JPH0115786B2 - - Google Patents

Info

Publication number
JPH0115786B2
JPH0115786B2 JP20852185A JP20852185A JPH0115786B2 JP H0115786 B2 JPH0115786 B2 JP H0115786B2 JP 20852185 A JP20852185 A JP 20852185A JP 20852185 A JP20852185 A JP 20852185A JP H0115786 B2 JPH0115786 B2 JP H0115786B2
Authority
JP
Japan
Prior art keywords
refrigerant
inlet
liquid
gas
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20852185A
Other languages
Japanese (ja)
Other versions
JPS61114058A (en
Inventor
Hideo Nomura
Eizo Naya
Yasushi Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP20852185A priority Critical patent/JPS61114058A/en
Publication of JPS61114058A publication Critical patent/JPS61114058A/en
Publication of JPH0115786B2 publication Critical patent/JPH0115786B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、ヒートポンプ式冷凍装置、詳しくは
熱源側熱交換器と利用側熱交換器とを備え、これ
ら両熱交換器を結ぶ冷媒配管途中に膨張機構と気
液分離器とを介装し、該分離器のガス域から膨張
過程の中間圧冷媒を圧縮機にインジエクシヨンす
る如く成すと共に、冷媒の循環方向を逆サイクル
として冷暖房可能としたヒートポンプ式冷凍装置
に関する。 (従来の技術) 従来、ヒートポンプ式冷凍装置において、第4
図の如く利用側熱交換器Hと熱源側熱交換器Iと
を結ぶ冷媒配管途中に、膨張機構を分割して介装
すると共に、これら膨張機構の中間に気液分離器
Aを介装し、この気液分離器Aにインジエクシヨ
ンチユーブOを接続し、前記気液分離器Aで分離
したガス冷媒を圧縮機Jにインジエクシヨンし
て、暖房時の能力アツプを行なうようにしたもの
は、例えば特開昭55−17017号公報に示されてい
るように知られている。 尚、第4図に示したものは、前記気液分離器A
での気液分離を良好にするため、冷暖房時とも、
前記気液分離器Aの上部に入口管Bを、また下部
に出口管Cを設け、冷媒の循環方向が逆サイクル
となる冷房時及び暖房時とも、冷房用第1膨張機
構D及び暖房用第1膨張機構Eを通り、中間圧に
減圧された液ガス混合冷媒は、前記入口管Bから
前記分離器Aの上部に導入され、また、分離され
た液冷媒は、前記出口管Cから導出され冷房用第
2膨張機構F及び暖房用膨張機構Gを経て、利用
側又は熱源側熱交換器H又はIに至る如く構成し
ているのである。 尚、第4図においてPは四路切換弁、K,L,
M,Nは逆止弁である。 又一方、以上の如く構成するヒートポンプ式冷
凍装置において、冷房時と暖房時との最適冷媒循
環量は異なり、この最適冷媒循環量に対し過不足
があれば、冷暖房能力を最大にできずエネルギー
有効比(EER)も低下するのであつて、暖房時
折角インジエクシヨンを行なつてもその能力を充
分発揮させられないのである。 このため従来ではチヤージモジユレータを用
い、冷暖房時における冷媒循環量の調節を行なつ
ているのである。 (発明が解決しようとする問題点) 以上説明した第4図の従来例によると、以上の
如く、冷房・暖房時とも前記気液分離器Aへの導
入及び導出が、共通の入口管B及び出口管Cを介
して行なう如く成しているため、冷媒の循環方向
の異なる冷房時及び暖房時において、流れを切換
える必要があり、その結果第11図に示した如く
多数の逆止弁K,L,M,Nを要し、しかも配管
構造が複雑となる問題があつた。 また、逆止弁の数が多くなり、また配管構造が
複雑になると、ロー付けの箇所も増大するのであ
つて、部品点数の増加と相俟つてコスト高となる
し、故障の原因を多くし、保守点検も煩雑となる
のである。 しかして、以上の問題に対しては、冷房時入口
管となり暖房時出口管となる出入口管と、冷房時
出口管となり、暖房時入口管となる出入口管とを
形成して、これら出入口管を、前記気液分離器の
下部に配設することが考えられるが、気液分離性
能が悪くなつたり、分離した液冷媒を導出し得な
くなる問題があつて、前記した問題を根本的に解
決できないのである。 即ち、前記各出入口管を、前記分離器内におい
て同一レベルで開口させる場合、この開口高さを
液面高さ以下とすると、入口管となる出入口管か
らの液ガス混合冷媒(中間圧に減圧膨張している
ため)の導入により液面を攪乱することになつ
て、気液分離性能が極端に低下するのであり、ま
た、前記各出入口管の開口高さを液面高さより高
くすると、分離した液冷媒を、出口管となる出入
口管から適正な液面高さのもとで導出させられな
いことになるのである。そして、前記各出入口管
の開口高さを変化させ、一方の出入口管の開口高
さを液面高さ以下とし、他方の出入口管の開口高
さを液面より高くすると、例えば冷房時には分離
性能が良好となるとしても、暖房時には分離性能
が低下し、しかも、分離した液冷媒を適正液面高
さのもとで導出させられないことになるのであ
る。 従つて、以上の如く二つの出入口管を、前記分
離器の下部に配設すれば、前記した問題を解決で
きても、分離性能が極端に悪くなつたり、分離し
た液冷媒を適正液面高さのもとで導出し得ない別
の問題が生じ、前記した問題の根本的な解決には
ならないのである。 また一方、冷房時及び暖房時における冷媒循環
量を調節するために、従来ではチヤージモジユレ
ータを用いていることからコスト高となる問題も
あつた。 本発明の目的は、前記した冷凍装置における逆
止弁の数を最少限にでき、かつ、気液分離器まわ
りの配管構造を簡単にできながら、気液分離器に
おける気液分離性能を良好にでき、冷房及び暖房
時とも、適正液面高さのもとで分離した液冷媒の
導出が行なえ、それでいて、冷房時及び暖房時の
冷媒循環量を、チヤージモジユレータを用いなく
とも前記気液分離器を利用して調節できるように
するものである。 (問題点を解決するための手段) 本発明は前記した従来の問題点を解決するため
に熱源側熱交換器4と利用側熱交換器3とを備
え、これら両熱交換器3,4を結ぶ冷媒配管途中
に膨張装置5と気液分離器6とを介装し、該分離
器6のガス域から膨張過程の中間圧冷媒を圧縮機
1に、インジエクシヨンチユーブ9を介してイン
ジエクシヨンする如く成すと共に、冷媒の循環方
向を逆サイクルとして冷暖房可能としたヒートポ
ンプ式冷凍装置において、前記気液分離器6に、
前記熱源側熱交換器4と連通する第1出入口管6
1と、前記利用側熱交換器3と連通する第2出入
口管62とを、それぞれ前記分離器6の下部から
上向きに配設して、これら各出入口管61,62
に、前記分離器6の内部に開口する複数個の貫通
孔63,64を設ける一方、前記出入口管61,
62のうち、冷房時入口管となり、暖房時出口管
となる第1出入口管61における貫通孔63の最
下位位置に対し、冷房時出口管となり暖房時入口
管となる第2出入口管62における貫通孔64の
最下位位置を上位とし、気液分離器6で分離して
貯溜する液冷媒の液面高さが暖房時に対し冷房時
において高くなる如く成したことを特徴とするも
のである。 (作用) 利用側及び熱源側熱交換器3,4に連通する第
1及び第2出入口管61,62を気液分離器6に
下部から上向きに配設して、これら各出入口管6
1,62に複数個の貫通孔63,64を設けてい
るから、冷暖房時とも、液ガス混合冷媒は液面上
の貫通孔から前記分離器6に液面が攪乱されるこ
となく導入されるのであつて、逆止弁の最少数を
2個にできながら、分離効果も高められると共
に、前記貫通孔63,64の最下位位置を設定す
ることにより、前記各出入口管61,62が冷暖
房時において入口管となつたり、出口管となつた
りすることを利用し、前記気液分離器6に冷媒量
調節機能をもたせることができ、冷暖房時とも最
適な冷媒循環量で運転することができるのであ
る。 (実施例) 以下本発明の実施例を図面に基づいて説明す
る。 本発明冷凍装置は、第1図に概略的に示した如
く、基本的には、圧縮機1、四路切換弁2、利用
側熱交換器3(以下室内コイルという)、熱源側
熱交換器4(以下室外コイルという)、膨張装置
5、該膨張装置5の中間に介装する気液分離器
6、及びアキユウムレータ7を備え、かつ、前記
圧縮機1に、該圧縮機1の容量を制御する容量制
御機構8を組込んだもので、前記四路切換弁2の
切換えにより、第1図実線矢印で示した冷房サイ
クルと、点線矢印で示した暖房サイクルとを形成
し、前記室内コイル3における蒸発又は凝縮作用
により、冷房又は暖房が行なえるようにすると共
に、前記気液分離器6のガス域には、インジエク
シヨンチユーブ9を接続して前記圧縮機1に、前
記膨張装置5による膨張過程の中間圧冷媒をイン
ジエクシヨンする如くしたのである。 尚、前記容量制御機構8は、本発明の要部では
ないが、第1図に示した一例を概略的に説明する
と、前記圧縮機1の架構内に、一端がシリンダ室
11の吸入口12に、また他端が前記シリンダ室
11の前記吸入口12と吐出口13との中間部に
設ける中間ポート14に開口するバイパス通路1
5を設けて、このバイパス通路15に、該通路1
5を開閉する開閉弁16を設け、この開閉弁16
をスプリング17により開方向に付勢すると共
に、前記開閉弁16の背面室18に、前記インジ
エクシヨンチユーブ9を接続し、かつ、該インジ
エクシヨンチユーブ9の途中に電磁弁19を介装
したものである。 前記開閉弁16は、主として金属性ポペツト弁
を用い、中心部に、制御通路16aを形成するの
であつて、前記電磁弁19を開くことにより、前
記分離器6のガス域にある中間圧のガス冷媒又は
液ガス混合冷媒が前記インジエクシヨンチユーブ
9を介して前記開閉弁16の背面室18に導入さ
れ、前記開閉弁16を閉じるのである。この場
合、前記バイパス通路15は閉じられ、前記圧縮
機1は定格運転を行なうが、前記開閉弁16の制
御通路16aからは、中間圧のガス冷媒又は液ガ
ス混合冷媒が前記シリンダ室11内に押し込めら
れるので、それ丈循環量が増し、吐出量が増大し
て能力アツプ運転が可能となるのである。 また、前記電磁弁19を閉じると、前記背面室
18は前記制御通路16aにより前記シリンダ室
11の中間ポート14における圧力と同圧になる
ので、前記スプリング17の作用で前記開閉弁1
6が開き、前記バイパス通路15が開放され、容
量制御が行なわれる。 即ち、前記バイパス通路15の開放により、前
記圧縮機1の吸入口12から中間ポート14まで
の間は、圧縮作用が行なわれないようになつて、
前記シリンダ室11の容量が減少し、吐出量が減
少する容量制御が行なわれるのである。 前記電磁弁19の開閉は、負荷に応じて制御す
るのであるが、一般に、冷房時の定格運転は前記
電磁弁19を閉じ、前記バイパス通路15を開い
て容量制御運転を行ない、また、暖房時の定格運
転は、前記電磁弁19を開き、中間圧のガス冷媒
を、前記インジエクシヨンチユーブ9を介してイ
ンジエクシヨンし、前記開閉弁16を閉じた能力
アツプ運転を行なうのである。尚、冷房時におい
ても、前記電磁弁19を開くことにより能力アツ
プ運転が行なえるし、また暖房時においても、前
記電磁弁19を閉じることにより容量制御運転が
行なえる。 前記した能力アツプ運転を、第3図に示したモ
リエル線により説明する。 この能力アツプ運転は、前記電磁弁19を開
き、前記開閉弁16を閉じて、前記制御通路16
aからの中間圧のガス冷媒をインジエクシヨンす
ることにより行なわれるのであつて、インジエク
シヨンする冷媒量をgとし、循環量をGとしたと
き、前記圧縮機1から吐出される吐出量は、G+
gとなり、前記したインジエクシヨン量gだけ増
大するのである。 そして、前記分離器6で分離された中間圧の液
冷媒は、第3図モリエル線図の如く飽和液線に近
づくことになり、分離しない場合に比較して、蒸
発能力がΔi(Kcal/Kg)だけ増加するのである。 しかして、以上の如く構成する冷凍装置におい
て、前記膨張装置5は、二つの第1及び第2膨張
装置部分51,52により構成し、これら第1及
び第2膨張装置部分51,52の中間部に前記気
液分離器6を介装するのであつて、前記分離器6
は、上下を閉鎖した円筒形の胴体60により構成
するのであつて、この分離器6には、前記第1膨
張装置部分51を介して前記室外コイル4に連通
する第1出入口管61と、前記第2膨張装置部分
52を介して前記室内コイル3に連通する第2出
入口管62とをそれぞれ、前記分離器6の下部か
ら上向きに配設すると共に、前記分離器6の上部
には、前記圧縮機1に連通するインジエクシヨン
チユーブ9を配設するのであり、又、前記各第1
及び第2出入口管61,62には、第2図の如く
前記分離器6の内部に開口する複数個の貫通孔6
3,64を設ける一方、前記第1及び第2出入口
管61,62のうち、冷房時入口管となり、暖房
時出口管となる前記第1出入口管61における貫
通孔63の最下位位置に対し、冷房時出口管とな
り暖房時入口管となる前記第2出入口管62にお
ける貫通孔64の最下位位置を上位とし、前記気
液分離器6で分離して貯溜される液冷媒の液面高
さを、暖房時の液面高さh1に対し冷房時の液面高
さh2を高くなる如く構成するのである。即ち、冷
房時と暖房時とにおける最適冷媒循環量は異な
る。一般には、冷房能力(Kcal/h)が最大
(2250Kcal/h)となる冷媒量が1400〓の場合、
暖房能力(Kcal/h)が最大(3300Kcal/h)
となる冷媒量は1500〓であつて、100〓の差があ
り、最適冷媒量に対し過不足があれば、冷暖房能
力は最大にできないし、エネルギー有効比
(EER)も低下するのであり、このため、従来で
はチヤージモジユレータなどを用いて冷媒量の調
節を行なつているのである。 従つて、コスト高となつているのであるが、前
記した如く構成することにより、特別な構成を用
いなくとも、冷・暖房時における冷媒量の調節が
可能となるのである。 又、調整機構を用いないで、能力及びEERの
低下を犠牲にしているものもあるが、この場合に
は、冷房時の余分な冷媒は、アキユウムレータに
貯められるのであつて、この結果、蒸発器となる
室内コイル3が有効に使われなくなり、過熱度が
なくなつて、冷房能力及びEERは低下するので
あるが、前記した如く、前記分離器6において冷
房時の余分な冷媒を貯めると、余分な冷媒が前記
室内コイル3に流れることはなくなり、過熱度を
高くでき、次表の通り冷房能力及びEERを向上
できるのである。 尚、次表()は、冷媒量の調節を行なわない
場合であり、()は前記した如く前記分離器6
で冷媒量の調節を行なつた場合である。
(Industrial Application Field) The present invention is a heat pump type refrigeration system, more specifically, it is equipped with a heat source side heat exchanger and a user side heat exchanger, and an expansion mechanism and a gas-liquid separation device are provided in the middle of the refrigerant piping connecting these two heat exchangers. The present invention relates to a heat pump type refrigeration system which is configured to inject intermediate pressure refrigerant in the expanding process from the gas region of the separator into the compressor, and to perform heating and cooling by reversing the circulation direction of the refrigerant. (Prior art) Conventionally, in a heat pump type refrigeration system, the fourth
As shown in the figure, an expansion mechanism is divided and installed in the middle of the refrigerant pipe connecting the user side heat exchanger H and the heat source side heat exchanger I, and a gas-liquid separator A is installed between these expansion mechanisms. An injection tube O is connected to the gas-liquid separator A, and the gas refrigerant separated by the gas-liquid separator A is injected into the compressor J to increase heating capacity. For example, it is known as shown in Japanese Patent Application Laid-Open No. 17017/1983. In addition, what is shown in FIG. 4 is the gas-liquid separator A.
In order to improve gas-liquid separation during heating and cooling,
An inlet pipe B is provided at the upper part of the gas-liquid separator A, and an outlet pipe C is provided at the lower part, and the first expansion mechanism D for cooling and the first expansion mechanism D for heating are provided both during cooling and heating when the refrigerant circulation direction is reverse cycle. 1. The liquid-gas mixed refrigerant that has passed through the expansion mechanism E and has been reduced to an intermediate pressure is introduced into the upper part of the separator A from the inlet pipe B, and the separated liquid refrigerant is led out from the outlet pipe C. It is configured to reach the user side or heat source side heat exchanger H or I via the second expansion mechanism F for cooling and the expansion mechanism G for heating. In addition, in Fig. 4, P is a four-way switching valve, K, L,
M and N are check valves. On the other hand, in the heat pump type refrigeration system configured as described above, the optimum refrigerant circulation amount during cooling and heating is different, and if there is an excess or deficiency of this optimum refrigerant circulation, the heating and cooling capacity cannot be maximized and the energy efficiency is reduced. The energy efficiency ratio (EER) also decreases, and even if you occasionally perform angle injection during heating, you will not be able to fully demonstrate your performance. For this reason, conventionally, a charge modulator has been used to adjust the amount of refrigerant circulated during heating and cooling. (Problems to be Solved by the Invention) According to the conventional example shown in FIG. Since the refrigerant is circulated through the outlet pipe C, it is necessary to switch the flow during cooling and heating, where the refrigerant circulation direction is different. As a result, as shown in FIG. 11, a large number of check valves K, There was a problem in that L, M, and N were required, and the piping structure was complicated. In addition, as the number of check valves increases and the piping structure becomes more complex, the number of locations for brazing increases, which together with the increase in the number of parts increases costs and increases the cause of failure. Therefore, maintenance and inspection become complicated. Therefore, to solve the above problem, an inlet/outlet pipe is formed that becomes an inlet pipe during cooling and an outlet pipe during heating, and an inlet/outlet pipe becomes an outlet pipe during cooling and an inlet pipe during heating. , it is conceivable to arrange the refrigerant at the bottom of the gas-liquid separator, but there are problems in that the gas-liquid separation performance deteriorates and the separated liquid refrigerant cannot be extracted, and the above-mentioned problems cannot be fundamentally solved. It is. That is, when each of the inlet and outlet pipes are opened at the same level in the separator, if the opening height is set below the liquid level height, the liquid-gas mixed refrigerant from the inlet and outlet pipes (decompressed to intermediate pressure) The introduction of the liquid (due to its expansion) disturbs the liquid level, which drastically reduces the gas-liquid separation performance.In addition, if the opening height of each inlet/outlet pipe is made higher than the liquid level, the separation This means that the liquid refrigerant cannot be led out from the inlet/outlet pipe serving as the outlet pipe at an appropriate liquid level height. Then, by changing the opening height of each of the inlet/outlet pipes, making the opening height of one of the inlet/outlet pipes less than the liquid level height and the opening height of the other inlet/outlet pipe higher than the liquid level, separation performance can be improved, for example, during cooling. Even if the temperature is good, the separation performance deteriorates during heating, and moreover, the separated liquid refrigerant cannot be discharged at an appropriate liquid level. Therefore, even if the above-mentioned problems can be solved by arranging the two inlet and outlet pipes at the bottom of the separator as described above, the separation performance may be extremely poor, or the separated liquid refrigerant may not be heated to the proper liquid level. Therefore, other problems arise that cannot be solved under such circumstances, and the above-mentioned problem cannot be fundamentally solved. On the other hand, in order to adjust the amount of refrigerant circulation during cooling and heating, a charge modulator is conventionally used, which poses the problem of high costs. An object of the present invention is to minimize the number of check valves in the above-mentioned refrigeration system, simplify the piping structure around the gas-liquid separator, and improve the gas-liquid separation performance of the gas-liquid separator. The separated liquid refrigerant can be discharged at an appropriate liquid level during both cooling and heating, and the refrigerant circulation amount during cooling and heating can be adjusted to the same level as the gas-liquid refrigerant without using a charge modulator. This allows for adjustment using a separator. (Means for Solving the Problems) In order to solve the above-mentioned conventional problems, the present invention includes a heat source side heat exchanger 4 and a user side heat exchanger 3, and connects both heat exchangers 3 and 4. An expansion device 5 and a gas-liquid separator 6 are interposed in the middle of the connecting refrigerant pipes, and intermediate pressure refrigerant in the expansion process is injected from the gas region of the separator 6 to the compressor 1 via an injection tube 9. In the heat pump type refrigeration system, which is capable of heating and cooling by setting the circulation direction of the refrigerant in a reverse cycle, the gas-liquid separator 6 includes:
A first inlet/outlet pipe 6 communicating with the heat source side heat exchanger 4
1 and a second inlet/outlet pipe 62 communicating with the utilization side heat exchanger 3 are arranged upward from the lower part of the separator 6, and these inlet/outlet pipes 61, 62
A plurality of through holes 63 and 64 are provided that open into the interior of the separator 6, while the inlet and outlet pipes 61,
62, the lowest position of the through hole 63 in the first inlet/outlet pipe 61, which becomes the inlet pipe during cooling and the outlet pipe during heating, is penetrated in the second inlet/outlet pipe 62, which becomes the outlet pipe during cooling and becomes the inlet pipe during heating. The lowest position of the hole 64 is the upper position, and the liquid level of the liquid refrigerant separated and stored in the gas-liquid separator 6 is higher during cooling than during heating. (Function) First and second inlet/outlet pipes 61, 62 communicating with the user side and heat source side heat exchangers 3, 4 are disposed upward from the bottom of the gas-liquid separator 6, and each of these inlet/outlet pipes 6
1 and 62 are provided with a plurality of through holes 63 and 64, the liquid-gas mixed refrigerant is introduced into the separator 6 from the through holes above the liquid level during heating and cooling without disturbing the liquid level. Therefore, while the minimum number of check valves can be reduced to two, the separation effect is also enhanced, and by setting the lowest positions of the through holes 63 and 64, each of the inlet and outlet pipes 61 and 62 can be used during heating and cooling. By utilizing the fact that the gas-liquid separator 6 functions as an inlet pipe and an outlet pipe, the gas-liquid separator 6 can be provided with a refrigerant amount adjustment function, and can be operated with an optimal refrigerant circulation amount during cooling and heating. be. (Example) Examples of the present invention will be described below based on the drawings. The refrigeration system of the present invention, as schematically shown in FIG. 4 (hereinafter referred to as an outdoor coil), an expansion device 5, a gas-liquid separator 6 interposed in the middle of the expansion device 5, and an storage unit 7, and the compressor 1 controls the capacity of the compressor 1. By switching the four-way switching valve 2, a cooling cycle shown by the solid line arrow in FIG. 1 and a heating cycle shown by the dotted line arrow are formed. In addition, an injection tube 9 is connected to the gas region of the gas-liquid separator 6 so that the gas region of the gas-liquid separator 6 can be connected to the compressor 1 and the expansion device 5 can perform cooling or heating. The intermediate pressure refrigerant in the expansion process is injected. The capacity control mechanism 8 is not a main part of the present invention, but to roughly explain the example shown in FIG. and a bypass passage 1 whose other end opens to an intermediate port 14 provided at an intermediate portion between the suction port 12 and the discharge port 13 of the cylinder chamber 11.
5 is provided in the bypass passage 15, and the passage 1 is connected to the bypass passage 15.
5 is provided with an on-off valve 16 that opens and closes the on-off valve 16.
is biased in the opening direction by a spring 17, the injection extension tube 9 is connected to the back chamber 18 of the opening/closing valve 16, and a solenoid valve 19 is interposed in the middle of the injection extension tube 9. It is something. The on-off valve 16 mainly uses a metal poppet valve and forms a control passage 16a in the center thereof.By opening the solenoid valve 19, the intermediate pressure gas in the gas region of the separator 6 is removed. The refrigerant or liquid-gas mixed refrigerant is introduced into the back chamber 18 of the on-off valve 16 through the injection tube 9, and the on-off valve 16 is closed. In this case, the bypass passage 15 is closed and the compressor 1 performs rated operation, but intermediate-pressure gas refrigerant or liquid-gas mixed refrigerant flows into the cylinder chamber 11 from the control passage 16a of the on-off valve 16. Since it is pushed in, the amount of circulation increases, and the amount of discharge increases, making it possible to operate with increased capacity. Furthermore, when the electromagnetic valve 19 is closed, the pressure in the rear chamber 18 becomes the same as the pressure in the intermediate port 14 of the cylinder chamber 11 due to the control passage 16a, so that the opening/closing valve 1
6 is opened, the bypass passage 15 is opened, and capacity control is performed. That is, by opening the bypass passage 15, no compression is performed between the suction port 12 and the intermediate port 14 of the compressor 1.
Capacity control is performed in which the capacity of the cylinder chamber 11 is reduced and the discharge amount is reduced. The opening and closing of the solenoid valve 19 is controlled according to the load. Generally, during rated operation during cooling, the solenoid valve 19 is closed and the bypass passage 15 is opened to perform capacity control operation, and during heating In the rated operation, the electromagnetic valve 19 is opened, intermediate pressure gas refrigerant is injected through the injection exit tube 9, and the on-off valve 16 is closed to perform increased capacity operation. Incidentally, even during cooling, capacity increasing operation can be performed by opening the electromagnetic valve 19, and capacity control operation can be performed by closing the electromagnetic valve 19 during heating. The capacity increase operation described above will be explained using the Mollier line shown in FIG. In this capacity-up operation, the solenoid valve 19 is opened, the on-off valve 16 is closed, and the control passage 16 is closed.
This is done by injecting the intermediate pressure gas refrigerant from a, and when the amount of refrigerant to be injected is g and the amount of circulation is G, the amount of discharge from the compressor 1 is G+
g, and increases by the above-mentioned injection amount g. The intermediate-pressure liquid refrigerant separated in the separator 6 approaches the saturated liquid line as shown in the Mollier diagram in Figure 3, and the evaporation capacity is Δi (Kcal/Kg ). Therefore, in the refrigeration system configured as described above, the expansion device 5 is configured by two first and second expansion device sections 51 and 52, and an intermediate portion between these first and second expansion device sections 51 and 52. The gas-liquid separator 6 is interposed in the separator 6.
The separator 6 has a cylindrical body 60 closed at the top and bottom, and the separator 6 includes a first inlet/outlet pipe 61 that communicates with the outdoor coil 4 via the first expansion device part 51, and A second inlet/outlet pipe 62 communicating with the indoor coil 3 via the second expansion device part 52 is disposed upward from the lower part of the separator 6, and an upper part of the separator 6 is provided with the compressor. An injection tube 9 communicating with the machine 1 is provided, and each of the first
The second inlet/outlet pipes 61, 62 are provided with a plurality of through holes 6 that open into the interior of the separator 6 as shown in FIG.
3, 64, while providing the lowest position of the through hole 63 in the first inlet/outlet pipe 61 which becomes an inlet pipe during cooling and an outlet pipe during heating among the first and second inlet/outlet pipes 61, 62, The lowest position of the through hole 64 in the second inlet/outlet pipe 62, which becomes the outlet pipe during cooling and the inlet pipe during heating, is set as the upper position, and the liquid level height of the liquid refrigerant separated and stored in the gas-liquid separator 6 is determined. The liquid level height h 2 during cooling is configured to be higher than the liquid level height h 1 during heating. That is, the optimum refrigerant circulation amount during cooling and heating is different. In general, when the amount of refrigerant at which the cooling capacity (Kcal/h) reaches the maximum (2250Kcal/h) is 1400〓,
Maximum heating capacity (Kcal/h) (3300Kcal/h)
The amount of refrigerant required is 1500〓, and there is a difference of 100〓.If there is an excess or deficiency of the optimal refrigerant amount, the heating and cooling capacity cannot be maximized and the effective energy ratio (EER) will also decrease. Therefore, conventionally, a charge modulator or the like has been used to adjust the amount of refrigerant. Therefore, the cost is high, but by configuring as described above, it is possible to adjust the amount of refrigerant during cooling and heating without using any special configuration. There are also some systems that do not use an adjustment mechanism, sacrificing a reduction in capacity and EER, but in this case, excess refrigerant during cooling is stored in the accumulator, and as a result, the evaporator The indoor coil 3 is no longer used effectively, the degree of superheat is lost, and the cooling capacity and EER decrease.However, as mentioned above, if the excess refrigerant during cooling is stored in the separator 6, the excess refrigerant This prevents the refrigerant from flowing into the indoor coil 3, increasing the degree of superheating and improving the cooling capacity and EER as shown in the table below. The following table () shows the case where the amount of refrigerant is not adjusted, and () shows the case where the amount of refrigerant is not adjusted.
This is the case when the amount of refrigerant is adjusted.

【表】 又、以上の構成において、前記各第1及び第2
膨張装置部分51,52は、何れも主としてキヤ
ピラリチユーブから成る二つの膨張機構と1つの
逆止弁とから構成するのであつて、前記第1膨張
装置部分51は、冷房及び暖房時作用する第1膨
張機構53と冷房用膨張機構54とを備え、これ
ら各膨張機構53,54を直列に接続し、前記冷
房用膨張機構54に、一つの逆止弁55を並列に
接続して構成するのであり、また、前記第2膨張
装置部分52は、冷房及び暖房時作用する第2膨
張機構56と暖房用膨張機構57とを備え、これ
ら各膨張機構56,57を直列に接続し、前記暖
房用膨張機構57に1つの逆止弁58を並列に接
続して構成するのである。 従つて、冷房時には前記第1及び第2膨張機構
53,56及び冷房用膨張機構54が、また、暖
房時には第1及び第2膨張機構53,56及び暖
房用膨張機構57が用いられるのであつて、冷房
時には前記第1膨張装置部分51における二つの
膨張機構53,54を経て中間圧に減圧された液
ガス混合冷媒が、前記第1出入口管61から、該
第1出入口管61の貫通孔63を介して前記分離
器6に導入されると共に、前記分離器6でガス冷
媒と液冷媒とが分離され、ガス冷媒から分離され
た液冷媒は前記分離器6の底部に溜り、液面以下
に漬つている前記第2出入口管62の貫通孔64
を介して前記第2出入口管62から導出され、前
記第2膨張装置部分52における第2膨張機構5
6を経て、室内コイル3に至るのであり、また、
暖房時には、前記第2膨張装置部分52における
二つの膨張機構56,57を経て中間圧に減圧さ
れた液ガス混合冷媒が前記第2出入口管62か
ら、該第2出入口管61の貫通孔64を介して前
記分離器6に導入され、該分離器6でガス冷媒と
液冷媒とが分離されると共に、分離された液冷媒
は、前記分離器6の底部に溜り、液面以下に漬つ
ている前記第1出入口管61の貫通孔63を介し
て前記第1出入口管61から導出され、前記第1
膨張装置部分51における第1膨張機構53を経
て室外コイル4に至るのである。 尚以上の作用において、前記分離器6に対し入
口管となる、前記第1または第2出入口管61,
62から導入される液ガス混合冷媒は、前記分離
器6の液面下に漬つている貫通孔63,64から
も、前記分離器6内に導入しようとするが、貯溜
液冷媒が抵抗となり、ガス域において開口する貫
通孔63,64から導入されるのであつて、液面
が攪乱されることはない。 又、以上の如く気液分離器6において、冷暖房
時の液面高さh1,h2を変更して冷媒量を調整する
構成を利用して、冷房時前記インジエクシヨンチ
ユーブ9に液冷媒を混入させ、液ガス混合冷媒を
前記圧縮機1にインジエクシヨンさせることがで
きる。 この場合、第2図の如く前記分離器6の上部に
配設するインジエクシヨンチユーブ9の先端部
を、前記分離器6で分離して貯溜する液冷媒の冷
房時における液面高さをh2以下まで延長すると共
に、先端を上向きに湾曲させて、前記液面高さh2
より高い位置に開口させ、前記液面高さh2以下に
位置する前記チユーブ9に貫通孔91を設け、該
貫通孔91から液冷媒を取入れる如く成すのであ
る。 斯くすることにより、冷房時、特別なリキツド
インジエクシヨンチユーブを用いなくとも、液冷
媒をガス冷媒と共に圧縮機1にインジエクシヨン
できるのであつて、簡単な構成の追加により前記
圧縮機1のモータコイルを冷却できるのである。 (発明の効果) 以上の如く本発明は、気分液分離器6に、熱源
側熱交換器4と連通する第1出入口管61と、利
用側熱交換器5と連通する第2出入口管62と
を、前記分離器6の下部から上向きに配設したか
ら、膨張装置5の配管構造を簡単にできるし、ま
た冷房時及び暖房時により循環方向が逆サイクル
となる冷媒の循環路を切換えるための逆止弁を最
少限の2個にできるのである。従つて、コストを
安くできると共に、故障も少なくでき、保守点検
の手間も少なくできるのである。 その上、前記第1及び第2出入口管61,62
には、前記分離器6の内部に開口する複数個の貫
通孔63,64を設けたので、前記各出入口管6
1,62が冷房時及び暖房時においても入口管と
なつたり、出口管となつたりしても、前記分離器
6において常に気液分離を確実に行なえ、その分
離性能を良好にできると共に、前記分離器6で分
離して貯溜する液冷媒の液面高さを適正に保持し
た状態で、前記液冷媒の導出も確実に行なえるの
である。 その上、前記第1及び第2出入口管61,62
のうち、冷房時入口管となり暖房時出口管となる
第1出入口管61における貫通孔63の最下位位
置に対し、冷房時出口管となり暖房時入口管とな
る第2出入口管62における貫通孔64の最下位
位置を上位とし、前記分離器6で分離して貯溜す
る液面高さが暖房時に対し冷房時において高くな
るようにして、前記気液分離器6そのものに冷媒
量調節機能をもたらせたから、従来のようにチヤ
ージモジユレータを用いる必要なく、簡単にまた
コスト高となることなく冷暖房時における冷媒循
環量を最適にすることができるのである。
[Table] In addition, in the above configuration, each of the first and second
The expansion device parts 51 and 52 each consist of two expansion mechanisms mainly consisting of capillary tubes and one check valve. 1 expansion mechanism 53 and a cooling expansion mechanism 54, each of these expansion mechanisms 53 and 54 are connected in series, and one check valve 55 is connected in parallel to the cooling expansion mechanism 54. In addition, the second expansion device section 52 includes a second expansion mechanism 56 that operates during cooling and heating, and a heating expansion mechanism 57, and these expansion mechanisms 56 and 57 are connected in series to One check valve 58 is connected to the expansion mechanism 57 in parallel. Therefore, during cooling, the first and second expansion mechanisms 53 and 56 and the cooling expansion mechanism 54 are used, and during heating, the first and second expansion mechanisms 53 and 56 and the heating expansion mechanism 57 are used. During cooling, the liquid-gas mixed refrigerant, which has been reduced to an intermediate pressure through the two expansion mechanisms 53 and 54 in the first expansion device section 51, flows from the first inlet/outlet pipe 61 to the through hole 63 of the first inlet/outlet pipe 61. The gas refrigerant and the liquid refrigerant are separated in the separator 6, and the liquid refrigerant separated from the gas refrigerant accumulates at the bottom of the separator 6 and becomes below the liquid level. Through hole 64 of the second inlet/outlet pipe 62 that is immersed
a second inflation mechanism 5 in the second inflation device portion 52 which is led out from the second inlet/outlet pipe 62 via a
6, it reaches the indoor coil 3, and
During heating, the liquid-gas mixed refrigerant, which has been reduced to an intermediate pressure through the two expansion mechanisms 56 and 57 in the second expansion device section 52, flows from the second inlet/outlet pipe 62 through the through hole 64 of the second inlet/outlet pipe 61. The refrigerant is introduced into the separator 6 through the separator 6, and the separator 6 separates the gas refrigerant and liquid refrigerant, and the separated liquid refrigerant accumulates at the bottom of the separator 6 and is immersed below the liquid level. The first inlet/outlet pipe 61 is led out from the first inlet/outlet pipe 61 through the through hole 63 of the first inlet/outlet pipe 61 .
It reaches the outdoor coil 4 via the first expansion mechanism 53 in the expansion device section 51. In the above operation, the first or second inlet/outlet pipe 61, which serves as an inlet pipe for the separator 6,
The liquid-gas mixed refrigerant introduced from 62 tries to be introduced into the separator 6 through the through holes 63 and 64 submerged below the liquid surface of the separator 6, but the stored liquid refrigerant acts as resistance. Since the liquid is introduced through the through holes 63 and 64 that open in the gas region, the liquid level is not disturbed. In addition, in the gas-liquid separator 6, as described above, by using the configuration in which the amount of refrigerant is adjusted by changing the liquid level heights h 1 and h 2 during cooling and heating, liquid refrigerant is supplied to the injection tube 9 during cooling. The liquid-gas mixed refrigerant can be injected into the compressor 1. In this case, as shown in FIG. 2, the liquid refrigerant separated and stored in the separator 6 at the tip of the injection tube 9 disposed at the upper part of the separator 6 has a liquid level h 2 or less, and curve the tip upward to meet the liquid level height h 2
A through hole 91 is provided in the tube 9 which is opened at a higher position and located below the liquid level height h2 , and the liquid refrigerant is introduced through the through hole 91. By doing so, during cooling, liquid refrigerant can be injected into the compressor 1 together with gas refrigerant without using a special liquid injection tube. can be cooled. (Effects of the Invention) As described above, the present invention provides the partial liquid separator 6 with the first inlet/outlet pipe 61 communicating with the heat exchanger 4 on the heat source side and the second inlet/outlet pipe 62 communicating with the heat exchanger 5 on the user side. are disposed upward from the bottom of the separator 6, the piping structure of the expansion device 5 can be simplified, and the refrigerant circulation path can be switched so that the circulation direction is reversed during cooling and heating. This allows the number of check valves to be reduced to a minimum of two. Therefore, costs can be reduced, failures can be reduced, and maintenance and inspection efforts can be reduced. Moreover, the first and second inlet/outlet pipes 61, 62
is provided with a plurality of through holes 63 and 64 that open into the interior of the separator 6, so that each of the inlet and outlet pipes 6
Even if 1 and 62 serve as inlet pipes or outlet pipes during cooling and heating, gas-liquid separation can always be performed reliably in the separator 6, and its separation performance can be improved. The liquid refrigerant can be reliably discharged while the level of the liquid refrigerant separated and stored in the separator 6 is maintained at an appropriate level. Moreover, the first and second inlet/outlet pipes 61, 62
Among them, the lowest position of the through hole 63 in the first inlet/outlet pipe 61 which becomes the inlet pipe during cooling and the outlet pipe during heating is the through hole 64 in the second inlet/outlet pipe 62 which becomes the outlet pipe during cooling and becomes the inlet pipe during heating. The lowest position of the gas-liquid separator 6 is set as the upper position, and the level of the liquid separated and stored in the separator 6 is higher during cooling than during heating, thereby providing the gas-liquid separator 6 itself with a refrigerant amount adjustment function. As a result, the amount of refrigerant circulated during heating and cooling can be easily optimized without the need to use a charge modulator as in the past and without increasing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す冷媒配管系統
図、第2図は気液分離器のみを拡大した概略断面
図、第3図はモリエル線図、第4図は先に提案し
た冷凍装置の一例を示す冷媒配管系統図である。 1……圧縮機、3……利用側熱交換器(室内コ
イル)、4……熱源側熱交換器(室外コイル)、5
……膨張装置、6……気液分離器、9……インジ
エクシヨンチユーブ、61……第1出入口管、6
2……第2出入口管、63,64……貫通孔。
Fig. 1 is a refrigerant piping system diagram showing one embodiment of the present invention, Fig. 2 is an enlarged schematic cross-sectional view of only the gas-liquid separator, Fig. 3 is a Mollier diagram, and Fig. 4 is the previously proposed refrigeration system. It is a refrigerant piping system diagram showing an example of a device. 1...Compressor, 3...Using side heat exchanger (indoor coil), 4...Heat source side heat exchanger (outdoor coil), 5
... Expansion device, 6 ... Gas-liquid separator, 9 ... Injection tube, 61 ... First inlet/outlet pipe, 6
2...Second entrance/exit pipe, 63, 64...Through hole.

Claims (1)

【特許請求の範囲】 1 熱源側熱交換器4と利用側熱交換器3とを備
え、これら両熱交換器3,4を結ぶ冷媒配管途中
に膨張装置5と気液分離器6とを介装し、該分離
器6のガス域から膨張過程の中間圧冷媒を圧縮機
1に、インジエクシヨンチユーブ9を介してイン
ジエクシヨンする如く成すと共に、冷媒の循環方
向を逆サイクルとして冷暖房可能としたヒートポ
ンプ式冷凍装置において、前記気液分離器6に、
前記熱源側熱交換器4と連通する第1出入口管6
1と、前記利用側熱交換器3と連通する第2出入
口管62とを、それぞれ前記分離器6の下部から
上向きに配設して、これら各出入口管61,62
に、前記分離器6の内部に開口する複数個の貫通
孔63,64を設ける一方、前記出入口管61,
62のうち、冷房時入口管となり、暖房時出口管
となる第1出入口管61における貫通孔63の最
下位位置に対し、冷房時出口管となり暖房時入口
管となる第2出入口管62における貫通孔64の
最下位位置を上位とし、気液分離器6で分離して
貯溜する液冷媒の液面高さが暖房時に対し冷房時
において高くなる如く成したことを特徴とするヒ
ートポンプ式冷凍装置。 2 気液分離器6の上部にインジエクシヨンチユ
ーブ9を設けて、このインジエクシヨンチユーブ
9の先端部を、前記気液分離器6で分離して貯溜
する液冷媒の冷房時における液面高さ以下まで延
長すると共に、先端を前記液面高さより高い位置
に開口させ、冷房時液ガス混合冷媒を前記インジ
エクシヨンチユーブ9から圧縮機1にインジエク
シヨンする如くしたことを特徴とする特許請求の
範囲第1項記載のヒートポンプ式冷凍装置。
[Claims] 1. A heat exchanger 4 on the heat source side and a heat exchanger 3 on the user side, with an expansion device 5 and a gas-liquid separator 6 interposed in the middle of the refrigerant piping connecting these heat exchangers 3 and 4. The heat pump is configured such that the intermediate-pressure refrigerant in the expansion process is injected into the compressor 1 from the gas region of the separator 6 through the injection tube 9, and the refrigerant circulation direction is reverse cycle to enable heating and cooling. In the type refrigeration system, the gas-liquid separator 6 includes:
A first inlet/outlet pipe 6 communicating with the heat source side heat exchanger 4
1 and a second inlet/outlet pipe 62 communicating with the utilization side heat exchanger 3 are arranged upward from the lower part of the separator 6, and these inlet/outlet pipes 61, 62
A plurality of through holes 63 and 64 are provided that open into the interior of the separator 6, while the inlet and outlet pipes 61,
62, the lowest position of the through hole 63 in the first inlet/outlet pipe 61, which becomes the inlet pipe during cooling and the outlet pipe during heating, is penetrated in the second inlet/outlet pipe 62, which becomes the outlet pipe during cooling and becomes the inlet pipe during heating. A heat pump type refrigeration system characterized in that the lowest position of the hole 64 is set as the upper position, and the liquid level of the liquid refrigerant separated and stored in the gas-liquid separator 6 is higher during cooling than during heating. 2. An injection tube 9 is provided in the upper part of the gas-liquid separator 6, and the tip of the injection tube 9 is used to control the liquid level of the liquid refrigerant separated and stored in the gas-liquid separator 6 during cooling. The refrigerant refrigerant is extended to a height below the liquid level, and its tip is opened at a position higher than the liquid level, so that the liquid-gas mixed refrigerant is injected from the injection exit tube 9 to the compressor 1 during cooling. A heat pump type refrigeration device according to scope 1.
JP20852185A 1985-09-19 1985-09-19 Heat pump type refrigerator Granted JPS61114058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20852185A JPS61114058A (en) 1985-09-19 1985-09-19 Heat pump type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20852185A JPS61114058A (en) 1985-09-19 1985-09-19 Heat pump type refrigerator

Publications (2)

Publication Number Publication Date
JPS61114058A JPS61114058A (en) 1986-05-31
JPH0115786B2 true JPH0115786B2 (en) 1989-03-20

Family

ID=16557551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20852185A Granted JPS61114058A (en) 1985-09-19 1985-09-19 Heat pump type refrigerator

Country Status (1)

Country Link
JP (1) JPS61114058A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000011418A1 (en) * 1998-08-21 2000-03-02 Daikin Industries, Ltd. Refrigerating machine having gas injection circuit and gas-liquid separator
JP2002286315A (en) * 2001-03-26 2002-10-03 Mitsubishi Electric Corp Refrigerant circuit for air conditioner
EP2674699B8 (en) * 2011-02-08 2018-10-17 Panasonic Intellectual Property Management Co., Ltd. Gas liquid separator and refrigeration cycle apparatus
WO2013069043A1 (en) 2011-11-07 2013-05-16 三菱電機株式会社 Air-conditioning apparatus
US9797610B2 (en) 2011-11-07 2017-10-24 Mitsubishi Electric Corporation Air-conditioning apparatus with regulation of injection flow rate
JP5885753B2 (en) * 2011-11-07 2016-03-15 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JPS61114058A (en) 1986-05-31

Similar Documents

Publication Publication Date Title
US4562700A (en) Refrigeration system
US6385981B1 (en) Capacity control of refrigeration systems
US4055963A (en) Heating system
US7185505B2 (en) Refrigerant circuit and heat pump type hot water supply apparatus
US8549868B2 (en) Refrigeration cycle apparatus
CN1981165A (en) Freezer and air conditioner
KR20120049440A (en) Air conditioner
JPH0115786B2 (en)
JP4305052B2 (en) Heat pump hot water supply air conditioner
JP4407000B2 (en) Refrigeration system using CO2 refrigerant
CN106766324A (en) Refrigeration system and the refrigerating plant with it
KR101085493B1 (en) Compressor Distributing Apparatus And Refrigerator
JPH01208674A (en) Heat pump type hot water, heating and cooling machine
CN109682034B (en) Refrigerating system, control method thereof and air conditioner
CN112302936A (en) Scroll compressor with double injection mechanisms and heat pump circulation system
WO2020082741A1 (en) Two-pipe enhanced vapor injection outdoor machine and multi-split system
CN217844268U (en) Air conditioner
JPH10259959A (en) Heating device using refrigeration cycle
WO2000011418A1 (en) Refrigerating machine having gas injection circuit and gas-liquid separator
KR102477524B1 (en) An air conditioner
CN214145889U (en) Scroll compressor with double injection mechanisms and heat pump circulation system
JPH04278151A (en) Multi-chamber type air conditioner
KR20230143451A (en) Refrigerant module for vehicle heat pump system
KR20220040222A (en) Air Conditioner
JPS6115978B2 (en)