JPH01219014A - Production of dielectric material powder - Google Patents

Production of dielectric material powder

Info

Publication number
JPH01219014A
JPH01219014A JP4609388A JP4609388A JPH01219014A JP H01219014 A JPH01219014 A JP H01219014A JP 4609388 A JP4609388 A JP 4609388A JP 4609388 A JP4609388 A JP 4609388A JP H01219014 A JPH01219014 A JP H01219014A
Authority
JP
Japan
Prior art keywords
dielectric material
crystal
component
powder
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4609388A
Other languages
Japanese (ja)
Inventor
Kazuhiro Sano
佐野 一広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
Toshiba Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Glass Co Ltd filed Critical Toshiba Glass Co Ltd
Priority to JP4609388A priority Critical patent/JPH01219014A/en
Publication of JPH01219014A publication Critical patent/JPH01219014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain the subject fine powder with a narrow particle-size distribution by melting a specified raw mixture, quenching the melt, heat-treating the obtained amorphous body to deposit a dielectric material crystal, crushing the crystal, and treating the crushed crystal with a dil. acid to remove the glass forming component. CONSTITUTION:The raw mixture having a composition in the area in the figure enclosed with point (a) at 50mol% AO component-50mol% B2O3, point (b) at 55mol% DO2-45mol% AO, and point (c) at 45mol% DO2-55mol% AO is melted, the melt is quenched, and the obtained amorphous body is heat-treated at 600-850 deg.C for 1-6hr to deposit the dielectric material crystal shown by the formula ADO3 (A is at least one element selected from Ba, Be, Mg, Ca, Sr, and Ra, and D is at least one element selected from Ti, Zr, Hf, and Th). The crystal is crushed, the crushed crystal is treated with a dil. acid to remove the glass forming component, and the crystal powder of a dielectric material shown by the formula ADO3 is extracted.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、セラミックコンデンサなどの電子部品となる
誘電体素子の製造に適する誘電体材料粉末の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing dielectric material powder suitable for producing dielectric elements that become electronic components such as ceramic capacitors.

(従来の技術) 従来から、セラミックコンデンサなどとして使用されて
いるBaT103.5rTi(hなどやこれらセラミッ
クコンデンサにキュリー点のシフターなどとして添加さ
れるCaTiO2、BaZr0 zなどの酸化物系誘電
体材料粉末の製造方法としては、固相反応法が一般的に
用いられている。この固相反応法をBaTiO3を例と
して説明すると、たとえばTiO2とBaC03とを出
発原料として使用し、これらを充分に混合した後、10
00℃〜1200℃程度の温  ・度で仮焼して結晶化
させ、得られた焼成物を粉砕、後処理して粉末とする方
法である。また、この固相反応性以外に、共沈法、アル
コキシド法、水熱合成法などが知られている。
(Prior art) Oxide-based dielectric material powders such as BaT103.5rTi(h) used in ceramic capacitors, CaTiO2, BaZr0z, etc., which are added to these ceramic capacitors as Curie point shifters, etc. As a manufacturing method, a solid phase reaction method is generally used. To explain this solid phase reaction method using BaTiO3 as an example, for example, TiO2 and BaC03 are used as starting materials, and after mixing them thoroughly, , 10
This is a method of calcining and crystallizing at a temperature of about 00°C to 1200°C, and crushing and post-processing the obtained fired product to form a powder. In addition to this solid phase reactivity, coprecipitation methods, alkoxide methods, hydrothermal synthesis methods, and the like are known.

そして、これらの方法によって得た誘電体材料粉末をバ
インダ成分などとともに混合し、所定の形状の成形体を
作製した後、焼成して焼結させることによって目的とす
る誘電体素子を得ている。
Then, the dielectric material powder obtained by these methods is mixed with a binder component and the like to produce a molded body of a predetermined shape, and then fired and sintered to obtain the desired dielectric element.

(発明が解決しようとする課題) しかしながら、上述した固相反応法は、経済性、量産性
などに優れている半面、得られる粉末の粒径が2μfi
l〜3μlと比較的大きく、また粒度の分布幅も広いと
いう問題があった。また、固相反応性以外の共沈法、ア
ルコキシド法、水熱合成法などによって製造される誘電
体材料粉末は、粒径が0.5μm=1.5μm程度と比
較的微細な粉末であり、粒径的にはセラミックコンデン
サ用として適しているが、やはり上述した固相反応法と
同様に粒度分布幅が広く、粒径のばらつきが大きいとい
う問題があった。このように、粒径が不均一であると、
焼結させた際に得られる焼結体の機械的強度が部分的に
不均一となり、素子の寿命を短くする原因となるため、
より粒径の均一な誘電体材料粉末が求められている。
(Problems to be Solved by the Invention) However, while the solid phase reaction method described above is excellent in economy and mass production, the particle size of the obtained powder is 2 μfi.
There was a problem that the particle size was relatively large at 1 to 3 μl, and the particle size distribution was wide. In addition, dielectric material powder produced by a coprecipitation method, an alkoxide method, a hydrothermal synthesis method, etc. other than solid phase reactivity is a relatively fine powder with a particle size of about 0.5 μm = 1.5 μm, Although it is suitable for use in ceramic capacitors in terms of particle size, it still has the problem of a wide particle size distribution and large variations in particle size, similar to the solid phase reaction method described above. In this way, if the particle size is non-uniform,
When sintered, the mechanical strength of the sintered body obtained becomes partially uneven, which can shorten the life of the element.
There is a demand for dielectric material powder with more uniform particle size.

また、近年、電子機器の小型化に伴いセラミックコンデ
ンサなどの素子も小型大容量のものが望まれている。こ
のセラミックコンデンサなどの素子の小型大容量化を実
現する一つの手段として積層型セラミックコンデンサが
知られており、積層数を増してさらに大容量化すること
が試みられている。しかし、積層数を増加させることは
誘電体層間に設けられる内部電極数をも増加させること
となり著しいコストの上昇を招いてしまう。これは、B
aT103、BaZr03、CaTiO3、SrTiO
3などの焼結温度が1300℃〜1400℃と高いため
、内部電極として高価なPt’PPdを使用せざる得な
いためである。
Furthermore, in recent years, with the miniaturization of electronic devices, elements such as ceramic capacitors are desired to have a small size and a large capacity. Multilayer ceramic capacitors are known as one means of realizing smaller size and larger capacity of elements such as ceramic capacitors, and attempts are being made to increase the number of laminated layers to further increase the capacity. However, increasing the number of laminated layers also increases the number of internal electrodes provided between dielectric layers, resulting in a significant increase in cost. This is B
aT103, BaZr03, CaTiO3, SrTiO
This is because the sintering temperature of No. 3 and the like is as high as 1300° C. to 1400° C., so that expensive Pt'PPd must be used as the internal electrode.

これに対する解決策の一つとして誘電体材料粉末を微細
化して焼結温度を低下させ、内部電極にAgなどの比較
的安価な材料の使用を可能にする方法が考えられている
が、上述したような従来法によって製造された誘電体材
料粉末は、上記要求を満足していないため、この方法に
適した高品位で微細な誘電体材料粉末が強く求められて
いる。
One possible solution to this problem is to reduce the sintering temperature by making the dielectric material powder finer, making it possible to use relatively inexpensive materials such as Ag for the internal electrodes. Since the dielectric material powder produced by the conventional method does not satisfy the above requirements, there is a strong demand for a high-grade, fine dielectric material powder suitable for this method.

本発明は、このような従来技術の課題に対処するべくな
されたもので、粒径が微細で、かつ粒度分布の均一な誘
電体材料粉末を安定して得ることを可能にした誘電体材
料粉末の製造方法を提供することを目的としている。
The present invention was made to address the problems of the prior art, and provides a dielectric material powder that makes it possible to stably obtain dielectric material powder with fine particle size and uniform particle size distribution. The purpose is to provide a manufacturing method for.

[発明の構成] (課題を解決するための手段) 本発明の誘電体材料粉末の製造方法は、上記目的を達成
するために、誘電体材料の基本成分としてAO酸成分A
はBaSBeSqg、 Ca5Sr、 Raから選ばれ
た少なくとも一種の元素を示す。以下同じ。)オヨヒD
02成分(D ハTI、 Zr5Hf、 Thから選ば
れた少なくとも一種の元素を示す。以下同じ。)とガラ
ス形成成分としてB2O3成分およびAO酸成分を少な
くとも含有する原料混合物を加熱溶融する工程と、この
溶融物を急冷して非晶質体とする工程と、この非晶質体
に熱処理を施してAD(hで表される誘電体材料結晶を
析出させる工程と、この熱処理工程によって得た焼成物
を粉砕する工程と、得られた粉末を希酸で処理してガラ
ス形成成分を除去し、ADO3で表される誘電体材料の
結晶粉末を抽出する工程とを有することを特徴としてい
る。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the method for producing a dielectric material powder of the present invention uses an AO acid component A as a basic component of the dielectric material.
represents at least one element selected from BaSBeSqg, Ca5Sr, and Ra. same as below. ) Oyohi D
02 component (D represents at least one element selected from TI, Zr5Hf, and Th; the same applies hereinafter); a step of heating and melting a raw material mixture containing at least a B2O3 component and an AO acid component as glass-forming components; A process of rapidly cooling the melt to form an amorphous body, a process of subjecting the amorphous body to a heat treatment to precipitate dielectric material crystals represented by AD (h), and a fired product obtained by this heat treatment process. The method is characterized by comprising a step of pulverizing the powder, and a step of treating the obtained powder with a dilute acid to remove glass-forming components and extracting a crystalline powder of a dielectric material represented by ADO3.

(作 用) 本発明においては、まずAO−DO2−B203系の原
料混合物を溶融した後、急冷することにって非晶質体を
作製する。そして、この非晶質体に熱処理を施すことに
よってADO3の結晶を析出させる。このADO3結晶
の析出反応は、固相内での原子拡散に支配されるため、
ゆっくりと反応が進み、析出するADO3結晶を非常に
微細な粒子とすることが可能となる。また、析出させる
結晶粒子の粒径の熱処理温度依存性が緩かであるため、
熱処理条件や原料混合物中の成分組成を変化させること
で、粒径の制御を容易に行うことが可能である。
(Function) In the present invention, an amorphous body is produced by first melting an AO-DO2-B203-based raw material mixture and then rapidly cooling it. Then, by subjecting this amorphous body to heat treatment, crystals of ADO3 are precipitated. This precipitation reaction of ADO3 crystals is dominated by atomic diffusion within the solid phase, so
The reaction proceeds slowly, making it possible to form the precipitated ADO3 crystals into very fine particles. In addition, since the grain size of the crystal grains to be precipitated has a gentle dependence on the heat treatment temperature,
By changing the heat treatment conditions and the component composition in the raw material mixture, it is possible to easily control the particle size.

この熱処理条件は、目的とする誘電体材料によって異な
るが、通常600℃〜850℃程度の温度条件下で、1
時間〜8時間程度行う。
The conditions for this heat treatment vary depending on the intended dielectric material, but are usually 600°C to 850°C.
Do this for about 8 hours.

また、原料混合物中の各成分組成は、第1図に示す三角
成分図中におけるA050mo1%−820350to
In addition, the composition of each component in the raw material mixture is A050mo1%-820350to in the triangular component diagram shown in FIG.
.

1%の点aと00255mo1%−AO45mo1%の
点すとB0245mol1%−AO55mo1%の点C
とで囲まれた範囲内(図中斜線で示す。)の組成を有す
るものが好ましい。
1% point a and 00255mol1%-AO45mol1% point B0245mol1%-AO55mol1% point C
It is preferable to have a composition within the range surrounded by (indicated by diagonal lines in the figure).

これは、非晶質体を熱処理した際に、まずAB204(
あるいはAO・ B203)相が析出する。
This is because when an amorphous material is heat-treated, AB204 (
Alternatively, the AO/B203) phase precipitates.

これは示差熱分析およびX線回折の結果などからADO
3に優先して析出することを確認している。
This is confirmed by differential thermal analysis and X-ray diffraction results.
It has been confirmed that this precipitates preferentially to 3.

したがってADO3の基本成分となるAOがB2O3と
等量モルより少ない場合、AOはB2O3と化合してA
B204となり易いため、目的とするADO3の析出量
が減少し、残部がDO2として析出してしまう。このD
O2は後工程の希酸処理によって除去することが比較的
困難であるため、最終生成物であるADO3中に残存し
やすい。また、8203mの減少と共に溶融温度の上昇
を招き経済性が悪化する。以上の影響を考慮すると、第
1図中の点aと点すとを結ぶ線上の組成およびそれより
AOが過剰となる組成が好ましい組成範囲となる。
Therefore, if AO, which is the basic component of ADO3, is less than the equivalent mole of B2O3, AO will combine with B2O3 and A
Since it tends to become B204, the amount of the target ADO3 to be precipitated decreases, and the remainder is precipitated as DO2. This D
Since O2 is relatively difficult to remove by dilute acid treatment in the post-process, it tends to remain in the final product ADO3. Furthermore, as the length of 8203 m decreases, the melting temperature increases, resulting in poor economic efficiency. Considering the above effects, the preferred composition range is the composition on the line connecting point a and point 2 in FIG. 1 and the composition where AO is in excess.

一方、AOがB2O3のモル数より過剰である場合には
、AOが非晶質体中に残存し、ADO3+AB204 
+AOが析出する。このAOはAB204と共・ に希
酸処理によって容易に除去することが可能であるが、A
Oの析出量の増加に伴ってADO3の収率が低下し、ま
た希酸処理工程への負担が増大し、生産性が損われるた
め、第1図中の点aと点Cとを結ぶ線上の組成およびそ
れよりDO2が過剰となる組成が好ましい組成範囲とな
る。
On the other hand, when AO is in excess of the number of moles of B2O3, AO remains in the amorphous body, and ADO3+AB204
+AO is precipitated. This AO can be easily removed together with AB204 by dilute acid treatment;
As the amount of precipitated O increases, the yield of ADO3 decreases, and the burden on the dilute acid treatment process increases, which impairs productivity. A preferred composition range is a composition in which DO2 is in excess.

したがって、第1図中の点aと点すと点Cとで囲まれた
範囲内の成分組成を有する原料混合物を使用することが
好ましい。さらに、化学量論比としテハ、点aと点d1
すなわち00250mo1%−AO5(1mo1%の点
とを結ぶ線上の組成であり、この線上の組成が最も望ま
しい成分組成となる。
Therefore, it is preferable to use a raw material mixture having a component composition within the range surrounded by point a, point C, and point C in FIG. 1. Furthermore, as a stoichiometric ratio, the point a and the point d1
That is, it is the composition on the line connecting 00250mol%-AO5 (1mol%), and the composition on this line is the most desirable component composition.

(実施例) 以下、本発明の方法をB a (T i x Z r 
1−x ) o3の製造に適、用した一実施例について
説明する。なお、ここでZrはBaTiO3のキュリー
点をシフトさせる成分で、TIに対してx−0,80〜
1.0程度の範囲で選択的に置換するものである。
(Example) Hereinafter, the method of the present invention will be described as B a (T i x Z r
1-x) An example applied to the production of o3 will be described. Note that Zr is a component that shifts the Curie point of BaTiO3, and is
This is selective substitution within a range of approximately 1.0.

まず、ガラス形成物質としてBao−B2O3を用い、
原料混合物を溶融冷却して得られる非晶質体において、
Ba(Tlxzrl−x)03:Bao−B2O3がモ
ル比でso:so左なるように、それぞれの出発原料で
あるTiO2、ZrO2、H3BO3、BaC03を所
定世評量し、これらを充分に混合した後、白金ルツボに
収容し、1300℃〜1400℃の温度条件で加熱溶融
した。この溶融物を白金ルツボ底部のノズルから流出さ
せ、直径20011110%回転数50Or、p、m−
、線圧5t、onの水冷双ロール上に注いで急冷して薄
板状の非晶質体とした。
First, using Bao-B2O3 as a glass forming substance,
In the amorphous body obtained by melting and cooling the raw material mixture,
After measuring the respective starting materials TiO2, ZrO2, H3BO3, and BaC03 in predetermined amounts so that the molar ratio of Ba(Tlxzrl-x)03:Bao-B2O3 is so:so, and mixing these thoroughly, It was placed in a platinum crucible and heated and melted at a temperature of 1300°C to 1400°C. This melt was flowed out from the nozzle at the bottom of the platinum crucible, with a diameter of 20011110% and a rotation speed of 50 Or, p, m-
The mixture was poured onto water-cooled twin rolls with a linear pressure of 5 t on and rapidly cooled to form a thin plate-like amorphous body.

次に、この非晶質体をボールミルまたは振動ミルによっ
て微粉砕し、所定の容器に充填して電気炉内に収容し、
750℃〜850℃で5時間熱処理を行い、Ba (T
I、 Zr1−x) 03結晶を含む焼成物を作製した
。この焼成物を20メツシユ以下となるように粉砕し、
10%酢酸溶液で処理してガラス形成物質の溶解除去を
行った。なお、この際の結晶粉末の量は、酢酸溶液に対
して20重量%とし、80℃の液中で行った。次いで、
この酸処理後の処理物に対して繰返し水洗を行い、pH
が6以上となったところで水洗を終了して、脱水および
乾燥を行い、Ba (TixZrl−、) 03結晶機
粒子を得た。
Next, this amorphous material is pulverized using a ball mill or a vibration mill, and is filled into a predetermined container and placed in an electric furnace.
Heat treatment was performed at 750°C to 850°C for 5 hours, and Ba (T
A fired product containing Zr1-x)03 crystals was produced. This fired product is crushed to a size of 20 mesh or less,
The glass-forming substances were dissolved and removed by treatment with a 10% acetic acid solution. The amount of crystal powder at this time was 20% by weight based on the acetic acid solution, and the test was carried out in a liquid at 80°C. Then,
After this acid treatment, the treated product is repeatedly washed with water and the pH
Washing with water was completed when the value of 6 or more was reached, and dehydration and drying were performed to obtain Ba (TixZrl-,) 03 crystallizer particles.

得られたBa (TiXZr1−x) 03粉末は、測
定の結果、平均粒径0.5μm1粒度分布(3σ) 0
.08であった。
As a result of measurement, the obtained Ba (TiXZr1-x) 03 powder has an average particle size of 0.5 μm1 particle size distribution (3σ) 0
.. It was 08.

一方、本発明との比較のため、共沈法によってBa(T
i工Z r 1□)03粉末を作製し、この粉末につい
ても同様な測定を行ったところ、平均粒径1.6μm1
粒度分布(3σ)0,5であり、上記実施例によるBa
 (TixZr、、 ) 01粉末が粒径のそろった均
一なものであることを確認した。またこの結果は、各B
a (TlxZrl−x) O、粉末の電子顕微鏡写真
からもいっそう明らかとなった。
On the other hand, for comparison with the present invention, Ba(T
i-Tech Z r 1□)03 powder was prepared and similar measurements were performed on this powder, and the average particle size was 1.6 μm1.
The particle size distribution (3σ) is 0.5, and Ba according to the above example
(TixZr, , ) It was confirmed that the 01 powder was uniform with a uniform particle size. Also, this result shows that each B
a (TlxZrl-x) O, which became even clearer from the electron micrograph of the powder.

次に、上記実施例によって得たBa (TixZrl−
x)03粉末を用い、焼結体を作製したところ、均質で
焼結強度が高く、非常に安定した長寿命の素子を得るこ
とができた。
Next, Ba (TixZrl-
When a sintered body was produced using x)03 powder, it was possible to obtain an element that was homogeneous, had high sintering strength, and was extremely stable and had a long life.

なお、上記実施例においては、出発原料となる原料混合
物の組成や熱処理条件を変えることによって容易に粒径
を制御することができ、これらの組合わせにより、必要
に応じて0.01μm〜数μIの範囲で粒径を制御する
ことが可能である。
In the above examples, the particle size can be easily controlled by changing the composition of the raw material mixture serving as the starting material and the heat treatment conditions. It is possible to control the particle size within the range of .

また、上記実施例では、本発明の製造方法をBa (T
ixZr1□)03の製造に適用した例について説明し
たが、ADO3のAが1365Mg 、 Ca、 Sr
やRaで、DがHf’やThの場合でも同様な結果が得
られた。
Furthermore, in the above examples, the manufacturing method of the present invention is described as Ba (T
We have explained an example applied to the production of ixZr1□)03, but when A of ADO3 is 1365Mg, Ca, Sr
Similar results were obtained when D was Hf' or Th.

[発明の効果] 以上説明したように本発明の誘電体材料粉末の製造方法
によれば、微細で粒度分布の幅が狭い均質な誘電体材料
粉末が得られ、また原料混合物の組成範囲や非晶質体へ
の熱処理条件を変えることにより粒径の制御が容易にで
き、希望する粒径の微粒子粉末を比較的大きいものから
、非常に微細なものまでコストを上げることなく安定し
て得ることが可能である。
[Effects of the Invention] As explained above, according to the method for producing dielectric material powder of the present invention, a fine and homogeneous dielectric material powder with a narrow particle size distribution can be obtained, and the composition range of the raw material mixture and the Particle size can be easily controlled by changing the heat treatment conditions for the crystalloid, and it is possible to stably obtain fine particles of the desired particle size, from relatively large to extremely fine, without increasing costs. is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る原料混合物の各出発原料の組成を
示す三角成分図である。 出願人      東芝硝子株式会社 代理人 弁理士  須 山 佐 − 輸お 二角l * t!l (mo 1%) 第1図
FIG. 1 is a triangular component diagram showing the composition of each starting material of the raw material mixture according to the present invention. Applicant Toshiba Glass Co., Ltd. Agent Patent Attorney Sasa Suyama - Export Nikaku l * t! l (mo 1%) Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)誘電体材料の基本成分としてAO成分(AはBa
、Be、Mg、Ca、Sr、Raから選ばれた少なくと
も一種の元素を示す。)およびDO_2成分(DはTi
、Zr、Hr、Thから選ばれた少なくとも一種の元素
を示す。)とガラス形成成分としてB_2O_3成分お
よびAO成分とを含有する原料混合物を加熱溶融する工
程と、この溶融物を急冷して非晶質体とする工程と、こ
の非晶質体に熱処理を施してADO_3で表される誘電
体材料結晶を析出させる工程と、この熱処理工程によっ
て得た焼成物を粉砕する工程と、得られた粉末を希酸で
処理してガラス形成成分を除去し、ADO_3で表され
る誘電体材料の結晶粉末を抽出する工程とを有すること
を特徴とする誘電体材料粉末の製造方法。
(1) AO component (A is Ba) as the basic component of dielectric material
, Be, Mg, Ca, Sr, and Ra. ) and DO_2 component (D is Ti
, Zr, Hr, and Th. ) and a B_2O_3 component and an AO component as glass-forming components by heating and melting, rapidly cooling this melt to form an amorphous body, and heat-treating this amorphous body. A process of precipitating dielectric material crystals represented by ADO_3, a process of pulverizing the fired product obtained by this heat treatment process, and a process of treating the obtained powder with dilute acid to remove glass-forming components, A method for producing a dielectric material powder, the method comprising: extracting a crystalline powder of a dielectric material.
JP4609388A 1988-02-29 1988-02-29 Production of dielectric material powder Pending JPH01219014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4609388A JPH01219014A (en) 1988-02-29 1988-02-29 Production of dielectric material powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4609388A JPH01219014A (en) 1988-02-29 1988-02-29 Production of dielectric material powder

Publications (1)

Publication Number Publication Date
JPH01219014A true JPH01219014A (en) 1989-09-01

Family

ID=12737374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4609388A Pending JPH01219014A (en) 1988-02-29 1988-02-29 Production of dielectric material powder

Country Status (1)

Country Link
JP (1) JPH01219014A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004331492A (en) * 2003-04-18 2004-11-25 Asahi Glass Co Ltd Method of manufacturing lead titanate zirconate fine particle
JP2007326735A (en) * 2006-06-07 2007-12-20 Asahi Glass Co Ltd Manufacturing method of fine particle of ceria-zirconia solid solution
JP2008143733A (en) * 2006-12-08 2008-06-26 Asahi Glass Co Ltd Production method of zirconia microparticle
JP2011105542A (en) * 2009-11-17 2011-06-02 Asahi Glass Co Ltd Method for producing titanate compound particle and titanate compound particle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004331492A (en) * 2003-04-18 2004-11-25 Asahi Glass Co Ltd Method of manufacturing lead titanate zirconate fine particle
JP2007326735A (en) * 2006-06-07 2007-12-20 Asahi Glass Co Ltd Manufacturing method of fine particle of ceria-zirconia solid solution
JP2008143733A (en) * 2006-12-08 2008-06-26 Asahi Glass Co Ltd Production method of zirconia microparticle
JP2011105542A (en) * 2009-11-17 2011-06-02 Asahi Glass Co Ltd Method for producing titanate compound particle and titanate compound particle

Similar Documents

Publication Publication Date Title
JPS61275108A (en) Preparation of powder of dielectric substance
US4152280A (en) Molten salt synthesis of modified lead zirconate titanate solid solution powder
JPH01219014A (en) Production of dielectric material powder
JP4735257B2 (en) Method for producing bismuth titanate fine particles
JP3509498B2 (en) Plate-shaped ceramic particles
JPH0388770A (en) Barium titanate-based semiconductor porcelain composition and thermistor
JPH02225367A (en) Production of dielectric ceramics
JP4752194B2 (en) Method for producing barium titanate fine particles
JPH0527571B2 (en)
JPH02289426A (en) Powder for barium titanate-based semiconductor ceramics and its production
JPH0624975B2 (en) Method for producing titanate powder
JPH0524863B2 (en)
JPH035357A (en) Dielectric ceramic and its production
JPH0524862B2 (en)
JPS5939724A (en) Manufacture of dielectric powder for thick film
JP2004331492A (en) Method of manufacturing lead titanate zirconate fine particle
JPH0215607A (en) Ceramic capacitor element
Gorokhovskii et al. Synthesis of glass-ceramic materials in the BaO–PbO–B2O3–Al2O3–TiO2 system
JP3250874B2 (en) Method for producing composite oxide
JPH11302074A (en) Production of compound oxide sintered body
JPH06166518A (en) Production of fine particle of ba@(3754/24)snxti1-x)o3 solid solution
JPS62143826A (en) Production of composite perovskite type compound
JPH04303512A (en) Manufacture of calcined body for dielectric porcelain
JPS61158823A (en) Production of lead titanate fine powder
JPH01122907A (en) Production of perovskite oxide powder