JPH0116295B2 - - Google Patents

Info

Publication number
JPH0116295B2
JPH0116295B2 JP59256980A JP25698084A JPH0116295B2 JP H0116295 B2 JPH0116295 B2 JP H0116295B2 JP 59256980 A JP59256980 A JP 59256980A JP 25698084 A JP25698084 A JP 25698084A JP H0116295 B2 JPH0116295 B2 JP H0116295B2
Authority
JP
Japan
Prior art keywords
mold
plastic molding
less
casting
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59256980A
Other languages
Japanese (ja)
Other versions
JPS61136657A (en
Inventor
Yasuhiro Myamoto
Masao Mizutani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP59256980A priority Critical patent/JPS61136657A/en
Priority to KR1019850007576A priority patent/KR900001097B1/en
Publication of JPS61136657A publication Critical patent/JPS61136657A/en
Publication of JPH0116295B2 publication Critical patent/JPH0116295B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は球状黒鉛鋳鉄よりなるプラスチツク成
形用鋳造金型に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a casting mold for plastic molding made of spheroidal graphite cast iron.

(従来の技術) 従来のプラスチツク成形用鋳造金型は金型主体
を各種鋼材よりなるものとしているが、鋼は凝固
する際の収縮率が大きいため寸法精度の良い金型
を鋳造することが困難であるうえ鋳造された金型
の隅角部に割れが多発するという欠点があつた。
(Prior technology) Conventional casting molds for plastic molding are mainly made of various steel materials, but steel has a large shrinkage rate when solidifying, making it difficult to cast molds with good dimensional accuracy. Moreover, it had the disadvantage that cracks frequently occurred at the corners of the mold in which it was cast.

(発明が解決しようとする問題点) 本発明は前記のような欠点を除いてプラスチツ
ク成形面が平滑であり、しかも寸法精度良く鋳造
することができるうえに隅角部に割れの生ずるこ
ともないプラスチツク成形用鋳造金型を目的とし
て完成されたものである。
(Problems to be Solved by the Invention) In addition to the above drawbacks, the present invention has a smooth plastic molding surface, can be cast with high dimensional accuracy, and does not have cracks at the corners. It was completed for the purpose of being used as a casting mold for plastic molding.

(問題点を解決するための手段) 本発明は重量比でC2.5〜3.8%,Si2.0〜3.0%,
Mn0.8%以下、Ni2.0〜5.0%,Cu0.2〜1.5%,
Mo0.2〜1.0%、残部がFe及び球状化元素の組成
を有する球状黒鉛鋳鉄からなり、そのプラスチツ
ク成形面が母体組織中に晶出させた粒径10μm以
下が90%以上でかつ粒径6μm以下が50%以上の
微細な球状黒鉛粒子からなることを特徴とするも
のである。
(Means for solving the problem) The present invention has a weight ratio of C2.5 to 3.8%, Si2.0 to 3.0%,
Mn0.8% or less, Ni2.0~5.0%, Cu0.2~1.5%,
It is made of spheroidal graphite cast iron with a composition of Mo0.2~1.0%, the balance being Fe and spheroidizing elements, and its plastic molded surface has a grain size of 10 μm or less crystallized in the matrix structure, and a grain size of 6 μm or more. The following is characterized in that it consists of 50% or more of fine spherical graphite particles.

本発明においては金型主体を鋼に代えて上記の
ような特殊組成の球状黒鉛鋳造よりなるものとし
て鋼を素材としたものに見られた寸法精度上の問
題点や金型の隅角部に生じていた割れの発生を防
止するようにしたものである。次に本発明におい
て球状黒鉛鋳鉄の組成を上記のように限定した理
由を説明すると、Cは低融点化、低収縮化を図る
ための元素であり、溶湯の凝固時の体積変化を小
さくするためには3.8%以下の過共晶組成を用い
るのが適当で、炭素含有量がこれ以上となると溶
湯中の初晶黒鉛の発生が著しく、逆に2.5%以下
では融点が上昇するため注湯の温度を上げる必要
があるうえ体積変化が大きくなるため凝固時に大
きい収縮が生ずるから、2.5〜3.8%の範囲が好ま
しい。また、Siは黒鉛化促進元素であり、2.0%
以下では黒鉛化が不十分であるためチルの発生に
よる硬度の不均一と収縮率増大による収縮割れを
生じ易く、逆に3.0%を越えると初晶黒鉛の晶出
量を増大させて黒鉛が粗大化する傾向を示すので
2.0〜3.0%の範囲が好ましい。さらに、Mnは0.8
%を越えると急冷部にチルを生じ易いのでそれ以
下とすることが好ましく、Niは安定した高硬度
及び黒鉛粒子の微細化に有効な元素であつて、
2.0%以下ではこの効果が不十分であり、逆に5.0
%を越えると黒鉛粒子の微細化がより進むが一部
にマルテンサイトが生じて硬度が不均一となるか
ら2.0〜5.0%の範囲が好ましい。CuはNiとともに
ベイナイト化を安定させ硬度を安定させるととも
に鋳造条件がばらついた場合にも球状黒鉛粒子を
安定して微細化させる有効な元素であり、本発明
において重要な役割を演ずるものである。Cuは
0.2%以下では上記の効果が不十分であり、1.5%
を越えると析出相が析出しはじめ機械的特性に悪
影響を及ぼすことから0.2〜1.5%の範囲が好まし
い。MoもNiとともにベイナイト化に寄与する成
分であり、0.2%以下ではその効果が不十分であ
り、1.0%を越えると一部にマルテンサイトを生
ずるから、0.2%〜1.0%の範囲が好ましい。
In the present invention, the main body of the mold is made of spheroidal graphite casting with a special composition as described above, instead of steel, which solves the problem of dimensional accuracy that was seen in molds made of steel, and the corners of the mold. This is to prevent the cracking that had previously occurred. Next, to explain the reason why the composition of the spheroidal graphite cast iron is limited as described above in the present invention, C is an element to lower the melting point and shrinkage, and to reduce the volume change during solidification of the molten metal. It is appropriate to use a hypereutectic composition of 3.8% or less for carbon content; if the carbon content is higher than this, the generation of primary graphite in the molten metal will be significant, and if the carbon content is lower than 2.5%, the melting point will rise, making it difficult to pour the metal. A range of 2.5 to 3.8% is preferable since it is necessary to raise the temperature and the volume change increases, resulting in large shrinkage during solidification. In addition, Si is an element that promotes graphitization, and 2.0%
If it is less than 3.0%, the graphitization is insufficient, which tends to cause non-uniform hardness due to chilling and shrinkage cracks due to increased shrinkage rate.On the other hand, if it exceeds 3.0%, the amount of primary graphite crystallized increases and the graphite becomes coarse. Because it shows a tendency to
A range of 2.0 to 3.0% is preferred. Furthermore, Mn is 0.8
If it exceeds %, chill will easily occur in the quenching part, so it is preferable to keep it below that.Ni is an element that is effective for stable high hardness and refinement of graphite particles.
Below 2.0%, this effect is insufficient; on the other hand, below 5.0%, this effect is insufficient.
If it exceeds 2.0% to 5.0%, the graphite particles will become finer, but martensite will be formed in some parts and the hardness will become non-uniform, so the range is preferably 2.0 to 5.0%. Coupled with Ni, Cu is an effective element that stabilizes bainitic formation, stabilizes hardness, and stably refines spherical graphite particles even when casting conditions vary, and plays an important role in the present invention. Cu is
Below 0.2%, the above effects are insufficient, and 1.5%
If it exceeds 0.2% to 1.5%, a precipitated phase will begin to precipitate, which will have an adverse effect on mechanical properties. Mo is also a component that contributes to bainitization along with Ni, and if it is less than 0.2%, the effect is insufficient, and if it exceeds 1.0%, martensite will be formed in some parts, so a range of 0.2% to 1.0% is preferable.

上記組成の鋳鉄にMg,Ce等の球状化剤とフエ
ロシリコンのような接種剤を添加し、注湯後例え
ば700℃まで20℃/分以上の冷却速度で急冷すれ
ば、晶出黒鉛を微細な球状粒子とすることができ
る。急冷方法としては例えば熱間ダイス鋼製鋳型
のような熱伝導性の良い鋳型中に注湯後直ちに3
Kg/cm2以上の圧力で加圧鋳造し、注湯と鋳型表面
との接触を密として放熱を促進させて成形面等の
球状黒鉛粒子の微細化を図ることができる。ま
た、鋳型中のプラスチツク成形面と接する部分に
のみ熱伝導性の良好な鋳型材を用いてプラスチツ
ク成形面における球状黒鉛粒子の粒度分布を制御
するようにしてもよい。このようにしてプラスチ
ツク成形面の母体組織中に晶出させた全球状黒鉛
粒子のうち粒径10μm以下のものが90%以上を占
め且つ粒径6μm以下のものが50%以上を占める
ようにして鋳造する。この結果少くともプラスチ
ツク成形面は極めて平滑なものとなつて成形され
るプラスチツク製品は光沢がよく、外観の美しい
ものとなる。なおプラスチツク成形面の母体組織
中に晶出させた球状黒鉛粒子の粒径がこれよりも
大きくなると、成形されるプラスチツク製品の光
沢が次第に悪化するので好ましくない。
If a spheroidizing agent such as Mg, Ce, etc. and an inoculant such as ferrosilicon are added to cast iron having the above composition, and after pouring, the cast iron is rapidly cooled to 700°C at a cooling rate of 20°C/min or more, crystallized graphite can be produced. It can be made into fine spherical particles. As a rapid cooling method, for example, immediately after pouring into a mold with good thermal conductivity such as a hot die steel mold,
Pressure casting is carried out at a pressure of Kg/cm 2 or more, and the contact between the pouring metal and the mold surface is made close to promote heat dissipation, thereby making it possible to refine the spherical graphite particles on the molding surface, etc. Alternatively, the particle size distribution of the spherical graphite particles on the plastic molding surface may be controlled by using a mold material with good thermal conductivity only in the portion of the mold that contacts the plastic molding surface. In this way, of all the spherical graphite particles crystallized in the host structure of the plastic molding surface, particles with a particle size of 10 μm or less account for 90% or more, and particles with a particle size of 6 μm or less account for 50% or more. to cast. As a result, at least the plastic molding surface becomes extremely smooth, and the molded plastic product has good gloss and a beautiful appearance. It should be noted that if the particle size of the spherical graphite particles crystallized in the host structure of the plastic molding surface is larger than this, the gloss of the molded plastic product will gradually deteriorate, which is not preferable.

また、球状黒鋳鉄は鋼材と異なり凝固時の収縮
率が小さいので隅角部に割れを生ずることがな
く、寸法精度良く金型を鋳造することができるも
のであり、特に上記組成の球状黒鉛鋳鉄を用いれ
ば、プラスチツク成形面として使用される鋳込面
が平滑で寸法精度がよくしかも硬度及び強度が大
きいプラスチツク成形用鋳造金型を安定して得る
ことができる。
In addition, unlike steel, spheroidal black cast iron has a small shrinkage rate during solidification, so it does not cause cracks at the corners, and molds can be cast with good dimensional accuracy. By using this method, it is possible to stably obtain a casting mold for plastic molding in which the casting surface used as the plastic molding surface is smooth, has good dimensional accuracy, and has high hardness and strength.

(実施例) 実施例 1 重量比でC3.6%,Si2.7%,Mn0.06%,Ni3.0
%,Cu1.0%,Mo0.5%、残部がFe及び球状化元
素としての0.25%のMg,不可避的不純物の組成
の溶湯を熱間ダイス鋼製の鋳型に注湯後40Kg/cm2
の圧力で加圧してプラスチツク成形用鋳造金型を
鋳造した。鋳造の際、隅角部に割れの生ずること
はなく、そのプラスチツク成形面には第1図の金
属組織図(200倍)に示すように全数が7μm以下
でその90%以上が6μm以下の微細な球状黒鉛粒
子が晶出し、研摩により極めて平滑なプラスチツ
ク成形面が得られた。なお、第2図の金属組織図
(200倍)は、C3.4%,Si2.7%,Mn0.5%,Ni4
%,Mo0.8%,Mg0.04%の組成の球状黒鉛鋳鉄
を一般的なセラミツクモールド法により鋳造して
得られた金型の表面付近の組織を示すものであ
り、粗大化した球状黒鉛粒子が観察される。ま
た、プラスチツク成形面の表面硬度をA,B,C
の3点について3回ずつ測定した結果はHrcでA
点が(37,36,37)、B点が(35,35,35)、C点
が(36,37,36)であり、Hrc36±1の安定した
硬度を示した。更に同一の鋳型により直径105mm
のキヤビテイを持つ5個のプラスチツク成形用鋳
造金型を鋳造してキヤビテイ直径の寸法を測定し
たところ、ばらつきは(+0.02mm,±0mm,−0.01
mm,−0.01mm,−0.02mm)であり、±0.02mm以内の極
めて高い寸法精度を示した。更にまた本実施例の
鋳造金型の機械的特性を測定したところ、引張強
度115Kgf/mm2,0.2%耐力65Kgf/mm2、伸び12
%、衝撃値2Kgf・m/cm2であつて、高合金鋼と
同等の優れた特性を示した。
(Example) Example 1 Weight ratio: C3.6%, Si2.7%, Mn0.06%, Ni3.0
%, Cu1.0%, Mo0.5%, balance Fe and 0.25% Mg as a spheroidizing element, and unavoidable impurities. After pouring the molten metal into a hot die steel mold, the temperature was 40Kg/ cm2.
A casting mold for plastic molding was cast by applying a pressure of . During casting, no cracks occur at the corners, and as shown in the metallographic diagram in Figure 1 (200x magnification), the plastic molding surface contains fine particles of less than 7 μm in total, and more than 90% of them are less than 6 μm in size. Spheroidal graphite particles were crystallized, and an extremely smooth plastic molding surface was obtained by polishing. The metallographic diagram in Figure 2 (200x magnification) shows C3.4%, Si2.7%, Mn0.5%, Ni4
%, Mo0.8%, Mg0.04% composition near the surface of a mold obtained by casting spheroidal graphite cast iron with a composition of 0.8% Mo, 0.04% Mg, and shows coarse spheroidal graphite particles. is observed. In addition, the surface hardness of the plastic molding surface is A, B, C.
The result of measuring three points each three times is A in Hrc.
Points were (37, 36, 37), points B were (35, 35, 35), and points C were (36, 37, 36), showing stable hardness of Hrc36±1. Furthermore, the diameter is 105mm using the same mold.
When we measured the cavity diameter after casting five plastic casting molds with cavities of (+0.02 mm, ±0 mm, -0.01
mm, −0.01 mm, −0.02 mm), and showed extremely high dimensional accuracy within ±0.02 mm. Furthermore, when the mechanical properties of the casting mold of this example were measured, the tensile strength was 115 Kgf/mm 2 , the 0.2% yield strength was 65 Kgf/mm 2 , and the elongation was 12
%, and the impact value was 2 Kgf·m/cm 2 , showing excellent properties equivalent to those of high-alloy steel.

実施例 2 重量比でC3.7%,Si2.6%,Mn0.4%,Ni2.5%,
Cu0.5%,Mo0.3%、残部がFe及び0.03%のMg、
不可避的不純物の組成の溶湯をもつて実施例1と
同一条件で同一形状のプラスチツク成形用鋳造金
型を鋳造した。その際に隅角部に割れが生ずるこ
とはなく、プラスチツク成形面には全数が粒径
8μm以下で6μm以下のものが75%以上を占める
微細な球状黒鉛粒子が晶出した。鋳放しの表面粗
さは3μm Rmaxであり、プラスチツク成形面を
表面研摩してプラスチツク成形を行つたところ、
SKD―61の鋼材製のプラスチツク成形金型を用
いた場合と同様に成形品の表面粗さは0.25μm
Rmaxであつた。また、このプラスチツク成形用
金型の寸法精度は100mmについてばらつきが±
0.04mm以下であり、従来の鋼製鋳造金型の寸法精
度が100mmについて±0.3mmであつたのに対して飛
躍的な向上が認められた。
Example 2 Weight ratio: C3.7%, Si2.6%, Mn0.4%, Ni2.5%,
Cu0.5%, Mo0.3%, balance Fe and 0.03% Mg,
A casting mold for plastic molding having the same shape was cast under the same conditions as in Example 1 using a molten metal having a composition containing unavoidable impurities. At that time, no cracks occur at the corners, and the plastic molding surface is completely coated with particle size.
Fine spherical graphite particles of 8 μm or less and 75% or more of 6 μm or less were crystallized. The as-cast surface roughness was 3μm Rmax, and when the plastic molding surface was polished and molded,
The surface roughness of the molded product is 0.25 μm, similar to when using a plastic mold made of SKD-61 steel.
It was hot at Rmax. In addition, the dimensional accuracy of this plastic mold has a variation of ±100 mm.
The accuracy was 0.04 mm or less, which was a dramatic improvement over the dimensional accuracy of conventional steel casting molds, which was ±0.3 mm for 100 mm.

(発明の効果) 本発明のプラスチツク成形用金型は以上の説明
から明らかなように、特にCuを0.2〜1.5%及びNi
を2.0〜5.0%含有する特殊な組成の球状黒鉛鋳鉄
からなるものであつて、これによりそのプラスチ
ツク成形面に晶出させた球状黒鉛粒子を粒径10μ
m以下が90%以上でかつ粒径6μm以下が50%以
上となるように安定して微細化したものであるか
ら、極めて平滑度の高いプラスチツク成形面を得
ることができ、コア側のみならずキヤビテイ側に
使用した場合にも表面が平滑で外観の美しいプラ
スチツク製品を成形することができる。しかも、
本発明において用いられる球状黒鉛鋳鉄は凝固時
の収縮が小さく、割れが生じないうえJIS B0404
12級を達成できる程度に高い寸法精度を得ること
ができるもので、高合金鋼を機械加工したものに
匹敵する諸性能を備えたプラスチツク成形用金型
を鋳造により容易に得ることができる。さらにま
た、本発明によれば球状黒鉛粒子は炭化物から析
出したものではなく、溶湯から晶出させたもので
あるため製造工程においてオーステンパー処理を
必要としないので、キヤビテイの隅角部に割れを
生ずることなくプラスチツク成形用金型を製作す
ることができる。このように本発明は従来の鋼製
のプラスチツク成形用鋳造金型の問題点を解消し
たものであり、産業の発展に寄与するところは極
めて大である。
(Effects of the Invention) As is clear from the above description, the plastic molding mold of the present invention contains 0.2 to 1.5% Cu and Ni.
It is made of spheroidal graphite cast iron with a special composition containing 2.0 to 5.0% of
Since it is stably refined so that 90% or more of the grain size is 6 μm or less and 50% or more is the particle size of 6 μm or less, it is possible to obtain an extremely smooth plastic molding surface, not only on the core side but also on the core side. Even when used on the cavity side, it is possible to mold plastic products with a smooth surface and beautiful appearance. Moreover,
The spheroidal graphite cast iron used in the present invention has small shrinkage during solidification, does not crack, and is JIS B0404
It is possible to obtain dimensional accuracy high enough to achieve grade 12, and it is possible to easily obtain a mold for plastic molding by casting that has various performances comparable to those machined from high alloy steel. Furthermore, according to the present invention, since the spherical graphite particles are not precipitated from carbides but are crystallized from molten metal, there is no need for austempering treatment in the manufacturing process. Plastic molds can be manufactured without any formation of molds. As described above, the present invention solves the problems of conventional steel casting molds for plastic molding, and will greatly contribute to the development of industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1のプラスチツク成形
用鋳造金型のプラスチツク成形面の金属組織図、
第2図は従来の球状化黒鉛鋳鉄を一般的なセラミ
ツクモールド法で鋳造して得られた金型表面の金
属組織図であり、倍率はいずれも200倍である。
FIG. 1 is a metallographic diagram of the plastic molding surface of a casting mold for plastic molding according to Example 1 of the present invention;
Figure 2 is a metallographic diagram of the surface of a mold obtained by casting conventional spheroidized graphite cast iron using a general ceramic molding method, and the magnification is 200x.

Claims (1)

【特許請求の範囲】[Claims] 1 重量比でC2.5〜3.8%、Si2.0〜3.0%、Mn0.8
%以下、Ni2.0〜5.0%、Cu0.2〜1.5%、Mo0.2〜
1.0%、残部がFe及び球状化元素の組成を有する
球状黒鉛鋳鉄からなり、そのプラスチツク成形面
が母体組織中に晶出させた粒径10μm以下が90%
以上でかつ粒径6μm以下が50%以上の微細な球
状黒鉛粒子からなることを特徴とするプラスチツ
ク成形用鋳造金型。
1 Weight ratio: C2.5-3.8%, Si2.0-3.0%, Mn0.8
% or less, Ni2.0~5.0%, Cu0.2~1.5%, Mo0.2~
1.0%, the balance being Fe and spheroidizing elements, and 90% of the plastic molded surface has grains of 10 μm or less crystallized in the matrix structure.
A casting mold for plastic molding, characterized in that 50% or more of the fine spherical graphite particles have a particle size of 6 μm or less.
JP59256980A 1984-12-05 1984-12-05 Cast metallic mold for molding plastic Granted JPS61136657A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59256980A JPS61136657A (en) 1984-12-05 1984-12-05 Cast metallic mold for molding plastic
KR1019850007576A KR900001097B1 (en) 1984-12-05 1985-10-15 Cast metallic mold for molding plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59256980A JPS61136657A (en) 1984-12-05 1984-12-05 Cast metallic mold for molding plastic

Publications (2)

Publication Number Publication Date
JPS61136657A JPS61136657A (en) 1986-06-24
JPH0116295B2 true JPH0116295B2 (en) 1989-03-23

Family

ID=17300046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59256980A Granted JPS61136657A (en) 1984-12-05 1984-12-05 Cast metallic mold for molding plastic

Country Status (2)

Country Link
JP (1) JPS61136657A (en)
KR (1) KR900001097B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030017804A (en) * 2001-08-23 2003-03-04 태광실업 주식회사 Method of manufacture molding for footwear out-sole forming
JP5002307B2 (en) * 2007-04-03 2012-08-15 日精樹脂工業株式会社 Molding device for injection molding machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953115A (en) * 1972-07-12 1974-05-23
JPS5594459A (en) * 1978-12-13 1980-07-17 Muehlberger Horst Spherical graphite cast iron and its manufacture
JPS55128563A (en) * 1979-03-28 1980-10-04 Nissan Motor Co Ltd Cast iron excellent in wear and seizure resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953115A (en) * 1972-07-12 1974-05-23
JPS5594459A (en) * 1978-12-13 1980-07-17 Muehlberger Horst Spherical graphite cast iron and its manufacture
JPS55128563A (en) * 1979-03-28 1980-10-04 Nissan Motor Co Ltd Cast iron excellent in wear and seizure resistance

Also Published As

Publication number Publication date
KR900001097B1 (en) 1990-02-26
KR860004714A (en) 1986-07-11
JPS61136657A (en) 1986-06-24

Similar Documents

Publication Publication Date Title
Javaid et al. Factors affecting the formation of carbides in thin-wall DI castings
US3787205A (en) Forging metal powders
WO1998010111A1 (en) Casting material for thixocasting, method for preparing partially solidified casting material for thixocasting, thixo-casting method, iron-base cast, and method for heat-treating iron-base cast
JPS6125454B2 (en)
JPH0116295B2 (en)
JP3696844B2 (en) Aluminum alloy with excellent semi-melt formability
JP4318761B2 (en) Casting method for Fe-C-Si alloy castings
JP2634707B2 (en) Manufacturing method of spheroidal graphite cast iron
JPH0626751B2 (en) Method for producing cast iron material having fine spheroidal graphite
US1156093A (en) White-metal casting and the method of making same.
JPS61133360A (en) Spheroidal graphite cast iron for metallic mold
JPS6233730A (en) Wear resistant composite material
US3744997A (en) Metallurgical grain refinement process
JP3712338B2 (en) Method for producing spheroidal graphite cast iron
CN107604236A (en) A kind of method for improving lathe casting hardness
JPS5814311B2 (en) Laminated material of zinc alloy and aluminum and its manufacturing method
WO2001015837B1 (en) Improved dies for die casting aluminum and other metals
JPS60255256A (en) Casting method
US3239898A (en) Production of high-quality ingots
RU2142355C1 (en) Method for suspension casting of irons
JP2599729B2 (en) Ingot making method for alloy articles
JPH02299740A (en) Forming mold for high-temperature molten metal
JPH0256182B2 (en)
JPS5829565A (en) Production of small sized cylinder liner
JPS60177945A (en) Centrifugal casting method of wear resistance casting