JPH01157500A - Production of barium titanate single crystal - Google Patents

Production of barium titanate single crystal

Info

Publication number
JPH01157500A
JPH01157500A JP24323088A JP24323088A JPH01157500A JP H01157500 A JPH01157500 A JP H01157500A JP 24323088 A JP24323088 A JP 24323088A JP 24323088 A JP24323088 A JP 24323088A JP H01157500 A JPH01157500 A JP H01157500A
Authority
JP
Japan
Prior art keywords
solvent
raw material
single crystal
crystal
bao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24323088A
Other languages
Japanese (ja)
Other versions
JP2672597B2 (en
Inventor
Koji Sato
幸治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP24323088A priority Critical patent/JP2672597B2/en
Publication of JPH01157500A publication Critical patent/JPH01157500A/en
Application granted granted Critical
Publication of JP2672597B2 publication Critical patent/JP2672597B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently produce the title large cubic system single crystal having high purity, by equipping solvent consisting of sintered compact of BaO, TiO2 and B2O3, and seed crystal under a specified raw material rod, and by melting the solvent to deposit the single crystal. CONSTITUTION:The raw material rod 1 consisting of sintered compact of a mixture of (4.7/5.3)-(5.5) BaO/TiO2 mol ratio is attached to a clasp 8 of a sample rotating shaft 3 equipped at the upper part of a chamber, and the solvent 2 consisting of sintered compact of a mixture of 30-60mol% BaO, 20-60mol% TiO2 and 10-50mol% B2O3 is attached on the terminal surface of the BaTiO3 seed crystal 5 attached on a sample rotating shaft 4 equipped at the under part of the chamber. Then, the seed crystal 5 and solvent 2 are surrounded with a heat insulating tube 6, the shafts 3 and 4 are surrounded with a quartz tube 7, and O2 is introduced after excluding the external atmosphere. The terminal surfaces of material rod 1 and solvent 2 are touched and as the terminal surfaces are melted by heating, the raw material rod 1 and the seed crystal 5 are joined through the solvent 2 and the shafts 3 and 4 are rotated in opposite direction with each other to deposit BaTiO3 single crystal.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はチタン酸バリウム単結晶の製造方法に係り、特
に光10セッシング用フォトリフラクティブ結晶あるい
は非線型光学結晶として用いられる立方晶チタン酸バリ
ウム単結晶の製造方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for producing a barium titanate single crystal, and particularly to a method for producing a cubic barium titanate single crystal used as a photorefractive crystal for optical 10 processing or a nonlinear optical crystal. This invention relates to a method for producing crystals.

[従来の技術及びその問題点] チタン酸バリウム単結晶は従来フラックス(FIUX)
法、トップ シード(Top 5eed)法(カイロポ
ーラス法ともいう)及びフローティングゾーン(Flo
ating zone )法により製造されている。
[Conventional technology and its problems] Barium titanate single crystal is conventionally fluxed (FIUX)
method, Top 5eed method (also known as Chiroporous method) and Floating zone method (Floating zone method).
manufacturing method.

フラックス法としては、フッ化カリウムを融剤(フラッ
クス)として用いるレマイカ(Remeika )の方
法[ジャーナル オブ アメリカン ケミカル ソサイ
エティ(J、 Am、 chem、 Soc、  )ヱ
旦p940 (1954>]や融剤として塩化バリウム
を用いるブラットナー(Blattner)らの方法[
11elv、 Phys、 Acta、 20  p2
25 (1947)]が知られており、特に前者はシマ
イカ法とも呼ばれ、原料として高純度の炭酸バリウムと
酸化チタンの等モル混合物に必要なら酸化鉄を加えたも
のを用い、これを以下のように処理してチタン酸バリウ
ム単結晶を得るものである。すなわち前記原料混合物を
2時間仮焼し粉砕してふるいわけし、100メツシユを
通過する微粉末と40メツシユを通過するが60メツシ
ユは通過しないオ■粉末とに分け、それらを適当に混合
したものの所定量を白金ルツボの底に入れ、その上に融
剤として所定量のフッ化カリウムを原料混合物が覆われ
るように入れ、その後、これを炉内に入れ溶融徐冷を行
い融剤を流しだして冷却して結晶を収り出すものである
。しかしながら、この方法では、大きな良質な結晶が得
にくく、また融剤やルツボに起因する不純物が混入して
しまうという欠点がある。
Flux methods include the method of Remeika [Journal of American Chemical Society (J, Am, Chem, Soc, ), p940 (1954>]) using potassium fluoride as a flux, and the method of Remeika using potassium fluoride as a flux, and the method of Remeika using potassium fluoride as a flux. The method of Blattner et al. using barium [
11elv, Phys, Acta, 20 p2
25 (1947)], and the former, in particular, is also called the Shimaica method, and uses as a raw material an equimolar mixture of high-purity barium carbonate and titanium oxide, to which iron oxide is added if necessary. A barium titanate single crystal is obtained by the following treatment. That is, the raw material mixture was calcined for 2 hours, pulverized, and sieved, divided into a fine powder that passed through 100 meshes and an O powder that passed through 40 meshes but not 60 meshes, and these were mixed appropriately. A predetermined amount of potassium fluoride is placed in the bottom of a platinum crucible, and a predetermined amount of potassium fluoride is placed on top of it as a flux so that the raw material mixture is covered.Then, this is placed in a furnace to melt and slowly cool, and the flux is poured out. It is then cooled and the crystals are extracted. However, this method has the disadvantage that it is difficult to obtain large, high-quality crystals, and impurities caused by the flux and the crucible are mixed in.

トップ シード法は、前記フラックス法と、結晶引き上
げ法とを組み合ぜな方法で、比較的高品質な結晶を得る
ために、リンツ(Lintz )らによって開発された
ものであり[マテリアル リサーチ プリテン()fa
terial Re5earch Bulletin)
よ6  p899 (1971)]、これは、Ba0−
TiO系において、T i O2に富んだ溶液から、結
晶引き上げ法(チョクラルスキー法)と同じ手法によっ
て、結晶を育成するものである。成長を行う温度は13
90℃で、温度を毎時十分の数℃の割合で降下し、同時
に、結晶を毎時0,5〜1.0mmの速度で引き上げる
ものである。このトップ シード法は、チタン酸バリウ
ム単結晶を得るための一般的方法であるが、この方法で
得られる結晶は現在のところ最大サイズが15x15X
101!ll11程度で、これ以上の大型結晶は得られ
ていない。また高品質な結晶は得られるものの育成技術
が難しく、試薬やルツボ等に要する費用の点で後述のフ
ローティング ゾーン法よりもコスト高となる欠点があ
る。
The top seed method is a method that combines the flux method and the crystal pulling method, and was developed by Lintz et al. [Material Research Printing ) fa
terial Research Bulletin)
6 p899 (1971)], which is Ba0-
In the TiO system, crystals are grown from a TiO2-rich solution using the same method as the crystal pulling method (Czochralski method). The temperature for growth is 13
At 90 DEG C., the temperature is lowered at a rate of several tenths of DEG C. per hour, and at the same time the crystal is pulled up at a rate of 0.5 to 1.0 mm per hour. This top seed method is a general method for obtaining barium titanate single crystals, but the maximum size of the crystals obtained by this method is currently 15x15X.
101! The crystal size was about 111, and no larger crystals were obtained. Furthermore, although high-quality crystals can be obtained, the growth technique is difficult, and the cost of reagents, crucibles, etc. is higher than the floating zone method described below.

フローティング ゾーン法はブラウン(Brown )
らによって試みられた方法であり[ジャーナルオブ ア
プライド フィジックス(Journal of八へp
lied  Physics  )  35  (5)
    p1954  (1964)]、ブプラウらは
、B a T i O3組成の原料を用いて結晶化する
と、強誘電性を示さない六方晶チタン酸バリウムしか得
られないのに対し、B a T i O3に数パーセン
トのSr’l’i03を含まぜたBaTiO3−8rT
iO3系を用いると、チタン酸バリウムが強誘電性を示
す立方晶として直接結晶化することを利用してフローテ
ィング ゾーン法によって結晶化を行ない、長さ25m
、径3.2mを有する立方晶を得ている。この方法にお
いて用いられたS r T i O3はBaTiO3の
結晶構造を、強誘電性を示す立方晶に保つために必須の
成分であるが、5rTi03が得られた結晶中に固溶体
として残存し、純粋なチタン酸バリウムは得られていな
い。
Floating zone method is Brown
[Journal of Applied Physics (Journal of 8 pages)]
Lied Physics ) 35 (5)
p1954 (1964)], Buplau et al. found that when crystallized using a raw material with a B a T i O3 composition, only hexagonal barium titanate, which does not exhibit ferroelectricity, was obtained; BaTiO3-8rT containing a few percent of Sr'l'i03
When using the iO3 system, barium titanate crystallizes directly as a cubic crystal that exhibits ferroelectricity, and crystallization is performed using the floating zone method.
, a cubic crystal with a diameter of 3.2 m was obtained. S r Ti O 3 used in this method is an essential component to maintain the crystal structure of BaTiO 3 as a cubic crystal exhibiting ferroelectricity, but 5rTi 0 3 remains as a solid solution in the obtained crystal and is not pure. Barium titanate has not been obtained.

従って本発明の目的は、上述の従来技術、特にフローテ
ィング ゾーン法による結晶化方法の問題点及び欠点を
解消し、高純度かつ大型の立方晶チタン酸バリウム単結
晶を効率良く製造し得る新規な方法を提供することにあ
る。
Therefore, an object of the present invention is to provide a novel method capable of efficiently producing high-purity, large-sized cubic barium titanate single crystals by solving the problems and drawbacks of the above-mentioned conventional techniques, particularly the floating zone crystallization method. Our goal is to provide the following.

[課題を解決するための手段] 本発明は上記目的を達成するためになされたものであり
、本発明のチタン酸バリウム単結晶の製造方法は、酸化
バリウム(BaO)成分/酸化チタン(TiO2>成分
のモル比が4.715.3以上で515未満の範囲の混
合物の焼結体からなる原料棒の下に、30〜60mol
%の酸化バリウム(BaO)と20〜60mol%の酸
化チタン(T i 02 )と10〜50mol%の酸
化ホウ素(B2’ 03 )からなる混合物の焼結体か
らなる溶媒を設け、該溶媒の下に、チタン酸バリウムか
らなる種結晶を設け、溶媒部分が融解するように加熱し
てチタン酸バリウム単結晶を析出させることを特徴とす
るものである。
[Means for Solving the Problems] The present invention has been made to achieve the above object, and the method for producing a barium titanate single crystal of the present invention includes a barium oxide (BaO) component/titanium oxide (TiO2> Under the raw material rod consisting of a sintered body of a mixture with a molar ratio of components in the range of 4.715.3 or more and less than 515, 30 to 60 mol
A solvent consisting of a sintered body of a mixture of % barium oxide (BaO), 20 to 60 mol% titanium oxide (T i 02 ), and 10 to 50 mol% boron oxide (B2' 03 ) is provided, and under the solvent The method is characterized in that a seed crystal made of barium titanate is provided and heated so that the solvent portion is melted to precipitate a barium titanate single crystal.

本発明のチタン酸バリウム単結晶の製造方法において原
料棒として用いられるものはBaQ成分とT i O2
成分とのモル比が4.715.3以上で515未満の範
囲の混合物の焼結体である。原料棒は当然のことなから
B a T i 03組成(BaO成分/ T i O
2成分のモル比=515)であるのが理想である。しか
し本発明者の検討によれば、純粋B a T i 03
組成では原料棒が容易に熔融せず、スムーズにゾーンパ
スが進行せず結晶育成が中断してしまうのに対し、原料
棒組成がT i 02成分に富んでいると、溶融がスム
ーズに起り結晶育成が容易に進行することが明らかにな
った。しかしT i O2成分を余り多くすると、Ba
TiO3組成からはずれることになるので、T i O
2成分がわずかに富む組成が望ましい。このような観点
から原料棒のBaO成分/ T i O2成券のモル比
は上述の如<4.715.3以上で515未満の範囲に
限定され特に好ましくは4.915゜1以上で5/5未
満の範囲である。
In the method for producing barium titanate single crystal of the present invention, the raw material rods used are BaQ component and T i O2.
It is a sintered body of a mixture having a molar ratio of 4.715.3 or more to less than 515. Naturally, the raw material rod has a B a T i 03 composition (BaO component/T i O
Ideally, the molar ratio of the two components is 515). However, according to the inventor's study, pure B a T i 03
In contrast, if the raw material rod composition is rich in T i 02 components, melting will occur smoothly and crystal growth will be interrupted. It was found that the process progressed easily. However, if the T i O2 component is increased too much, Ba
Since it will deviate from the TiO3 composition, T i O
A composition slightly enriched in two components is desirable. From this point of view, the molar ratio of BaO component/T i O2 of the raw material rod is limited to a range of <4.715.3 or more and less than 515 as described above, and is particularly preferably 4.915°1 or more and 5/5. The range is less than 5.

また、本発明の方法において溶媒として用いられるもの
は、30〜60mol%の酸化バリウム(BaO)と2
0〜60mol%の酸化チタン(T i 02 )と1
0〜50mol%の酸化ホウ素(B203)とからなる
混合物の焼結体である。
In addition, the solvents used in the method of the present invention include 30 to 60 mol% barium oxide (BaO) and 2
0 to 60 mol% titanium oxide (T i 02 ) and 1
It is a sintered body of a mixture consisting of 0 to 50 mol% of boron oxide (B203).

ここに酸化バリウム(BaO)を30〜60IlNot
%に限定した理由は30mol%未満又は60mol%
を超えるとB a T i O3以外の結晶が析出する
ので好ましくないからである。また酸化チタン(T i
 02 )を20〜60mol%に限定した理由は20
mol%未満又は60mol%を超えると同様にB a
 T i O3以外の結晶が析出するので好ましくない
からである。さらに酸化ホウ素(B203)を10〜5
0mol%に限定した理由は10mol%未溝では六方
晶(高温型)のBaTiO3が析出するので好ましくな
く、50mol%を超えるとBaTiO3以外の結晶が
析出するので好ましくないからである。
Add barium oxide (BaO) here to 30 to 60 IlNot.
The reason for limiting it to % is less than 30 mol% or 60 mol%
This is because, if it exceeds this, crystals other than B a T i O3 will precipitate, which is not preferable. Also, titanium oxide (T i
The reason why 02) was limited to 20 to 60 mol% is 20
Similarly, if less than mol% or more than 60 mol%, B a
This is because crystals other than T i O3 are precipitated, which is not preferable. Furthermore, 10 to 5 boron oxide (B203)
The reason why it is limited to 0 mol% is that 10 mol% ungrooved is undesirable because hexagonal (high-temperature type) BaTiO3 will precipitate, and exceeding 50 mol% is undesirable because crystals other than BaTiO3 will precipitate.

[作用] 本発明によれば、フローティング ゾーン法による結晶
育成において所定の化学組成の原料棒及び所定の化学組
成の溶媒を用いることによって、低温でチタン酸バリウ
ム単結晶を育成することが可能となり、純度の高い立方
晶結晶を得ることができる。
[Function] According to the present invention, by using a raw material rod with a predetermined chemical composition and a solvent with a predetermined chemical composition in crystal growth by the floating zone method, it becomes possible to grow a barium titanate single crystal at a low temperature, Highly pure cubic crystals can be obtained.

[実施例] 以下、実施例により本発明を更に説明するが、本発明は
これらの実施例に限定されるものではない。
[Examples] Hereinafter, the present invention will be further explained with reference to Examples, but the present invention is not limited to these Examples.

[実施例−1] 原料棒の原料として純度99.99%の炭酸バリウム(
B a C03>と純度99.99%のルチル型酸化チ
タン(T i 02 )の粉末を用い、これらをBaO
成分/ T i O2成分のモル比が4.9515.0
5になるように秤量して混合した。又、溶媒の原料とし
て純度99.999%のチタン酸バリウム(BaTi0
3>と純度99.99%の炭酸バリウム(B a CO
3>と純度99.99%の酸化ホウ素(B203 )と
をB aT i 03成分/BaB4 o7 (BaO
+2B203 >成分のモル比が6.5/3.5、すな
わち酸化バリウム(BaO):42.5mol%、酸化
チタン(TiO2 ): 27.5mol%、酸化ポウ
素(B203): 30.Omol Mになるように秤
量して混合した。
[Example-1] Barium carbonate (99.99% purity) was used as the raw material for the raw material rod.
B a C03> and rutile-type titanium oxide (T i 02 ) powder with a purity of 99.99% were used, and these were combined with BaO
The molar ratio of component/T i O2 component is 4.9515.0
They were weighed and mixed so that the total amount was 5. In addition, as a raw material for the solvent, barium titanate (BaTiO
3> and 99.99% purity barium carbonate (B a CO
3> and boron oxide (B203) with a purity of 99.99% as BaT i 03 component/BaB4 o7 (BaO
+2B203>The molar ratio of the components is 6.5/3.5, that is, barium oxide (BaO): 42.5 mol%, titanium oxide (TiO2): 27.5 mol%, boron oxide (B203): 30. They were weighed and mixed to make Omol M.

得られた2種類の混合物を各々乳鉢中で充分に混合して
、以後の反応を促進するために平均粒径10μm以下の
微粉末状の混合物にした。又、溶媒原料としてチタン酸
バリウムの代りに純度99゜99%の炭酸バリウム(B
 a CO3)と純度99゜99%のルチル型酸化チタ
ン(T i 02 )を用いても良い。
The two types of mixtures obtained were thoroughly mixed in a mortar to form a fine powder mixture with an average particle size of 10 μm or less in order to accelerate the subsequent reaction. In addition, barium carbonate (B
a CO3) and rutile-type titanium oxide (T i 02 ) having a purity of 99°99% may be used.

このようにして得られた2種類の混合物を、約15gず
つ取り、各々直径5mのラバーチューブに密封して、そ
の後に油圧静水加圧装置を用いて500kg/−の圧力
で約15秒間加圧成形して原料棒用及び溶媒用の加圧成
形体を得た。このようなラバープレス法で加圧成形する
ことで、屈曲のない加圧成形物が得られる。
Approximately 15 g of each of the two types of mixtures obtained in this way was taken, each sealed in a rubber tube with a diameter of 5 m, and then pressurized for approximately 15 seconds at a pressure of 500 kg/- using a hydrostatic pressure device. By molding, press molded bodies for raw material rods and solvents were obtained. By press-forming using such a rubber press method, a press-molded product without bending can be obtained.

前述の工程で得られた原料棒用の加圧成形体は、−次焼
結工程として、加熱装置(縦型シリコニット炉)内の均
熱部に取り付けて約1時間程1250〜1350℃で加
熱した。この際、炉内酸素流量は、1゜01 /min
にした。このように焼結した加圧成形体を取り出し乳鉢
を用いて粉砕し前述の工程同様に平均粒径10μm程度
になるように微粒子化し、再び加圧成形した。この加圧
成形は、1000kg/−の圧力で5分間維持すること
により行なわれな。そして、得られた加圧成形体を二次
焼結工程として、前述の炉内で、再び加熱して焼結させ
た。この際、炉内の酸素流量を1.O1/min、温度
を1560℃に設定し、このような雰囲気中において加
圧成形体を5cm/minの昇降速度で、昇降させて加
熱して二次焼結を行なうことにより直径的7mm、長さ
約70nmyの外形を有し、緻密度が90%以上の原料
焼結棒を得た。他方、溶媒用の加圧成形体は、前述の原
料棒用の加圧成形体と同様に、炉内温度約800℃、酸
素流量1、O1/minの炉内において1時間程加熱し
て、400〜500■の溶媒焼結棒を得な。
The press-molded body for the raw material rod obtained in the above process is attached to a soaking section in a heating device (vertical siliconite furnace) and heated at 1250 to 1350°C for about 1 hour in the second sintering process. did. At this time, the oxygen flow rate in the furnace was 1°01/min.
I made it. The thus sintered press-molded body was taken out and crushed using a mortar, finely divided into particles having an average particle size of about 10 μm in the same manner as in the above-mentioned process, and then press-molded again. This pressure molding is carried out by maintaining a pressure of 1000 kg/- for 5 minutes. Then, the obtained press-molded body was heated and sintered again in the above-mentioned furnace in a secondary sintering step. At this time, the oxygen flow rate in the furnace was set to 1. O1/min, the temperature was set at 1560°C, and the press-formed body was raised and lowered at a lifting speed of 5 cm/min in such an atmosphere to perform secondary sintering. A raw material sintered rod having an outer diameter of about 70 nm and a density of 90% or more was obtained. On the other hand, the press-formed body for the solvent is heated for about 1 hour in a furnace with an internal temperature of about 800°C, an oxygen flow rate of 1, and O1/min, similar to the press-formed body for the raw material rod described above. Obtain a solvent sintered rod of 400-500 mm.

次に、このようにして準備した原料焼結棒と溶媒焼結棒
を使用し、また単結晶育成装置として赤外線集中加熱方
式のフローティング ゾーン法単結晶育成装置を使用し
てチタン酸バリウムの単結晶を製造した。用いられた装
置内部のチェンバ内配置図を第1図に示すように、準備
した原料焼結棒1をチェンバの上側に配設された試料回
転シャフト3に釣り金8を介して取り付けた。他方、溶
媒原料棒2はチェンバの下側に配設された試料回転シャ
フト4に保持具(図示せず)を介して取り付けられた種
結晶5(チタン酸バリウム単結晶)の端面に取り付けた
。次に析出した結晶部及び固液界面部の温度勾配が緩か
になるように、種結晶5及び溶媒原料棒2をアルミナ製
保温管6で包囲した。そして、上側の試料回転シャフト
3から下側の試料回転シャフト4にわたって石英管7で
包囲して、外気を遮断し、石英管7内に流量1.O1/
m!nで酸素を送りこんだ。
Next, a single crystal of barium titanate was grown using the raw material sintered rod and solvent sintered rod prepared in this way, and a floating zone method single crystal growth device using infrared concentrated heating as a single crystal growth device. was manufactured. As shown in FIG. 1, which shows the layout of the chamber inside the apparatus used, the prepared raw material sintered rod 1 was attached via a hook 8 to a sample rotating shaft 3 disposed above the chamber. On the other hand, the solvent raw material rod 2 was attached to the end face of a seed crystal 5 (barium titanate single crystal) that was attached via a holder (not shown) to a sample rotating shaft 4 disposed at the lower side of the chamber. Next, the seed crystal 5 and the solvent raw material rod 2 were surrounded by an alumina heat-retaining tube 6 so that the temperature gradient of the precipitated crystal part and solid-liquid interface part was gentle. Then, a quartz tube 7 is encircled from the upper sample rotation shaft 3 to the lower sample rotation shaft 4 to block outside air, and a flow rate of 1. O1/
m! Oxygen was pumped in using n.

次に、赤外光で集光し装置内において最高温度になる領
域に、原料焼結棒1と溶媒焼結棒2の対向する端面が位
置するるように上下に位置調整を行い、その端面を加熱
して融解させると同時に、加熱温度を一定に保持し、原
料焼結棒1を下方に移動させて溶融した溶媒焼結体2を
介して原料焼結棒1と種結晶5とを接合さぜな。この時
、軸ずれは多くとも0.5箇程度に抑えた。
Next, the positions of the raw material sintered rod 1 and the solvent sintered rod 2 are adjusted vertically so that the opposing end surfaces of the raw material sintered rod 1 and the solvent sintered rod 2 are located in the area where the infrared light is focused and reaches the highest temperature in the device. At the same time, the heating temperature is held constant, and the raw material sintered rod 1 is moved downward to join the raw material sintered rod 1 and the seed crystal 5 via the molten solvent sintered body 2. Sazena. At this time, the axis misalignment was suppressed to about 0.5 points at most.

このようにして70−ティング ゾーン(浮融帯)を形
成させたが、上記接合の際、試料回転シャフト3.4は
互いに逆方向に20〜30r、p、mで回転させ、溶融
部分が安定するまで光源ランプ(図示せず)の電圧を上
昇させて温度を上昇させた。次に、試料回転シャフト3
.4の双方を0゜3 mm / hの速度で下方に移動
させた。このようにして、溶融帯を一定形状で安定に維
持することにより原料棒から溶融帯への原料の溶解及び
溶融帯から種結晶への単結晶化された結晶の析出が行な
われた。この際、温度を上昇させすぎると形成されたチ
タン酸バリウムが高温相の六方晶に変化するので(転移
点1460℃)、安定化は相転移を起さない、1460
℃未満の低温で行なう必要がある。
In this way, a 70-ting zone (floating zone) was formed, but during the above joining, the sample rotation shafts 3.4 were rotated at 20 to 30 r, p, m in opposite directions to ensure that the molten part was stabilized. The temperature was raised by increasing the voltage of a light source lamp (not shown) until the Next, the sample rotation shaft 3
.. 4 were moved downward at a speed of 0°3 mm/h. In this manner, by stably maintaining the molten zone in a constant shape, the raw material was melted from the raw material rod into the molten zone, and single crystals were precipitated from the molten zone into seed crystals. At this time, if the temperature is raised too much, the barium titanate formed changes into a high-temperature hexagonal crystal (transition point 1460°C), so stabilization does not cause a phase transition.
It is necessary to carry out the process at a low temperature below ℃.

以上のような工程を経て約45時間後に育成した結晶は
表面にファセットが生じ、最終的に長さ30胴、直径6
mという大型の立方晶チタン酸バリウムの単結晶を高純
度で得ることができた。
The crystal grown after about 45 hours through the above process has facets on its surface, and finally has a length of 30 mm and a diameter of 6 mm.
We were able to obtain a large cubic barium titanate single crystal with high purity.

[実施例−2] 原料棒の原料として実施例−1と同様のものを用いて、
BaO成分/ T i 02成分のモル比が4゜951
5.05になるように、又、溶媒の原料として実施例−
1と同様のものを用いて、Bad。
[Example-2] Using the same material as Example-1 as the raw material for the raw material rod,
The molar ratio of BaO component/T i 02 component is 4°951
5.05, and as a raw material for the solvent.
Bad using the same as 1.

TiO2、B203の割合がBad:58.3mol%
、 TiO2:’ 30.1mol%、B2O3:11
.6m0I%になるように秤量混合した。以下実施例−
1と同様な工程を経て約40時間後に育成した結晶は表
面にファセットが生じ、最終的に長さ28薗、直径6M
という大型の立方晶チタン酸バリウムの単結晶を高純度
で得ることができた。
The ratio of TiO2 and B203 is Bad: 58.3 mol%
, TiO2:' 30.1 mol%, B2O3: 11
.. They were weighed and mixed to a concentration of 6m0I%. Examples below-
The crystal grown after about 40 hours after going through the same process as 1 has facets on its surface, and finally has a length of 28 mm and a diameter of 6 mm.
We were able to obtain a large single crystal of cubic barium titanate with high purity.

[実施例−3] 原料棒の原料として実施例−1と同様のものを用いて、
BaO成分/ T i O2成分のモル比が4゜851
5.15になるように、又、溶媒の原料として、実施例
−1と同様のものを用いて、Bad。
[Example-3] Using the same material as in Example-1 as the raw material for the raw material rod,
The molar ratio of BaO component/T i O2 component is 4°851
5.15, and using the same solvent raw material as in Example-1, Bad.

TlO2,B2O2の割合がBad:42.5m。The ratio of TlO2 and B2O2 is Bad: 42.5m.

1%、 TiO2: 27.5mol%、 B203 
: 30、Omol%になるように秤量混合した。以下
実施例−1と同様な工程を経て約50時間後に育成した
結晶は表面にファセットが生じ、最終的に長さ35 W
II、直径6mmという大型の立方晶チタン酸バリウム
の単結晶を高純度で得ることができた。
1%, TiO2: 27.5mol%, B203
: 30. They were weighed and mixed to give Omol%. The crystal grown after about 50 hours through the same process as in Example 1 has facets on its surface and finally has a length of 35 W.
II. A large single crystal of cubic barium titanate with a diameter of 6 mm could be obtained with high purity.

[実施例−4] 原料棒の原料として実施例−1と同様のものを用いて、
BaO成分/ T i O2成分のモル比が47515
.25になるように、又、溶媒の原料として実施例−1
と同様のものを用いて、Bad。
[Example-4] Using the same material as in Example-1 as the raw material for the raw material rod,
The molar ratio of BaO component/T i O2 component is 47515
.. 25, and Example-1 as a raw material for the solvent.
Using something similar to Bad.

TiO2、B203の割合がBaO:40.01tlO
I%、 TiO: 25. omol%、 B203:
 35.0mol%になるように秤量混合した。以下実
施例−1と同様な工程を経て約55時間後に育成した結
晶は表面にファセットが生じ、最終的に長さ38.5m
m、直径6門という大型の立方晶チタン酸バリウムの単
結晶を高純度で得ることができた。
The ratio of TiO2 and B203 is BaO:40.01tlO
I%, TiO: 25. omol%, B203:
They were weighed and mixed to a concentration of 35.0 mol%. The crystal grown after about 55 hours after undergoing the same steps as in Example 1 had facets on its surface, and the final length was 38.5 m.
A large single crystal of cubic barium titanate with a diameter of 6 m and a diameter of 6 crystals was obtained with high purity.

[実施例−5〜32] 原料棒の成分比及び溶媒の成分比を本発明の限定範囲内
で表−1に示したように種々変動させた以外は実施例−
1と同様に実施して、大型の立方晶チタン酸バリウムの
単結晶を高純度で得られることができた。
[Examples 5 to 32] Examples 5 to 32 except that the component ratio of the raw material rod and the component ratio of the solvent were varied as shown in Table 1 within the limited range of the present invention.
By carrying out the same procedure as in Example 1, it was possible to obtain a large cubic barium titanate single crystal with high purity.

上述の実施例では、種結晶にチタン酸バリウム単結晶を
用いたが、チタン酸バリウム焼結体でも同様の結果が得
られる。
In the above embodiment, a barium titanate single crystal was used as the seed crystal, but similar results can be obtained using a barium titanate sintered body.

また、実施例1において結晶の育成速度を0゜3 mm
 / h程に設定したが、0.1〜0 、5 mm/ 
h程度の範囲であれば、良質な単結晶を得ることができ
る。
In addition, in Example 1, the crystal growth rate was set to 0°3 mm.
/h, but 0.1~0,5 mm/
A high quality single crystal can be obtained within a range of about h.

また実施例1では、1.0.g/minの酸素を流した
が、0.5〜1.51/min程度の流量であれば、4
価のチタンが3価になるのを防止することができるので
、結晶の定比性を安定化することができる。
Further, in Example 1, 1.0. g/min of oxygen was flowed, but if the flow rate is about 0.5 to 1.51/min, 4
Since valent titanium can be prevented from becoming trivalent, the stoichiometry of the crystal can be stabilized.

[発明の効果] 以上述べた通り、本発明のフローティング ゾーン法に
よるチタン酸バリウム単結晶の製造方法によれば、所定
組成比の原料棒と所定組成比の溶媒とを用いることによ
り、従来のフローティングゾーン法に比べて大型かつ高
純度の立方晶チタン酸バリウムを短期間に容易に育成す
ることができるという利点がある。また従来のフローテ
ィングゾーン法に比べ原料試薬も最小限で育成が可能な
ため製造コストも大幅に低減できるという利点もある。
[Effects of the Invention] As described above, according to the method for producing a barium titanate single crystal by the floating zone method of the present invention, by using a raw material rod with a predetermined composition ratio and a solvent with a predetermined composition ratio, the conventional floating Compared to the zone method, this method has the advantage that large and highly pure cubic barium titanate can be easily grown in a short period of time. Furthermore, compared to the conventional floating zone method, it can be grown using a minimum amount of raw material reagents, which has the advantage of significantly reducing manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のチタン酸バリウム単結晶の製造方法を
実施する際に使用した単結晶製造器の結晶チェンバ内の
配置図である。 1・・・原料焼結棒、2・・・溶媒焼結棒、5・・・種
結晶。
FIG. 1 is a layout diagram of the interior of a crystal chamber of a single crystal manufacturing device used to carry out the method for manufacturing a barium titanate single crystal of the present invention. 1... Raw material sintered rod, 2... Solvent sintered rod, 5... Seed crystal.

Claims (1)

【特許請求の範囲】[Claims] (1)酸化バリウム(BaO)成分/酸化チタン(Ti
O_2)成分のモル比が4.7/5.3以上で5/5未
満の範囲の混合物の焼結体からなる原料棒の下に、30
〜60mol%の酸化バリウム(BaO)と20〜60
mol%の酸化チタン(TiO_2)と10〜50mo
l%の酸化ホウ素(B_2O_3)とからなる混合物の
焼結体からなる溶媒を設け、該溶媒の下に、チタン酸バ
リウムからなる種結晶を設け、溶媒部分が融解するよう
に加熱してチタン酸バリウム単結晶を析出させることを
特徴とするチタン酸バリウム単結晶の製造方法。
(1) Barium oxide (BaO) component/titanium oxide (Ti
O_2) Under the raw material rod consisting of a sintered body of a mixture with a molar ratio of components in the range of 4.7/5.3 or more and less than 5/5, 30
~60 mol% barium oxide (BaO) and 20-60
mol% titanium oxide (TiO_2) and 10-50 mo
A solvent consisting of a sintered body of a mixture consisting of 1% boron oxide (B_2O_3) is provided, a seed crystal made of barium titanate is provided under the solvent, and titanate is heated to melt the solvent portion. A method for producing a barium titanate single crystal, which comprises precipitating a barium single crystal.
JP24323088A 1987-09-30 1988-09-28 Method for producing barium titanate single crystal Expired - Lifetime JP2672597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24323088A JP2672597B2 (en) 1987-09-30 1988-09-28 Method for producing barium titanate single crystal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24621587 1987-09-30
JP62-246215 1987-09-30
JP24323088A JP2672597B2 (en) 1987-09-30 1988-09-28 Method for producing barium titanate single crystal

Publications (2)

Publication Number Publication Date
JPH01157500A true JPH01157500A (en) 1989-06-20
JP2672597B2 JP2672597B2 (en) 1997-11-05

Family

ID=26536163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24323088A Expired - Lifetime JP2672597B2 (en) 1987-09-30 1988-09-28 Method for producing barium titanate single crystal

Country Status (1)

Country Link
JP (1) JP2672597B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0536999A3 (en) * 1991-10-08 1994-03-02 Fujikura Ltd

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0536999A3 (en) * 1991-10-08 1994-03-02 Fujikura Ltd
US5366583A (en) * 1991-10-08 1994-11-22 Fujikura Ltd. Process for preparing barium titanate single crystals

Also Published As

Publication number Publication date
JP2672597B2 (en) 1997-11-05

Similar Documents

Publication Publication Date Title
US4256531A (en) Process for producing single crystal of yttrium-iron garnet or solid solution thereof
JPH01157500A (en) Production of barium titanate single crystal
JP4752194B2 (en) Method for producing barium titanate fine particles
JPS6163530A (en) Production of hard magnetic material
KR101905713B1 (en) Potassium titanate and method for producing thereof
JPH04300296A (en) Production of barium titanate single crystal
JPH05155696A (en) Production of single crystal of barium titanate
JPS5938193B2 (en) Manufacturing method of corundum single crystal that emits starry colors
JPS5841800A (en) Preparation of strontium titanate single crystal imparted with semiconductivity
JPH0223482B2 (en)
JP2000335999A (en) Production of barium titanate single crystal
JPH05294722A (en) Production of polycrystalline transparent yag ceramics for solid state laser
JP2624799B2 (en) Method for producing barium titanate raw material rod
JPH01219014A (en) Production of dielectric material powder
JPH03164408A (en) Manufacture of composite material of metal oxide, composite powder material of metal oxide and ceramic material
JPH0253397B2 (en)
JPH0234528A (en) Production of quartz glass
JPH0339999B2 (en)
JPH0524863B2 (en)
JPH0159214B2 (en)
JPS5938192B2 (en) Manufacturing method of corundum single crystal that emits starry colors
JPS59174600A (en) Manufacture of needlelike silicon nitride crystal
JPH0338239B2 (en)
JPS5938195B2 (en) Production method of brilliant chrysoberine single crystal
JPS6197112A (en) Manufacture of zirconium nitride