JPH06232113A - Deposition of insulating film for semiconductor device - Google Patents

Deposition of insulating film for semiconductor device

Info

Publication number
JPH06232113A
JPH06232113A JP5015028A JP1502893A JPH06232113A JP H06232113 A JPH06232113 A JP H06232113A JP 5015028 A JP5015028 A JP 5015028A JP 1502893 A JP1502893 A JP 1502893A JP H06232113 A JPH06232113 A JP H06232113A
Authority
JP
Japan
Prior art keywords
film
gas
silicon oxide
silicon nitride
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5015028A
Other languages
Japanese (ja)
Inventor
Michiya Kamiyama
道也 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5015028A priority Critical patent/JPH06232113A/en
Publication of JPH06232113A publication Critical patent/JPH06232113A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To improve the corrosion resistance and step coverage of an insulating film by a method wherein a silicon oxide film is deposited, then, a film, which is continuously made to make a transition from the silicon oxide film to a silicon nitride film, is deposited and a silicon nitride film is deposited thereon. CONSTITUTION:In the case of a silicon nitride film, nitrogen gas N, which is one part of reaction gas, or in the case of a silicon oxide film, oxygen gas 0, which is one part of the reaction gas, is introduced into a plasma producing chamber 11 via a gas introducing tube 14, coils 30 for cyclotron resonance are arranged on the periphery of the chamber 11 and a D.C. magnetic field of a prescribed intensity is generated. After the silicon oxide film is deposited, the flow rate of the oxygen gas is decreased without charging the flow rate of silicon gas and the nitrogen gas is added and the flow rate of the nitrogen gas is increased. For example, the oxygen gas is continuously changed from 32cc/min to 0cc/main. In respect to the nitrogen gas it is continuously changed from 0cc/min to 300cc/min. Thereby, a high-practicability protective film can be obtained to an integrated circuit device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、集積回路等の半導体
装置がつくりこまれたウエハ面にプラズマCVD法によ
り絶縁膜,特に絶縁保護膜を堆積させる際の堆積方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deposition method for depositing an insulating film, particularly an insulating protective film, by a plasma CVD method on a wafer surface on which a semiconductor device such as an integrated circuit is formed.

【0002】[0002]

【従来の技術】現在集積回路等に用いられている絶縁膜
は、殆どプラズマ放電を利用したプラズマCVD法によ
り形成されている。しかしこのプラズマCVD法では、
良好な膜質を得るため、あるいは、配線等により発生し
た段差部の被覆性を確保するために、基板の温度を40
0℃程度まで加熱する必要がある。従って昇降温の際に
残留する熱ストレスにより、基板上に形成された配線や
素子に損傷が発生することがあり問題となっている。
2. Description of the Related Art Almost all insulating films currently used in integrated circuits and the like are formed by a plasma CVD method using plasma discharge. However, in this plasma CVD method,
In order to obtain a good film quality or to secure the coverage of the step portion caused by wiring or the like, the temperature of the substrate is set to 40
It is necessary to heat up to about 0 ° C. Therefore, there is a problem in that the wiring and elements formed on the substrate may be damaged by the residual thermal stress during the temperature rise and fall.

【0003】そこで最近、基板温度が低くても良好な膜
質の絶縁膜が得られる電子サイクロトロン共鳴(EC
R)プラズマ法が利用され始めている。これは電子サイ
クロトロン共鳴現象により、マイクロ波のエネルギーが
電子に高効率で吸収されることを利用してプラズマを発
生させるものであり、通常のプラズマCVD法に比べプ
ラズマ密度が約2桁高くなることから、基板温度が20
0℃以下と低い温度でも比較的良好な膜質の絶縁膜が堆
積でき、ウエハへの熱ストレスを減少させ、その損傷を
防止することが可能となる。
Therefore, recently, electron cyclotron resonance (EC) which can obtain an insulating film of good quality even if the substrate temperature is low
R) Plasma method is beginning to be used. This is to generate plasma by utilizing the fact that the energy of microwave is absorbed by electrons with high efficiency by the electron cyclotron resonance phenomenon, and the plasma density becomes about two orders of magnitude higher than that of the normal plasma CVD method. Therefore, the substrate temperature is 20
An insulating film having a relatively good film quality can be deposited even at a temperature as low as 0 ° C. or lower, and the thermal stress on the wafer can be reduced and its damage can be prevented.

【0004】かかるECRプラズマCVD法では、プラ
ズマ生成室内で高密度なプラズマを発生させ、次にこの
プラズマを気相反応室に引き出して、これにより反応ガ
スを気相反応させながらこの室内に置かれたウエハ上に
絶縁膜を堆積する。プラズマ生成室は例えば周波数が
2.45GHzのマイクロ波に対する空洞共振器であっ
て、このプラズマ生成室内へ反応ガスの一部を導入して
マイクロ波によって電離させ、さらに特定の強度例えば
875ガウスの直流磁界をかけて電離ガス中の電子サイ
クロトロン共鳴させることにより高密度プラズマを生成
する。気相反応室ではプラズマ生成室から引き出された
プラズマ雰囲気内で反応ガスを気相反応させ、この反応
生成物を例えば200℃ウエハ面に絶縁膜として堆積さ
せる。
In such an ECR plasma CVD method, high-density plasma is generated in the plasma generation chamber, and this plasma is then drawn into the gas-phase reaction chamber, whereby the reaction gas is placed in this chamber while undergoing gas-phase reaction. An insulating film is deposited on the wafer. The plasma generation chamber is, for example, a cavity resonator for microwaves having a frequency of 2.45 GHz. A part of the reaction gas is introduced into the plasma generation chamber to be ionized by microwaves, and further, a specific intensity of, for example, 875 gauss DC A high-density plasma is generated by applying a magnetic field to cause electron cyclotron resonance in the ionized gas. In the gas phase reaction chamber, a reaction gas is subjected to a gas phase reaction in a plasma atmosphere drawn from the plasma generation chamber, and the reaction product is deposited as an insulating film on the wafer surface at 200 ° C., for example.

【0005】保護膜として使用される窒化シリコン膜を
堆積するには、プラズマ生成室には窒素を、気相反応室
にはシランを導入する。また層間絶縁膜として使用され
る酸化シリコン膜はプラズマ生成室に酸素を、気相反応
室にはシランを導入することで堆積可能である。
To deposit a silicon nitride film used as a protective film, nitrogen is introduced into the plasma generation chamber and silane is introduced into the gas phase reaction chamber. The silicon oxide film used as an interlayer insulating film can be deposited by introducing oxygen into the plasma generation chamber and silane into the gas phase reaction chamber.

【0006】[0006]

【発明が解決しようとする課題】このようにECRプラ
ズマCVD法は低温下で絶縁膜を堆積できる特長を備え
るが、サイクロトロン共鳴により発生するプラズマ密度
がプラズマ生成室内の空洞共振のモードや、磁界分布で
決まる特有の空間的分布を持ち、その中心部から外側部
に行くに従って減少する傾向がある。それ故このまま膜
を堆積すると、中央部が厚く周辺部が薄い膜厚分布とな
ってしまう。窒化シリコン膜の場合、これを修正しかつ
屈折率分布も同時に改善する方法として、本発明者はさ
きに、ウエハに供給する高周波電力を、総ガス流量の単
位容積(cm3),ウエハ表面の単位面積(cm2)当り(2.5
〜8)×10-3Wとした状態で気相成長室に導入するシ
ランをプラズマ生成室と気相反応室との境界近傍とウエ
ハ近傍とで流量比が3以上となる流量分布で導入するこ
とを提案した(特願平2−406170号)。同時に膜
内応力を10×109 dyne/cm2 に抑えつつ膜の段差被
覆性付与に必要なウエハ表面のバイアス電位100〜2
00Vを発生させることのできる成膜条件としてガス流
量比(窒素/シラン),総ガス流量の単位容積当りの高
周波電力およびガス圧力範囲を与えた。しかし、窒化シ
リコン膜の場合は、良好な膜質,段差被覆性を維持しよ
うとすると膜の内部応力をこれ以上小さくすることがで
きず、前述の熱ストレスと同じ結果となってしまう。そ
こで、本発明者は、上記提案よりもやや遅れて膜の内部
応力をさらに小さくしながら良好な膜質、段差被覆性を
付与できる方法として、高周波電力を小さくした状態で
の,内部応力が5×109dyne/cm2 以下の窒化シリコ
ン膜と、高周波電力を大きくした状態での,内部応力が
10×109 dyne/cm2 以上の窒化シリコン膜とを交互
に成膜した多層膜の形成を提案した(特願平3−220
811号)。しかし、このように、内部応力の異なる膜
は、各層の膜厚が厚いと剥離を起こしやすくなるので、
各層をできるだけ薄く形成する必要があり、このために
所望の膜厚を得るまでに時間がかかるという問題点が生
じる。
As described above, the ECR plasma CVD method has a feature that an insulating film can be deposited at a low temperature, but the plasma density generated by the cyclotron resonance causes the cavity resonance mode in the plasma generation chamber and the magnetic field distribution. It has a unique spatial distribution determined by, and tends to decrease from the center to the outside. Therefore, if the film is deposited as it is, the film thickness distribution becomes thick in the central part and thin in the peripheral part. In the case of a silicon nitride film, as a method of correcting this and improving the refractive index distribution at the same time, the present inventor first clarified that the high frequency power supplied to the wafer was set to a unit volume (cm 3 ) of the total gas flow rate, Per unit area (cm 2 ) (2.5
~ 8) Introduce silane to be introduced into the vapor phase growth chamber at a flow rate of × 10 -3 W with a flow rate distribution such that the flow rate ratio is 3 or more near the boundary between the plasma generation chamber and the vapor phase reaction chamber and near the wafer. I proposed that (Japanese Patent Application No. 2-406170). At the same time, the bias potential of the wafer surface of 100 to 2 required for imparting the step coverage of the film while suppressing the stress in the film to 10 × 10 9 dyne / cm 2
The gas flow rate ratio (nitrogen / silane), the high frequency power per unit volume of the total gas flow rate, and the gas pressure range were given as film forming conditions capable of generating 00V. However, in the case of a silicon nitride film, if it is attempted to maintain good film quality and step coverage, the internal stress of the film cannot be further reduced, and the same result as the above-mentioned thermal stress will result. Therefore, as a method of imparting good film quality and step coverage while further reducing the internal stress of the film with a little delay from the above proposal, the present inventor has a high internal power of 5 × when the high frequency power is reduced. A multilayer film is formed by alternately depositing a silicon nitride film having a density of 10 9 dyne / cm 2 or less and a silicon nitride film having an internal stress of 10 × 10 9 dyne / cm 2 or more with high frequency power increased. Proposed (Japanese Patent Application No. 3-220)
811). However, as described above, films having different internal stresses tend to peel when the thickness of each layer is large.
It is necessary to form each layer as thin as possible, which causes a problem that it takes time to obtain a desired film thickness.

【0007】このように、保護膜として薬品に強く、耐
水性も強いECRプラズマCVDによる窒化シリコン膜
はこれを使用したくとも内部応力の大きさあるいは成膜
速度の面で半導体製造プロセスでの使用にいたっていな
い。一方ECRプラズマCVD法による酸化シリコン膜
は、従来のプラズマCVD法による酸化シリコン膜に比
べて図2に示したように耐水性が非常に優れており、窒
化シリコン膜と比べてもほとんど遜色がなく、段差部の
被覆性についても膜質を損なうことなく被覆形状も制御
可能である。その上膜の内部応力も集積回路に悪影響を
与える程には大きくない。しかし耐薬品性、特にフッ酸
に対しては非常に早くエッチングされてしまい、保護膜
としては不適格である。なお、図2は、ウエハ上に燐ガ
ラス(PSG)膜を堆積させたものに、従来法によるプ
ラズマ酸化膜(P−SiO2 ),プラズマTEOS(テ
トラ・エトキシ・オルソ・サイレン─シラン系の原料ガ
ス)酸化膜(P−TEOS),ECR酸化膜(ECR−
SiO2 ),従来法によるプラズマ窒化膜(P−Si
N)を堆積し、プレッシャクッカ試験を行い、赤外線吸
収スペクトルで1300cm-1に現れるP=O(PとOと
の2重結合)のピークの残存量を表した線図である。残
存量が少ないほど水分が絶縁膜に滲透したことを示す。
As described above, the silicon nitride film formed by ECR plasma CVD, which is resistant to chemicals and has high water resistance as a protective film, is used in the semiconductor manufacturing process in view of the magnitude of internal stress or the film forming speed even if it is desired to use it. I haven't arrived. On the other hand, the silicon oxide film formed by the ECR plasma CVD method has much higher water resistance than the silicon oxide film formed by the conventional plasma CVD method as shown in FIG. 2, and is almost comparable to the silicon nitride film. As for the coverage of the step portion, the coating shape can be controlled without impairing the film quality. Moreover, the internal stress of the upper film is not so great as to adversely affect the integrated circuit. However, it is unsuitable as a protective film because it is etched very quickly with respect to chemical resistance, particularly hydrofluoric acid. Note that FIG. 2 shows a phosphor glass (PSG) film deposited on a wafer, a plasma oxide film (P-SiO 2 ) by a conventional method, and a plasma TEOS (tetra-ethoxy-ortho-silene-silane-based raw material). Gas) oxide film (P-TEOS), ECR oxide film (ECR-
SiO 2 ), plasma nitride film (P-Si
FIG. 3 is a diagram showing the residual amount of a peak of P═O (double bond between P and O) appearing at 1300 cm −1 in an infrared absorption spectrum after depositing N) and performing a pressure cooker test. The smaller the remaining amount is, the more water penetrated the insulating film.

【0008】本発明の目的は、フッ酸等の腐蝕性の薬品
に対しては耐蝕性を示し、ストレス面では集積回路に悪
影響を与えない程度の内部応力となり、かつ段差被覆性
に優れ、しかも成膜時間が特に長くなることのない集積
回路用保護膜の堆積方法を提供することである。
The object of the present invention is to show corrosion resistance to corrosive chemicals such as hydrofluoric acid, to provide internal stress that does not adversely affect the integrated circuit in terms of stress, and has excellent step coverage. An object of the present invention is to provide a method for depositing a protective film for an integrated circuit, which does not particularly increase the film forming time.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明においては、上記集積回路用絶縁保護膜の堆
積方法として、絶縁膜の形成に与かる雰囲気ガス中の一
部を電子サイクロトロン共鳴法によりプラズマ化して残
りのガスと反応させることにより絶縁膜を堆積させよう
とする装置にあって、まず酸化シリコン膜を堆積し、次
いで酸化シリコン膜から窒化シリコン膜へと連続的に遷
移させた膜を堆積し、その上に窒化シリコン膜を堆積さ
せる方法をとるものとする。
In order to solve the above-mentioned problems, in the present invention, as a method of depositing the insulating protective film for an integrated circuit, a part of the atmospheric gas used for forming the insulating film is partially electron cyclotron. In an apparatus in which an insulating film is to be deposited by making it into plasma by the resonance method and reacting with the remaining gas, first, a silicon oxide film is deposited, and then a transition is continuously made from the silicon oxide film to the silicon nitride film. Film is deposited, and a silicon nitride film is deposited thereon.

【0010】この場合、酸化シリコン膜,酸化シリコン
膜から窒化シリコン膜へと連続的に遷移させた膜,窒化
シリコン膜と順に堆積させるに当り、すべて同一ウエハ
温度で堆積させるとよい。また、上記酸化シリコン膜,
遷移膜,窒化シリコン膜はそれぞれ以下の堆積条件で堆
積させると好適である。
In this case, when depositing the silicon oxide film, the film in which the silicon oxide film is continuously transitioned to the silicon nitride film, and the silicon nitride film in this order, it is preferable to deposit them all at the same wafer temperature. In addition, the silicon oxide film,
The transition film and the silicon nitride film are preferably deposited under the following deposition conditions.

【0011】酸化シリコン膜の堆積条件: 酸素ガス流量 : 30〜40cc/min シランガス流量 : 28〜36cc/min シラン/酸素流量比: 0.8〜1.0 装置内ガス圧力 : 1〜10mTorr マイクロ波電力 : 400〜1000W 高周波電力 : 1.5〜3.5 W/cm2 (ウエハ表面単位面積当り) ウエハ温度 : 150〜250℃ 窒化シリコン膜の堆積条件: 窒素ガス流量 : 250〜350cc/min シランガス流量 : 28〜36cc/min 装置内ガス圧力 : 40〜100mTorr マイクロ波電力 : 1200〜1800W 高周波電力 : 0.3〜1.0 W/cm2 (ウエハ表面単位面積当り) ウエハ温度 : 150〜250℃ 遷移膜 :酸化シリコン膜の堆積条件から窒
化シリコン膜の堆積条件へ連続的に遷移させて堆積させ
る。
Deposition conditions of silicon oxide film: Oxygen gas flow rate: 30 to 40 cc / min Silane gas flow rate: 28 to 36 cc / min Silane / oxygen flow rate ratio: 0.8 to 1.0 Gas pressure in apparatus: 1 to 10 mTorr Microwave power: 400 to 1000 W High frequency power: 1.5 to 3.5 W / cm 2 (per unit area of wafer surface) Wafer temperature: 150 to 250 ° C. Deposition condition of silicon nitride film: Nitrogen gas flow rate: 250 to 350 cc / min Silane gas flow rate: 28 to 36 cc / min Gas pressure in equipment: 40-100 mTorr Microwave power: 1200-1800 W High-frequency power: 0.3-1.0 W / cm 2 (per unit area of wafer surface) Wafer temperature: 150-250 ° C Transition film: Silicon oxide film The deposition conditions are continuously changed to the deposition conditions of the silicon nitride film, and the silicon nitride film is deposited.

【0012】なお、上記酸化シリコン膜,遷移膜,窒化
シリコン膜からなる絶縁膜の堆積は、プラズマ化される
ガスと、プラズマ化されたガスと反応するガスとを同一
容器内へ導入するとともにウエハを容器内に位置させて
行うようにすれば極めて好適である。
The deposition of the insulating film composed of the silicon oxide film, the transition film, and the silicon nitride film is performed by introducing the gas to be plasma and the gas that reacts with the plasma into the same container and It is extremely preferable to position the inside of the container.

【0013】[0013]

【作用】本発明の方法は、ECRプラズマCVD法によ
る酸化シリコン膜の膜質と段差被覆性とに着目し、成膜
初期の膜に低応力性で段差被覆性の良い酸化シリコン膜
を使用し、中間層には酸化シリコン膜から窒化シリコン
膜へと連続的に遷移する膜を、表面近傍の膜は耐薬品性
の強い窒化シリコン膜をプラズマを停止せず、ガス組成
を換えるだけで堆積させるものである(もちろん装置内
のガス圧力やマイクロ波電力等は連続的に遷移させ
る)。これにより、外部からの腐蝕性の薬品に対しては
耐蝕性を示し、ストレス面では集積回路に悪影響を与え
ない程度の内部応力を有する保護膜とすることができ
る。
The method of the present invention focuses on the film quality and the step coverage of the silicon oxide film by the ECR plasma CVD method, and uses a silicon oxide film having low stress and good step coverage as the film at the initial stage of film formation, For the intermediate layer, a film that continuously transitions from a silicon oxide film to a silicon nitride film, and for the film near the surface, a silicon nitride film with strong chemical resistance is deposited by simply changing the gas composition without stopping the plasma. (Of course, the gas pressure and microwave power in the device are continuously changed). This makes it possible to obtain a protective film which has corrosion resistance against corrosive chemicals from the outside and has internal stress that does not adversely affect the integrated circuit in terms of stress.

【0014】なお、上述のそれぞれの膜厚は、酸化シリ
コン膜が約5000Å、酸化シリコン膜から窒化シリコ
ン膜へと連続的に遷移する膜を約3000Å、そして窒
化シリコン膜を約2000Åとし、全体として約1μm
の膜厚とするのが実用上望ましい。ウエハに掛ける高周
波バイアス電力としては、ウエハ表面の単位面積当たり
にして酸化シリコン膜の場合1.5〜3.5W/cm2
範囲が適当であり、2.0〜3.0W/cm2 の範囲とす
ることがさらに望ましい。窒化シリコン膜の場合は0.
3〜1.0W/cm2 の範囲が適当であり、0.5〜0.
7W/cm2 の範囲とすることがさらに望ましい。酸化シ
リコン膜から窒化シリコン膜へと連続的に遷移する膜の
場合は高周波バイアス電力,マイクロ波電力ともに酸化
シリコン膜の供給電力範囲から、窒化シリコン膜での供
給電力範囲まで連続的に変化させることが望ましい。
The above-mentioned respective film thicknesses are about 5000 Å for the silicon oxide film, about 3000 Å for the film that continuously transitions from the silicon oxide film to the silicon nitride film, and about 2000 Å for the silicon nitride film. About 1 μm
It is practically desirable to have a film thickness of. The high frequency bias power applied to the wafer is in the per unit area of the wafer surface appropriate range when 1.5~3.5W / cm 2 of silicon oxide film, the 2.0~3.0W / cm 2 It is more desirable to set the range. In the case of a silicon nitride film, 0.
A range of 3 to 1.0 W / cm 2 is suitable, and a range of 0.5 to 0.
It is more desirable to set it in the range of 7 W / cm 2 . In the case of a film that continuously transitions from a silicon oxide film to a silicon nitride film, both high-frequency bias power and microwave power should be continuously changed from the supply power range of the silicon oxide film to the supply power range of the silicon nitride film. Is desirable.

【0015】ウエハの温度は250℃以下であってよ
く、酸化シリコン膜でも窒化シリコン膜でも同じ温度で
成膜して良い。なお、前記酸化シリコン膜,遷移膜,窒
化シリコン膜からなる複合膜を堆積させるに際し、プラ
ズマ化されるガスと、プラズマ化されたガスと反応する
ガスとをともに同一容器,具体的にはプラズマ生成室内
に導入し、ウエハもプラズマ生成室内に位置させて堆積
させるようにすれば、プラズマ生成室内はプラズマ密度
が高く、通常のECRプラズマCVD装置における気相
反応室での堆積速度と比べて堆積が高速に行われ、酸化
シリコン膜,窒化シリコン膜等の単体膜の通常の堆積時
間と同等以下の時間で堆積が可能になる。
The wafer temperature may be 250 ° C. or lower, and the silicon oxide film and the silicon nitride film may be formed at the same temperature. In depositing the composite film including the silicon oxide film, the transition film, and the silicon nitride film, the gas to be plasmatized and the gas to react with the plasmatized gas are both in the same container, specifically, plasma is generated. If the wafer is introduced into the chamber and the wafer is also positioned in the plasma generation chamber for deposition, the plasma generation chamber has a high plasma density and the deposition rate is higher than the deposition rate in the gas phase reaction chamber in a normal ECR plasma CVD apparatus. It is performed at high speed, and it becomes possible to deposit a single film such as a silicon oxide film or a silicon nitride film in a time equal to or shorter than the normal deposition time.

【0016】[0016]

【実施例】以下、図を参照しながら本発明の実施例を具
体的に説明する。図1は本発明による絶縁膜の堆積方法
に適するECRプラズマCVD用装置の要部を例示する
ものである。図示の装置の本体は符号10で示した真空
容器であって、内部が図では上側のプラズマ生成室11
と下側の気相反応室12とに大まかに分けられている。
プラズマ生成室11にはその上部開口13に接続された
導波管20を介してマイクロ波MWが上側から注入され
て室内で空洞共振する。またこのプラズマ生成室11に
は、ガス導入管14を介して窒化シリコン膜の場合は反
応ガスの一部である窒素ガスNが、酸化シリコン膜の場
合は酸素ガスOが導入され、かつその回りにサイクロト
ロン共鳴用のコイル30が配置されて図の上下方向に所
定の強度の直流磁界を発生する。室内の反応ガスはマイ
クロ波MWにより電離され、かつ磁界作用下の電子のサ
イクロトロン共鳴によって反応ガスの高密度プラズマが
生成される。この生成プラズマは発散性の直流磁界中の
勾配によりプラズマ生成室11から気相反応室12の方
に引き出される。気相反応室12にはガス導入管15を
介して反応ガスの残りであるシランSが導入され、その
下部は排気管16を介して図では真空Vで略示された真
空ポンプ系と接続されている。この気相反応室12に導
入されたシランSは上部からの反応ガスのプラズマと混
合して気相反応をおこし、その反応生成物として窒化シ
リコン分子や酸化シリコン分子が室内の中央付近の領域
に発生する。室内の下部には、上述の反応生成物を窒化
シリコン膜あるいは酸化シリコン膜として堆積すべきウ
エハ1がウエハ台40に載置される。このウエハ台40
はガラス等の高周波用の絶縁物41により真空容器10
の底板に支持され、高周波バイアス電源50とリード4
2を介して接続される。なお、この電源50の周波数は
例えば13.56MHzとされる。またウエハ台40に
はウエハ1を所定の温度に保つため、図示されていない
が適宜な加熱や冷却手段を組み込むのがよい。また気相
反応室12内の圧力を任意に制御したい場合は、気相反
応室12と真空ポンプ系との接続管路の中間部に反応に
影響を与えないガス例えばヘリウム等を導入し、真空容
器10に対する真空ポンプの排気能力を落とす方法で制
御するのが好ましい。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 illustrates an essential part of an ECR plasma CVD apparatus suitable for an insulating film deposition method according to the present invention. The main body of the illustrated apparatus is a vacuum container indicated by reference numeral 10, and the inside is an upper plasma generation chamber 11 in the drawing.
And the lower gas phase reaction chamber 12 is roughly divided.
The microwave MW is injected into the plasma generation chamber 11 from the upper side through the waveguide 20 connected to the upper opening 13 of the plasma generation chamber 11 to cause cavity resonance in the chamber. Further, into the plasma generation chamber 11, nitrogen gas N which is a part of the reaction gas in the case of a silicon nitride film and oxygen gas O in the case of a silicon oxide film are introduced through the gas introduction pipe 14 and around the same. A coil 30 for cyclotron resonance is arranged in the column to generate a DC magnetic field of a predetermined intensity in the vertical direction in the figure. The reaction gas in the chamber is ionized by the microwave MW, and cyclotron resonance of electrons under the action of a magnetic field generates high-density plasma of the reaction gas. This generated plasma is drawn from the plasma generation chamber 11 toward the gas phase reaction chamber 12 by the gradient in the divergent DC magnetic field. Silane S, which is the rest of the reaction gas, is introduced into the gas phase reaction chamber 12 through a gas introduction pipe 15, and the lower portion thereof is connected through an exhaust pipe 16 to a vacuum pump system, which is schematically indicated by vacuum V in the figure. ing. The silane S introduced into the gas phase reaction chamber 12 mixes with the plasma of the reaction gas from above to cause a gas phase reaction, and silicon nitride molecules and silicon oxide molecules are generated as reaction products in a region near the center of the chamber. Occur. At the lower part of the chamber, a wafer 1 on which the above-described reaction product is to be deposited as a silicon nitride film or a silicon oxide film is placed on a wafer table 40. This wafer table 40
Is a vacuum container 10 with a high frequency insulator 41 such as glass.
Supported by the bottom plate of the high frequency bias power supply 50 and the lead 4
2 is connected. The frequency of the power supply 50 is 13.56 MHz, for example. Further, in order to keep the wafer 1 at a predetermined temperature on the wafer table 40, it is preferable to incorporate appropriate heating and cooling means (not shown). When it is desired to arbitrarily control the pressure in the gas phase reaction chamber 12, a gas that does not affect the reaction, such as helium, is introduced into the intermediate portion of the connecting pipe line between the gas phase reaction chamber 12 and the vacuum pump system, and a vacuum is introduced. It is preferable to control by a method of reducing the exhausting capacity of the vacuum pump for the container 10.

【0017】本発明の方法では、以上の装置内で所定の
絶縁膜を堆積するには、ウエハ台40上にウエハ1を配
置し温度を300℃以下、普通は150〜250℃に自
動調節し、かつ真空容器10内を充分排気したうえで第
1反応ガスである酸素Oをプラズマ生成室11に、シラ
ンガスSを気相反応室12にそれぞれ所定流量で流す。
かかる雰囲気ガスでの容器内圧力は1〜10mTorr
の範囲内、望ましくは2〜5mTorrとされる。
In the method of the present invention, in order to deposit a predetermined insulating film in the above apparatus, the wafer 1 is placed on the wafer stage 40 and the temperature is automatically adjusted to 300 ° C. or lower, usually 150 to 250 ° C. After exhausting the inside of the vacuum vessel 10 sufficiently, oxygen O, which is the first reaction gas, is flown into the plasma generation chamber 11 and silane gas S is flown into the gas phase reaction chamber 12 at a predetermined flow rate.
The pressure in the container with such atmosphere gas is 1 to 10 mTorr
Within the range, preferably 2-5 mTorr.

【0018】ついで、コイル30の励磁状態でマイクロ
波MWを導波管20からプラズマ生成室11に照射し、
同時に高周波バイアス電源50から1.5〜3.5W/
cm2、好ましくは2.0〜3.0W/cm2 の高周波電力
をウエハ1に印加する。又マイクロ波電力は400〜1
000W、好ましくは500〜800Wを照射する。酸
化シリコン膜堆積時の主な条件を示すと以下のとうりで
ある。
Then, with the coil 30 excited, the microwave MW is irradiated from the waveguide 20 to the plasma generation chamber 11,
At the same time, 1.5 to 3.5 W / from the high frequency bias power supply 50
A high frequency power of cm 2 , preferably 2.0 to 3.0 W / cm 2 is applied to the wafer 1. The microwave power is 400-1
Irradiate 000 W, preferably 500 to 800 W. The main conditions for depositing a silicon oxide film are as follows.

【0019】 中心条件で酸化シリコン膜を堆積すると膜の堆積速度は
約1200Å/min となり、内部応力は圧縮応力で2×
109 dyne/cm2 以下の膜が得られる。従って約500
0Åの膜厚を得るには4〜5分間酸化シリコン膜を堆積
すれば良い。酸化シリコン膜から窒化シリコン膜への連
続的に遷移する膜の堆積方法は以下のとうりである。
[0019] When a silicon oxide film is deposited under the central condition, the deposition rate of the film becomes about 1200Å / min, and the internal stress is 2 × compressive stress.
A film of 10 9 dyne / cm 2 or less is obtained. Therefore about 500
To obtain a film thickness of 0Å, a silicon oxide film may be deposited for 4 to 5 minutes. The method of depositing a film that continuously transitions from a silicon oxide film to a silicon nitride film is as follows.

【0020】酸化シリコン膜堆積後、シランガス流量は
かえずに酸素ガス流量を減らし、窒素ガスを添加し増加
させる。膜の堆積速度は殆どシラン流量に律則してお
り、約1200Å/min であるので中間層の堆積時間は
2〜3分である。この間に中心条件での成膜ならば、酸
素ガス32cc/min から0cc/min まで連続的に変化さ
せる。窒素ガスについては0cc/min から300cc/mi
n まで連続的に変化させる。またマイクロ波電力につい
ては600Wから1500Wまで、高周波電力について
は、600Wから250Wまで連続的に変化させる。さ
らに雰囲気ガス圧力も3mTorrから60mTorr
まで変化させる。このように条件を変化させることで、
酸化シリコン膜から窒化シリコン膜へ連続的に遷移させ
る。窒化シリコン膜の堆積条件は以下のとうりである。
After depositing the silicon oxide film, the flow rate of silane gas is decreased and the flow rate of oxygen gas is decreased and nitrogen gas is added to increase the flow rate. The deposition rate of the film is almost regulated by the silane flow rate, and is about 1200Å / min, so that the deposition time of the intermediate layer is 2 to 3 minutes. During film formation under the central conditions during this period, the oxygen gas is continuously changed from 32 cc / min to 0 cc / min. 0cc / min to 300cc / mi for nitrogen gas
Change continuously up to n. The microwave power is continuously changed from 600 W to 1500 W, and the high frequency power is continuously changed from 600 W to 250 W. Further, the atmospheric gas pressure is also 3 mTorr to 60 mTorr
Change up to. By changing the conditions in this way,
A transition is continuously made from the silicon oxide film to the silicon nitride film. The deposition conditions of the silicon nitride film are as follows.

【0021】 この時の膜の特性は堆積速度約1100Å/min 、膜の
内部応力は圧縮応力で約8×109 dyne/cm2 である。
またフッ酸(50%)溶液に対するエッチング速度も2
000Å/min 以下である。
[0021] The characteristics of the film at this time are such that the deposition rate is about 1100 Å / min, and the internal stress of the film is about 8 × 10 9 dyne / cm 2 in terms of compressive stress.
Also, the etching rate for hydrofluoric acid (50%) solution is 2
It is less than 000Å / min.

【0022】応力としては大きいが、膜厚が薄いため絶
縁膜全体に与える影響は小さく、膜厚全体で約4×10
9 dyne/cm2 以下に制御することができる。また異質な
膜が不連続で接触しているのではなく、連続的に質を変
化させているため、膜の剥離等の心配をする必要がな
い。
Although the stress is large, since the film thickness is small, the influence on the entire insulating film is small, and the total film thickness is about 4 × 10.
It can be controlled to 9 dyne / cm 2 or less. Further, since the dissimilar films are not in contact with each other discontinuously but the quality is continuously changed, there is no need to worry about the film peeling.

【0023】[0023]

【発明の効果】以上のように本発明による集積回路用絶
縁膜の堆積方法では、ECR法による絶縁膜が従来のプ
ラズマ法に比べて膜質に優れていることを利用し、ウエ
ハ側には内部応力が小さく段差被覆性も優れた酸化シリ
コン膜を堆積し、表面層には耐薬品性および耐水性の高
い窒化シリコン膜を堆積し、その間には酸化シリコン膜
から窒化シリコン膜へと連続的に遷移する膜を堆積する
ことで、異質な膜同志の離反性をなくするとともに、酸
化シリコン膜および遷移膜を内部応力の大きい窒化シリ
コン膜の緩衝膜として働かせるようにしたので、絶縁膜
全体として被被覆物に作用する内部応力の大きくなるこ
とを防止することができ、集積回路装置に対して実用性
の高い保護膜を提供することができる。
As described above, in the method for depositing an insulating film for an integrated circuit according to the present invention, the fact that the insulating film by the ECR method is superior in quality to the conventional plasma method is utilized, and an internal film is formed on the wafer side. A silicon oxide film with low stress and excellent step coverage is deposited, a silicon nitride film with high chemical resistance and high water resistance is deposited on the surface layer, and in the meanwhile, the silicon oxide film continuously changes to the silicon nitride film. By depositing the transitional film, the dissociation between different films is eliminated, and the silicon oxide film and the transition film are made to function as a buffer film for the silicon nitride film having a large internal stress. It is possible to prevent the internal stress acting on the coating material from increasing, and to provide a highly practical protective film for the integrated circuit device.

【0024】さらに、本発明の方法では、酸化シリコン
膜,遷移膜,窒化シリコン膜をすべて同一ウエハ温度で
堆積させることができるので、安定するまでに時間のか
かるウエハ温度の調整時間がなく、複合膜であるにも拘
らず、堆積時間が特に長くならないで済むメリットがあ
る。また、本発明の方法では、ガス流量以外には各堆積
条件にそれぞれかなり広い幅が許容されるので、条件設
定の面で困難を伴うことなく、目的とする膜質の保護膜
を容易に堆積させることができる。
Further, according to the method of the present invention, since the silicon oxide film, the transition film, and the silicon nitride film can all be deposited at the same wafer temperature, there is no adjustment time of the wafer temperature which takes time to stabilize, and the composite temperature is improved. Despite being a film, there is an advantage that the deposition time does not need to be particularly long. Further, in the method of the present invention, since a considerably wide range is allowed for each deposition condition other than the gas flow rate, a protective film having a target film quality can be easily deposited without difficulty in setting conditions. be able to.

【0025】そして、プラズマ化されるガスと、プラズ
マ化されたガスと反応する残りのガスとを同一容器内に
導入することにウエハも同一容器内に位置させると、酸
化シリコン膜,窒化シリコン膜ではすべて高速成膜が可
能なことが知られており、当然遷移膜も高速成膜が可能
となり、複合膜であるにも拘らず全体として堆積時間が
短くなり、装置のスルーストップが向上する。
When the gas to be turned into plasma and the remaining gas that reacts with the gas to be turned into plasma are introduced into the same container and the wafer is also placed in the same container, a silicon oxide film and a silicon nitride film are formed. It is known that high-speed film formation is possible in all cases. Naturally, high-speed film formation of a transition film is also possible, and despite the composite film, the deposition time is shortened as a whole, and the slew stop of the apparatus is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の目的とする膜質の半導体装置用絶縁膜
の堆積に適するECRプラズマCVD用装置の要部を例
示する構成図
FIG. 1 is a configuration diagram illustrating an essential part of an ECR plasma CVD apparatus suitable for depositing an insulating film for a semiconductor device, which is the object of the present invention.

【図2】従来のプラズマCVD法によるシリコン酸化
膜,TEOS酸化膜、ECRプラズマCVD法によるシ
リコン酸化膜、従来のプラズマCVD法によるシリコン
窒化膜の各耐透水性の比較を示す線図
FIG. 2 is a diagram showing a comparison of water permeation resistance among a silicon oxide film formed by a conventional plasma CVD method, a TEOS oxide film, a silicon oxide film formed by an ECR plasma CVD method, and a silicon nitride film formed by a conventional plasma CVD method.

【符号の説明】[Explanation of symbols]

1 ウエハ 11 プラズマ生成室 12 気相反応室 14 ガス導入管 15 ガス導入管 20 導波管 30 コイル(電子サイクロトロン共鳴用コイル) 40 ウエハ台 50 高周波バイアス電源 DESCRIPTION OF SYMBOLS 1 Wafer 11 Plasma generation chamber 12 Gas phase reaction chamber 14 Gas introduction pipe 15 Gas introduction pipe 20 Waveguide 30 Coil (electron cyclotron resonance coil) 40 Wafer stage 50 High frequency bias power supply

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】半導体装置がつくりこまれたウエハ面にプ
ラズマCVD法により絶縁膜を堆積する方法であって、
絶縁膜の形成に与かる雰囲気ガス中の一部を電子サイク
ロトロン共鳴法によりプラズマ化して残りのガスと反応
させることにより絶縁膜を堆積させようとする装置にあ
って、まず酸化シリコン膜を堆積し、次いで酸化シリコ
ン膜から窒化シリコン膜へと連続的に遷移させた膜を堆
積し、その上に窒化シリコン膜を堆積させることを特徴
とする半導体装置用絶縁膜の堆積方法。
1. A method of depositing an insulating film on a wafer surface on which a semiconductor device is formed by plasma CVD, comprising:
In an apparatus that attempts to deposit an insulating film by converting a part of the atmosphere gas involved in forming the insulating film into plasma by an electron cyclotron resonance method and reacting with the remaining gas, first deposit a silicon oxide film. A method for depositing an insulating film for a semiconductor device, comprising depositing a film in which a silicon oxide film is continuously transitioned to a silicon nitride film, and depositing a silicon nitride film thereon.
【請求項2】請求項第1項に記載の方法において、酸化
シリコン膜,酸化シリコン膜から窒化シリコン膜へと連
続的に遷移させた膜,窒化シリコン膜と順に堆積させる
に当り、すべて同一ウエハ温度で堆積させることを特徴
とする半導体装置用絶縁膜の堆積方法。
2. The method according to claim 1, wherein a silicon oxide film, a film in which a silicon oxide film is continuously changed to a silicon nitride film, and a silicon nitride film are sequentially deposited, all of which are the same wafer. A method for depositing an insulating film for a semiconductor device, characterized by depositing at a temperature.
【請求項3】請求項第1項に記載の方法において、酸化
シリコン膜および窒化シリコン膜をそれぞれ以下に記載
の堆積条件で堆積させるとともに、酸化シリコン膜から
窒化シリコン膜へと連続的に遷移する膜の堆積は、各堆
積条件を酸化シリコン膜の堆積条件から窒化シリコン膜
の堆積条件へ連続的に遷移させて行うことを特徴とする
半導体装置用絶縁膜の堆積方法。 酸化シリコン膜の堆積条件: 酸素ガス流量 : 30〜40cc/min シランガス流量 : 28〜36cc/min シラン/酸素流量比: 0.8〜1.0 装置内ガス圧力 : 1〜10mTorr マイクロ波電力 : 400〜1000W 高周波電力 : 1.5〜3.5 W/cm2 (ウエハ表面単位面積当り) ウエハ温度 : 150〜250℃ 窒化シリコン膜の堆積条件: 窒素ガス流量 : 250〜350cc/min シランガス流量 : 28〜36cc/min 装置内ガス圧力 : 40〜100mTorr マイクロ波電力 : 1200〜1800W 高周波電力 : 0.3〜1.0 W/cm2 (ウエハ表面単位面積当り) ウエハ温度 : 150〜250℃
3. The method according to claim 1, wherein a silicon oxide film and a silicon nitride film are deposited under the deposition conditions described below, respectively, and the silicon oxide film and the silicon nitride film are continuously transitioned. The method for depositing an insulating film for a semiconductor device, wherein the deposition of the film is performed by continuously shifting each deposition condition from the deposition condition of the silicon oxide film to the deposition condition of the silicon nitride film. Deposition conditions of silicon oxide film: Oxygen gas flow rate: 30 to 40 cc / min Silane gas flow rate: 28 to 36 cc / min Silane / oxygen flow rate ratio: 0.8 to 1.0 Gas pressure in equipment: 1 to 10 mTorr Microwave power: 400 to 1000 W High frequency power: 1.5 to 3.5 W / cm 2 (per unit area of wafer surface) Wafer temperature: 150 to 250 ° C. Silicon nitride film deposition conditions: Nitrogen gas flow rate: 250 to 350 cc / min Silane gas flow rate: 28 to 36 cc / min Gas pressure in the apparatus: 40 to 100 mTorr Microwave power: 1200 to 1800 W High frequency power: 0.3 to 1.0 W / cm 2 (per unit area of wafer surface) Wafer temperature: 150 to 250 ° C.
【請求項4】請求項第1項に記載の方法において、プラ
ズマ化されるガスと、プラズマ化されたガスと反応する
ガスとが同一容器内へ導入されるとともに絶縁膜を堆積
させるウエハを該容器内に位置させて酸化シリコン膜,
酸化シリコン膜から窒化シリコン膜へと連続的に遷移さ
せた膜,窒化シリコン膜からなる絶縁膜を堆積させるこ
とを特徴とする半導体装置用絶縁膜の堆積方法。
4. The method according to claim 1, wherein a gas to be plasmatized and a gas that reacts with the gas to be plasmatized are introduced into the same container, and a wafer on which an insulating film is deposited is formed. Place the silicon oxide film in the container,
A method for depositing an insulating film for a semiconductor device, comprising depositing an insulating film made of a silicon nitride film and a film in which a silicon oxide film is continuously transitioned to a silicon nitride film.
JP5015028A 1993-02-02 1993-02-02 Deposition of insulating film for semiconductor device Pending JPH06232113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5015028A JPH06232113A (en) 1993-02-02 1993-02-02 Deposition of insulating film for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5015028A JPH06232113A (en) 1993-02-02 1993-02-02 Deposition of insulating film for semiconductor device

Publications (1)

Publication Number Publication Date
JPH06232113A true JPH06232113A (en) 1994-08-19

Family

ID=11877384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5015028A Pending JPH06232113A (en) 1993-02-02 1993-02-02 Deposition of insulating film for semiconductor device

Country Status (1)

Country Link
JP (1) JPH06232113A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714408A (en) * 1995-12-14 1998-02-03 Denso Corporation Method of forming silicon nitride with varied hydrogen concentration
JPH1154502A (en) * 1997-05-07 1999-02-26 Applied Materials Inc Method and device for deposition of etching stopping layer
JP2001257206A (en) * 1999-12-07 2001-09-21 Applied Materials Inc Method and apparatus for reducing fixed charge in a semiconductor device
JP2002210967A (en) * 2001-01-22 2002-07-31 Konica Corp Protective film, its forming method, ink jet head, and method for manufacturing ink jet head
US6719919B1 (en) 1998-12-23 2004-04-13 Micron Technology, Inc. Composition of matter
JP2006032894A (en) * 2004-07-13 2006-02-02 Hynix Semiconductor Inc Passivation film forming method and passivation film structure of semiconductor device
US7067414B1 (en) 1999-09-01 2006-06-27 Micron Technology, Inc. Low k interlevel dielectric layer fabrication methods
JP2009105412A (en) * 1997-03-27 2009-05-14 Applied Materials Inc Technical means for improving reproducibility of chucking

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714408A (en) * 1995-12-14 1998-02-03 Denso Corporation Method of forming silicon nitride with varied hydrogen concentration
US6137156A (en) * 1995-12-14 2000-10-24 Denso Corporation Semiconductor device employing silicon nitride layers with varied hydrogen concentration
JP2009105412A (en) * 1997-03-27 2009-05-14 Applied Materials Inc Technical means for improving reproducibility of chucking
JPH1154502A (en) * 1997-05-07 1999-02-26 Applied Materials Inc Method and device for deposition of etching stopping layer
US6719919B1 (en) 1998-12-23 2004-04-13 Micron Technology, Inc. Composition of matter
US7067414B1 (en) 1999-09-01 2006-06-27 Micron Technology, Inc. Low k interlevel dielectric layer fabrication methods
JP2001257206A (en) * 1999-12-07 2001-09-21 Applied Materials Inc Method and apparatus for reducing fixed charge in a semiconductor device
JP2002210967A (en) * 2001-01-22 2002-07-31 Konica Corp Protective film, its forming method, ink jet head, and method for manufacturing ink jet head
JP4623344B2 (en) * 2001-01-22 2011-02-02 コニカミノルタホールディングス株式会社 Protective film, protective film forming method, inkjet head, and inkjet head manufacturing method
JP2006032894A (en) * 2004-07-13 2006-02-02 Hynix Semiconductor Inc Passivation film forming method and passivation film structure of semiconductor device

Similar Documents

Publication Publication Date Title
EP0478174B1 (en) Silicon dioxide deposition method
US7781352B2 (en) Method for forming inorganic silazane-based dielectric film
US4681653A (en) Planarized dielectric deposited using plasma enhanced chemical vapor deposition
US5626679A (en) Method and apparatus for preparing a silicon oxide film
KR100238573B1 (en) Method and apparatus for forming thin film
JPH06232113A (en) Deposition of insulating film for semiconductor device
JP2001267310A (en) Method and device for film forming plasma
US20050009291A1 (en) Methods for filling high aspect ratio trenches in semiconductor layers
JPH0766186A (en) Anisotropic depositing method of dielectric
US20100003833A1 (en) Method of forming fluorine-containing dielectric film
JPH06196410A (en) Plasma treatment device
JPH0897208A (en) Plasma chemical vapor deposition method and its equipment and manufacture of multilayered interconnection
KR102426960B1 (en) Method for forming silicon oxide film using plasmas
JPH08222557A (en) Manufacture of fluorinated amorphous carbon film
JP3094688B2 (en) Manufacturing method of insulating film
JPH0562971A (en) Forming method of silicon nitride film
JPH01298725A (en) Thin film formation, apparatus therefor, and semiconductor element
JPH0729898A (en) Manufacture of semiconductor
JPH10125669A (en) Plasma cvd system and formation of oxide film
JPH03247767A (en) Formation of insulating film
JPH04343456A (en) Manufacture of semiconductor device
JPH0614522B2 (en) Surface treatment method and surface treatment apparatus
JPH08330293A (en) Formation method of insulation film and plasma chemical vapor deposition device used for the method
US6713406B1 (en) Method for depositing dielectric materials onto semiconductor substrates by HDP (high density plasma) CVD (chemical vapor deposition) processes without damage to FET active devices
JPH09326387A (en) Film formation method and its device