜中応力との関係を示す特性図、第6図は基板バイ
アス電圧と膜中応力との関係を示す特性図、第7図はタ
ーゲット・基板間距離と膜中応力との関係を示す特性図
、第8図は膜厚と内部応力との関係を示す特性図、第9
図は膜厚と全応力との関係を示す特性図、第10図及び
第11図は夫々従来技術の欠点を説明するための基板の
断面図である。 1・・・真空槽、2・・・ターゲット、3・・・試料台
、4・・・基板、5・・・シャッター 6・・・上下駆
動機構、7・・・デジタルアナログ変換器、8・・・両
極性直流電源、9・・・タンク、10・・・スパッタガ
ス、11・・・マスフローコントローラ、12・・・ス
パッタ用電力源、13・・・マイクロコンピュータ。 第1図
FIG. 1 is an explanatory diagram of a two-pole magnetron sputtering device according to the present invention, FIG. 2 is a characteristic diagram showing the relationship between film thickness and A gas pressure according to Example 5 of the present invention, and FIG. Thickness and total stress, A
Figure 4 is a characteristic diagram showing the relationship between sputtering gas pressure and stress in the film. Figure 5 is a characteristic diagram showing the relationship between film formation rate and stress in the film. Figure 6 is a characteristic diagram showing the relationship between substrate bias voltage and stress in the film, Figure 7 is a characteristic diagram showing the relationship between target-substrate distance and stress in the film, and Figure 8 is a diagram showing the relationship between film thickness and internal stress. Characteristic diagram showing the relationship, No. 9
The figure is a characteristic diagram showing the relationship between film thickness and total stress, and FIGS. 10 and 11 are cross-sectional views of the substrate for explaining the drawbacks of the prior art, respectively. DESCRIPTION OF SYMBOLS 1... Vacuum chamber, 2... Target, 3... Sample stage, 4... Substrate, 5... Shutter 6... Vertical drive mechanism, 7... Digital-to-analog converter, 8... ... Bipolar DC power supply, 9 ... Tank, 10 ... Sputter gas, 11 ... Mass flow controller, 12 ... Power source for sputtering, 13 ... Microcomputer. Figure 1

Claims (1)

【特許請求の範囲】[Claims]  真空槽と、この真空槽内に配置されたターゲットと、
前記真空槽内に配置された基板がセットされる試料台と
を具備したスパッタリング装置を用いて前記基板主面に
スパッタリング薄膜を形成する方法において、成膜中、
前記基板にかけるバイアス電圧,タッゲットと基板間の
距離、成膜速度、あるいはスパッタガス圧力の少なくと
もいずれかを変化させることを特徴とするスパッタリン
グ成膜方法。
A vacuum chamber, a target placed in this vacuum chamber,
In the method of forming a sputtered thin film on the main surface of the substrate using a sputtering apparatus equipped with a sample stage on which a substrate placed in the vacuum chamber is set, during film formation,
A sputtering film forming method characterized by changing at least one of the bias voltage applied to the substrate, the distance between the target and the substrate, the film forming rate, or the sputtering gas pressure.
JP21014789A 1989-08-16 1989-08-16 Formation of film by sputtering Pending JPH0375361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21014789A JPH0375361A (en) 1989-08-16 1989-08-16 Formation of film by sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21014789A JPH0375361A (en) 1989-08-16 1989-08-16 Formation of film by sputtering

Publications (1)

Publication Number Publication Date
JPH0375361A true JPH0375361A (en) 1991-03-29

Family

ID=16584548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21014789A Pending JPH0375361A (en) 1989-08-16 1989-08-16 Formation of film by sputtering

Country Status (1)

Country Link
JP (1) JPH0375361A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540821A (en) * 1993-07-16 1996-07-30 Applied Materials, Inc. Method and apparatus for adjustment of spacing between wafer and PVD target during semiconductor processing
WO2023067863A1 (en) * 2021-10-22 2023-04-27 日本電気硝子株式会社 Production method for frame with film and production method for protective cap

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393861A (en) * 1986-10-06 1988-04-25 Nec Corp Method for depositing low-stress thin film
JPH01165768A (en) * 1987-12-22 1989-06-29 Seiko Epson Corp Formation of film by reactive sputtering

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393861A (en) * 1986-10-06 1988-04-25 Nec Corp Method for depositing low-stress thin film
JPH01165768A (en) * 1987-12-22 1989-06-29 Seiko Epson Corp Formation of film by reactive sputtering

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540821A (en) * 1993-07-16 1996-07-30 Applied Materials, Inc. Method and apparatus for adjustment of spacing between wafer and PVD target during semiconductor processing
WO2023067863A1 (en) * 2021-10-22 2023-04-27 日本電気硝子株式会社 Production method for frame with film and production method for protective cap

Similar Documents

Publication Publication Date Title
US5108569A (en) Process and apparatus for forming stoichiometric layer of a metal compound by closed loop voltage controlled reactive sputtering
EP0440377A2 (en) Collimated deposition apparatus and method
US5635036A (en) Collimated deposition apparatus and method
JPH0521347A (en) Sputtering device
WO1994019509A1 (en) Film forming method and film forming apparatus
EP0430229A2 (en) Process and apparatus for forming stoichiometric layer of metal compound by closed loop voltage controlled reactive sputtering
JPH0375361A (en) Formation of film by sputtering
US3986944A (en) Method for obtaining adhesion of multilayer thin films
Iriarte Influence of the magnetron on the growth of aluminum nitride thin films deposited by reactive sputtering
KR100270460B1 (en) Sputtering apparatus
EP0606745A1 (en) Collimated deposition apparatus
JPS61261472A (en) Bias sputtering method and its apparatus
JPH07292474A (en) Production of thin film
JP3727693B2 (en) TiN film manufacturing method
Harper et al. Improved step coverage by ion beam resputtering
JPS6043482A (en) Sputtering device
CN1261615C (en) Covering plate in film plating apparatus
JPS6222430A (en) Sputtering formation method for tungsten film
JPH10204630A (en) Sputtering device, sputtering method and target
JPH05132771A (en) Sputtering apparatus and its method
US10991579B2 (en) Methods of making and using tin oxide film with smooth surface morphologies from sputtering target including tin and dopant
JPS6277477A (en) Thin film forming device
JPH0310073A (en) Production of thin film
JP2688999B2 (en) Method for producing transparent conductive film
JPH1050508A (en) Resistance control film and deposition thereof