JPH0115985B2 - - Google Patents
Info
- Publication number
- JPH0115985B2 JPH0115985B2 JP59083723A JP8372384A JPH0115985B2 JP H0115985 B2 JPH0115985 B2 JP H0115985B2 JP 59083723 A JP59083723 A JP 59083723A JP 8372384 A JP8372384 A JP 8372384A JP H0115985 B2 JPH0115985 B2 JP H0115985B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- ionization
- atmospheric pressure
- substances
- ppm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 31
- 239000012159 carrier gas Substances 0.000 claims description 11
- 150000002500 ions Chemical class 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 5
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 3
- 229910052743 krypton Inorganic materials 0.000 claims description 3
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 claims description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- 238000001228 spectrum Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000000451 chemical ionisation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- -1 nitrogen ion Chemical class 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/10—Ion sources; Ion guns
- H01J49/14—Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
- H01J49/145—Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers using chemical ionisation
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Electron Tubes For Measurement (AREA)
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は質量分析計に関するものであり、特に
改良されたキヤリヤガスを有する大気圧イオン化
あるいは化学イオン化質量分析計に関するもので
ある。 〔発明の背景〕 質量分析計は測定対象物をイオン化して質量m
と電荷eとの比の違いにより分離・分析するもの
である。しかし、最近、公害等で問題となつてい
る大気中に極微量存在するCOを分析する場合、
観測しようとするイオンはm/e=28のCO+であ
り、これは空気中に多く存在する窒素のイオン
N2 +と同質量のために両者の区別がつけられない
という問題点を有している。特に、観測しようと
している大気圧のCOの濃度はppm〜ppbのオー
ダーであり、高分解能の質量分析計で分離して測
定することも現実には困難である。また、公害計
測用の純窒素ガス中に含まれているCOの測定な
どでは光による計測(文献1)も用いることがで
きない。 極微量の物質を含有しているガスを分析する分
析計として大気圧イオン化質量分析計(以下、
API分析計と称する)がある。 大気圧イオン化質量分析計は次に述べるように
大気圧下でイオン化ポテンシヤルの低いあるいは
H+親和力の強い、場合によつてはe-親和力の強
い物質だけを選択的にイオン化し、それらのイオ
ンの質量スペクトルを測定する分析計である。こ
の分析計の概要を第1図に示す。 イオン化部2に設けられたコロナ放電電極1あ
るいはNiからでるβ線によりまずキヤリヤーガ
ス20である窒素ガスがイオン化部2でイオン化
されN+あるいはN2 +を生成する。イオン化部2
は大気圧(760Torr)状態にあり、大気圧下では
分子の平均自由行程は短く、これらのイオンはイ
オン化部2において直ちにN3 +あるいはN4 +とな
る。これらのイオンは第1細孔、中間部(0.1〜
1Torr)を経由して第2細孔8から真空中
(10-5Torr)に入り質量分析される。イオン化部
2は大気圧下であるので中性分子と105〜106回の
衝突を経てからサンプリングされレンズ電極4、
四重極電極5、コレクター6からなる分析部で質
量分析される。このキヤリヤーガス20中にppm
あるいはppbオーダーの不純物(たとえばO2、
NO、あるいはCOなど)が存在するとN4 +はこれ
らと衝突して電荷を移しO2 +、NO+あるいはCO+
を生成する。この過程を次に示す。 コロナ放電→N+、N2 + N+、N2 ++2N2→N3 +、N4 ++N2 N4 ++NO→NO++2N2 N3 ++NO→NO++N+N2 N4 ++O2→O2 ++2N2 N4 ++CO→CO++2N2 CO++CO+N2→(CO)2 ++N2 このように極微量の不純物でも衝突回数が多い
ので効率良くイオン化される。もちろん生成した
NO+、O2 +、CO+などもN2と衝突するがこれらの
分子の方がN2よりもイオンになりやすい(イオ
ン化ポテンシヤルが低い)ため逆反応はおこらな
い。このために極端な選択イオン化が行なえる。 以上述べたようにAPI分析計は高感度の分析計
であるが前述した一般の質量分析計と同じように
窒素と一酸化炭素のように質量数の同じ物質の識
別を行なうことはできない。 〔発明の目的〕 従つて、本発明の目的は質量数が同じ物質であ
つても正確にその濃度を分析可能な大気圧イオン
化質量分析計を提供することにある。 〔発明の概略〕 上記目的を達成するために本発明においては、
二つの物質の中間のイオン化ポテンシヤルを有す
るガスを適量混合したキヤリヤーガスを用いて大
気圧イオン化質量分析計を構成したことを特徴と
している。 〔発明の実施例〕 以下、本発明を図を用いて詳述する。ここでは
実施例として、純窒素ガス中に極微量含有してい
る一酸化炭素の濃度を上述した構成のAPI分析計
によつて分析する場合を述べる。 N2のイオン化ポテンシヤルは15.6eVでN2 +−
N2の結合エネルギーは約1eVなのでN4のイオン
化ポテンシヤルは約14.6eVであり、同様にして
(CO)2のイオン化ポテンシヤルは約13eVである
ので、この中間のイオン化ポテンシヤルを持つか
あるいはCOとむすびついてクラスターイオンを
生成しやすい物質を加えることによりN4 +を消失
せしめ、COに起因するイオンのみを残すことが
可能である。ここでは種々のガスを検討した結果
Krを用いた。これはKrが上記条件(イオン化ポ
テンシヤルが約14eVである)を満し、同位体が
いくつかあり識別が容易であること、および単原
子分子なので分解などがなく単純なスペクトルを
与えることのためである。 第2図a〜dの種々のクリプトン濃度をもつ窒
素ガスのAPI分析計のスペクトルを示したもので
ある。Kr濃度が10(第2図a)〜60(第2図c)
ppmに増加するとN4 +は減少し、消滅する。一
方、Kr+N2クラスターと見られるイオンは一時
増加するがKr2 +の生成と共に高Kr濃度領域で減
少する。Kr濃度が100ppm(第2図d)となると
N4 +は全く消失し、スペクトルは変化しなくな
る。Kr濃度が100ppmを超えても同様であつた。
ここで観測されている(Kr+28)+は残留COによ
るKr+COである。このキヤリヤー(この場合、
窒素ガスキヤリヤーガスを兼ねている)中にCO
を少しずつ加えていくと第3図a〜eに示すよう
に(CO)2 +およびKr+COイオン量が増加してく
る。このように100ppm以上のKrをキヤリヤーガ
ス中に混入させることにより窒素ガス中に含まれ
るCOを高感度で分析することができる。第4図
はKrを500〜1000ppm含む純窒素ガスをキヤリヤ
ーとして検体と混合しうるようにした実施例であ
る。同図において、Krの濃度が500〜1000ppmの
窒素ボンベ10からのガスと純窒素ボンベ(キヤ
リヤーガス)9からのガスとを適当な割合で混合
したガスを液体窒素トラツプ13とトラツプ12
とからなるコールドトラツプを通過させて水分等
を除去する。ここを通過したガスは同じくトラツ
プ12を通過したサンプルガス(例えば窒素ボン
ベ11からの)と混合されてイオン化部2に導入
される。第5図はKr濃度を調整するためパーメ
ーシヨン管14を用いて一定量のKrを窒素ガス
中に混入させるようにした実施例である。 〔発明の効果〕 以上説明したように本発明によれば質量数が同
じN2とCOやN2OとCO2を識別でき、公害などで
問題となる成分の微量検出が可能となる。 文 献 1 エル・ダブリユー・チエニーとダブリユー・
エイ・マツクリーニー(L.W.Cheney and W.
A.McClenny)、エンビロンメント・サイエン
ス・テクノロジー(Environ.Sci.Technol.)、
11(13)1186−90(1977)。 ジー・シー・ポラセツクとジー・エイ・バリ
ーン(j.C.Polasec and J.A.Ballin)、エンビロ
ンメント・サイエンス・テクノロジー
(Environ.Sic.Technol.)、12、(6)708−712
(1978)。
改良されたキヤリヤガスを有する大気圧イオン化
あるいは化学イオン化質量分析計に関するもので
ある。 〔発明の背景〕 質量分析計は測定対象物をイオン化して質量m
と電荷eとの比の違いにより分離・分析するもの
である。しかし、最近、公害等で問題となつてい
る大気中に極微量存在するCOを分析する場合、
観測しようとするイオンはm/e=28のCO+であ
り、これは空気中に多く存在する窒素のイオン
N2 +と同質量のために両者の区別がつけられない
という問題点を有している。特に、観測しようと
している大気圧のCOの濃度はppm〜ppbのオー
ダーであり、高分解能の質量分析計で分離して測
定することも現実には困難である。また、公害計
測用の純窒素ガス中に含まれているCOの測定な
どでは光による計測(文献1)も用いることがで
きない。 極微量の物質を含有しているガスを分析する分
析計として大気圧イオン化質量分析計(以下、
API分析計と称する)がある。 大気圧イオン化質量分析計は次に述べるように
大気圧下でイオン化ポテンシヤルの低いあるいは
H+親和力の強い、場合によつてはe-親和力の強
い物質だけを選択的にイオン化し、それらのイオ
ンの質量スペクトルを測定する分析計である。こ
の分析計の概要を第1図に示す。 イオン化部2に設けられたコロナ放電電極1あ
るいはNiからでるβ線によりまずキヤリヤーガ
ス20である窒素ガスがイオン化部2でイオン化
されN+あるいはN2 +を生成する。イオン化部2
は大気圧(760Torr)状態にあり、大気圧下では
分子の平均自由行程は短く、これらのイオンはイ
オン化部2において直ちにN3 +あるいはN4 +とな
る。これらのイオンは第1細孔、中間部(0.1〜
1Torr)を経由して第2細孔8から真空中
(10-5Torr)に入り質量分析される。イオン化部
2は大気圧下であるので中性分子と105〜106回の
衝突を経てからサンプリングされレンズ電極4、
四重極電極5、コレクター6からなる分析部で質
量分析される。このキヤリヤーガス20中にppm
あるいはppbオーダーの不純物(たとえばO2、
NO、あるいはCOなど)が存在するとN4 +はこれ
らと衝突して電荷を移しO2 +、NO+あるいはCO+
を生成する。この過程を次に示す。 コロナ放電→N+、N2 + N+、N2 ++2N2→N3 +、N4 ++N2 N4 ++NO→NO++2N2 N3 ++NO→NO++N+N2 N4 ++O2→O2 ++2N2 N4 ++CO→CO++2N2 CO++CO+N2→(CO)2 ++N2 このように極微量の不純物でも衝突回数が多い
ので効率良くイオン化される。もちろん生成した
NO+、O2 +、CO+などもN2と衝突するがこれらの
分子の方がN2よりもイオンになりやすい(イオ
ン化ポテンシヤルが低い)ため逆反応はおこらな
い。このために極端な選択イオン化が行なえる。 以上述べたようにAPI分析計は高感度の分析計
であるが前述した一般の質量分析計と同じように
窒素と一酸化炭素のように質量数の同じ物質の識
別を行なうことはできない。 〔発明の目的〕 従つて、本発明の目的は質量数が同じ物質であ
つても正確にその濃度を分析可能な大気圧イオン
化質量分析計を提供することにある。 〔発明の概略〕 上記目的を達成するために本発明においては、
二つの物質の中間のイオン化ポテンシヤルを有す
るガスを適量混合したキヤリヤーガスを用いて大
気圧イオン化質量分析計を構成したことを特徴と
している。 〔発明の実施例〕 以下、本発明を図を用いて詳述する。ここでは
実施例として、純窒素ガス中に極微量含有してい
る一酸化炭素の濃度を上述した構成のAPI分析計
によつて分析する場合を述べる。 N2のイオン化ポテンシヤルは15.6eVでN2 +−
N2の結合エネルギーは約1eVなのでN4のイオン
化ポテンシヤルは約14.6eVであり、同様にして
(CO)2のイオン化ポテンシヤルは約13eVである
ので、この中間のイオン化ポテンシヤルを持つか
あるいはCOとむすびついてクラスターイオンを
生成しやすい物質を加えることによりN4 +を消失
せしめ、COに起因するイオンのみを残すことが
可能である。ここでは種々のガスを検討した結果
Krを用いた。これはKrが上記条件(イオン化ポ
テンシヤルが約14eVである)を満し、同位体が
いくつかあり識別が容易であること、および単原
子分子なので分解などがなく単純なスペクトルを
与えることのためである。 第2図a〜dの種々のクリプトン濃度をもつ窒
素ガスのAPI分析計のスペクトルを示したもので
ある。Kr濃度が10(第2図a)〜60(第2図c)
ppmに増加するとN4 +は減少し、消滅する。一
方、Kr+N2クラスターと見られるイオンは一時
増加するがKr2 +の生成と共に高Kr濃度領域で減
少する。Kr濃度が100ppm(第2図d)となると
N4 +は全く消失し、スペクトルは変化しなくな
る。Kr濃度が100ppmを超えても同様であつた。
ここで観測されている(Kr+28)+は残留COによ
るKr+COである。このキヤリヤー(この場合、
窒素ガスキヤリヤーガスを兼ねている)中にCO
を少しずつ加えていくと第3図a〜eに示すよう
に(CO)2 +およびKr+COイオン量が増加してく
る。このように100ppm以上のKrをキヤリヤーガ
ス中に混入させることにより窒素ガス中に含まれ
るCOを高感度で分析することができる。第4図
はKrを500〜1000ppm含む純窒素ガスをキヤリヤ
ーとして検体と混合しうるようにした実施例であ
る。同図において、Krの濃度が500〜1000ppmの
窒素ボンベ10からのガスと純窒素ボンベ(キヤ
リヤーガス)9からのガスとを適当な割合で混合
したガスを液体窒素トラツプ13とトラツプ12
とからなるコールドトラツプを通過させて水分等
を除去する。ここを通過したガスは同じくトラツ
プ12を通過したサンプルガス(例えば窒素ボン
ベ11からの)と混合されてイオン化部2に導入
される。第5図はKr濃度を調整するためパーメ
ーシヨン管14を用いて一定量のKrを窒素ガス
中に混入させるようにした実施例である。 〔発明の効果〕 以上説明したように本発明によれば質量数が同
じN2とCOやN2OとCO2を識別でき、公害などで
問題となる成分の微量検出が可能となる。 文 献 1 エル・ダブリユー・チエニーとダブリユー・
エイ・マツクリーニー(L.W.Cheney and W.
A.McClenny)、エンビロンメント・サイエン
ス・テクノロジー(Environ.Sci.Technol.)、
11(13)1186−90(1977)。 ジー・シー・ポラセツクとジー・エイ・バリ
ーン(j.C.Polasec and J.A.Ballin)、エンビロ
ンメント・サイエンス・テクノロジー
(Environ.Sic.Technol.)、12、(6)708−712
(1978)。
第1図は本発明に用いた二段差動排気タイプの
大気圧イオンの化質量分析計の概略構成図、第2
図a〜dは各々クリプトン濃度によるAPI分析計
のスペクトルの変化を示すグラフ、第3図a〜e
は各々COを加えていつた時のAPI分析計のスペ
クトル変化を示すグラフ、第4図はKrを一定量
キヤリヤーガス中に混合しうるようにした実施例
の構成図、第5図はパーメーシヨン管などを用い
て一定量のKrを窒素ガス中に混入しうるように
した実施例の構成図である。1……コロナ放電電
極、3……イオン化部、3……中間部、4……レ
ンズ電極、5……四重極電極、6……コレクタ
ー、7……第1細孔、8……第2細孔、9……純
窒素ボンベ(キヤリヤー)、10……Krを500〜
1000ppm含む窒素ボンベ、11……窒素ボンベ
(サンプル)、12……トラツプ、13……液体窒
素トラツプ、14……パーメーシヨン管。
大気圧イオンの化質量分析計の概略構成図、第2
図a〜dは各々クリプトン濃度によるAPI分析計
のスペクトルの変化を示すグラフ、第3図a〜e
は各々COを加えていつた時のAPI分析計のスペ
クトル変化を示すグラフ、第4図はKrを一定量
キヤリヤーガス中に混合しうるようにした実施例
の構成図、第5図はパーメーシヨン管などを用い
て一定量のKrを窒素ガス中に混入しうるように
した実施例の構成図である。1……コロナ放電電
極、3……イオン化部、3……中間部、4……レ
ンズ電極、5……四重極電極、6……コレクタ
ー、7……第1細孔、8……第2細孔、9……純
窒素ボンベ(キヤリヤー)、10……Krを500〜
1000ppm含む窒素ボンベ、11……窒素ボンベ
(サンプル)、12……トラツプ、13……液体窒
素トラツプ、14……パーメーシヨン管。
Claims (1)
- 【特許請求の範囲】 1 同一又は類似した質量数のイオンを生成する
二つの物質を識別するためにこれらの二つの物質
の中間のイオン化ポテンシヤルを有するガスを適
量混合したキヤリヤガスを用いたことを特徴とす
る大気圧イオン化質量分析計。 2 上記二つの物質が窒素と一酸化炭素であり、
かつ、上記キヤリヤガスが少なくとも100ppmの
クリプトンガスを含有したものであることを特徴
とする特許請求の範囲第1項の大気圧イオン化質
量分析計。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59083723A JPS59217936A (ja) | 1984-04-27 | 1984-04-27 | 大気圧イオン化質量分析計 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59083723A JPS59217936A (ja) | 1984-04-27 | 1984-04-27 | 大気圧イオン化質量分析計 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59217936A JPS59217936A (ja) | 1984-12-08 |
JPH0115985B2 true JPH0115985B2 (ja) | 1989-03-22 |
Family
ID=13810431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59083723A Granted JPS59217936A (ja) | 1984-04-27 | 1984-04-27 | 大気圧イオン化質量分析計 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59217936A (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2753265B2 (ja) * | 1988-06-10 | 1998-05-18 | 株式会社日立製作所 | プラズマイオン化質量分析計 |
-
1984
- 1984-04-27 JP JP59083723A patent/JPS59217936A/ja active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59217936A (ja) | 1984-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gray | Mass-spectrometric analysis of solutions using an atmospheric pressure ion source | |
US7820965B2 (en) | Apparatus for detecting chemical substances and method therefor | |
McLuckey et al. | Atmospheric sampling glow discharge ionization source for the determination of trace organic compounds in ambient air | |
Hansel et al. | Improved detection limit of the proton‐transfer reaction mass spectrometer: on‐line monitoring of volatile organic compounds at mixing ratios of a few pptv | |
Kambara et al. | Determination of impurities in gases by atmospheric pressure ionization mass spectrometry | |
KR20070050877A (ko) | 코로나 방전 이온화 소자를 포함하는 이온 이동 분광분석기 | |
EP1672363A1 (en) | Method of improving the performance of an ion mobility spectrometer used to detect trace atmospheric impurities in gases | |
JP3260828B2 (ja) | 微量不純物の分析方法 | |
US5360467A (en) | Method of separating and detecting impurities using a fractional concentration detector | |
RU2277238C2 (ru) | Способ измерения концентрации примесей в азоте, водороде и кислороде методом спектрометрии подвижности ионов | |
JPH0115985B2 (ja) | ||
JPS6215747A (ja) | 質量分析計 | |
Brindle et al. | A comparison of gas—liquid separators for the determination of mercury by cold-vapour sequential injection atomic absorption spectrometry | |
Siefering et al. | Quantitative analysis of contaminants in ultrapure gases at the parts‐per‐trillion level using atmospheric pressure ionization mass spectroscopy | |
JP3964785B2 (ja) | イオン移動度スペクトル分析法によりアルゴン中の窒素濃度を測定する方法 | |
KR100809131B1 (ko) | 이온 이동 분광분석에 의해 질소 내의 메탄 및 수소의농도를 측정하는 방법 | |
Genuit et al. | Selective ion source for trace gas analysis | |
Kambara et al. | Collisional dissociation in atmospheric pressure ionization mass spectrometry | |
Hirata et al. | A reaction cell as a sample introduction portal for detection of gaseous components in ICP-MS | |
JPS60209167A (ja) | 電子捕獲検出器 | |
JP2000146912A (ja) | ガス分析方法 | |
US6956206B2 (en) | Negative ion atmospheric pressure ionization and selected ion mass spectrometry using a 63NI electron source | |
JP2002122570A (ja) | ガス中の微量不純物の分析方法及び装置 | |
Darzi et al. | An NO+ reactant ion source for ion mobility spectrometry | |
RU2461909C2 (ru) | Способ определения изотопного состава метана |