JPH0215607A - Ceramic capacitor element - Google Patents

Ceramic capacitor element

Info

Publication number
JPH0215607A
JPH0215607A JP16619488A JP16619488A JPH0215607A JP H0215607 A JPH0215607 A JP H0215607A JP 16619488 A JP16619488 A JP 16619488A JP 16619488 A JP16619488 A JP 16619488A JP H0215607 A JPH0215607 A JP H0215607A
Authority
JP
Japan
Prior art keywords
ado3
produced
point
ceramic capacitor
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16619488A
Other languages
Japanese (ja)
Inventor
Kazuhiro Sano
佐野 一広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
Toshiba Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Glass Co Ltd filed Critical Toshiba Glass Co Ltd
Priority to JP16619488A priority Critical patent/JPH0215607A/en
Publication of JPH0215607A publication Critical patent/JPH0215607A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the title ceramic capacitor element with sufficient sintering density by low temperature baking process while obviating the structural defect by a method wherein an amorphous body produced by melting and quenching a mixture containing the basic components of specific dielectric material and glass forming component is heat-treated to form a sintered body so that crystalline powder produced by removing the glassy compound from the sintered body may be used. CONSTITUTION:Within a triangle component diagram comprising AO-DO2-B2O3 base components, a mixture contained in a composition region encircled by the lines connecting point of AO 50mole%-B2O3 mole%, the point of DO255 mole%-AO 45mole% and the other point of DO 45mole%-AO 55mole% with one another is melted down. Then, a glassy body produced by quenching the melt is heat-treated to separate out a crystal represented by ADO3. Next, the crystal is crushed to remove the glassy component therefrom by dilute acidic processing for producing the ADO3 crystalline powder to be used. Within the component diagram, A represents at least one element selected from Ba, Be, Mg, Ca, Sr, Ra, while D represents at least one element selected from Ti, Zr, Hf, Th. The reaction to separate said ADO3 crystal is performed very slowly since it depends upon the atomic diffusicn in solid phase so that the separated out ADO3 may be produced in every fine grains in even diameter.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は焼結性を散着したセラミックコンデンサ素子に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a ceramic capacitor element with sinterability dispersed therein.

〔従来の技術〕[Conventional technology]

BaT 10B 、 8rT103を主原料とするセラ
ミックコンデンサ素子は、目的とする製品の規格に応じ
てCaT 10g−?BaZrO3などを適当量混合し
て訪電串、温度特性等の調桜をはかっている。このよう
なセラミックコンデンサ素子は、異種の酸化物誘電体粉
末を所定比率で混合して原料粉末として用いるか、また
は化学的に一部成分置換した複合酸化物訪電体粉末を使
用して製造されるのが一般的である。たとえば、B a
 (T I x Zr s −x ) 03の場合、前
者はBaT103粉末とBaZr01粉末とをX:1−
xの比で混合してセラミックコンデンサ素子作成の出発
原料とする方法であり、後者は′rムとZrとが所定比
率となるように合成されたBa(”xzrt−x)Oa
粉末を用いる方法である。
Ceramic capacitor elements whose main raw materials are BaT 10B and 8rT103 can be made from CaT 10g-? Appropriate amounts of BaZrO3 and the like are mixed to adjust the temperature characteristics, etc. Such ceramic capacitor elements are manufactured by mixing different types of oxide dielectric powders at a predetermined ratio and using them as a raw material powder, or by using composite oxide current-visitor powders in which some components have been chemically replaced. It is common to For example, B a
In the case of (T I x Zr s −x ) 03, the former uses BaT103 powder and BaZr01 powder at X:1−
The latter method uses Ba("xzrt-x)Oa synthesized so that the ratio of Zr and Zr is mixed in a predetermined ratio.
This method uses powder.

いずれの場合も酸化物誘電体粉末は、固相反応法、共沈
法、アルコキシド法等の方法によって製造されたものが
使用されていた。そして前記方法によって得られた酸化
物誘電体粉末をバインダと混合し、所定形状に成形後、
焼結してコンデンサ素子を得ていた。
In either case, the oxide dielectric powder used was one manufactured by a method such as a solid phase reaction method, a coprecipitation method, or an alkoxide method. After mixing the oxide dielectric powder obtained by the above method with a binder and molding it into a predetermined shape,
Capacitor elements were obtained by sintering.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしなから、上記方法によって得られた酸化物誘電体
粉末を用いたコンデンサは、焼結密度・焼結強度が低い
欠点がある。焼結密度・焼結強度が低いとボイド、微小
クラック、デラミネーシ箇ン等の構造欠陥の原因となり
、製品の信頼性と歩留が低下する。このだめ十分な焼結
密度・焼結強度を確保するためには1300℃以上の高
温度で時間をかけて焼成を行なう必要があり、焼成工程
にかかる電力消費量および焼成炉の短命化による設備費
用の増大が避けられなかった。
However, capacitors using the oxide dielectric powder obtained by the above method have the drawback of low sintering density and low sintering strength. Low sintering density and sintering strength cause structural defects such as voids, microcracks, and delaminated areas, reducing product reliability and yield. In order to ensure sufficient sintered density and strength, it is necessary to perform the firing at a high temperature of 1300°C or more over a long period of time. An increase in costs was unavoidable.

また、積層型セラミックコンデンサの場合、複数の誘電
体層間に内部電極を積層して焼成を行うため、1300
℃以上という焼成温度に耐えうる素材に電極材が限定さ
れる。この丸めPdなどの高価な素材を使わざるをえな
かった。
In addition, in the case of multilayer ceramic capacitors, internal electrodes are laminated between multiple dielectric layers and fired, so 1300
Electrode materials are limited to materials that can withstand firing temperatures of ℃ or higher. This forced the use of expensive materials such as rounded Pd.

本発明は、低温焼成で十分な焼結密度を有し、上記した
ような構造欠陥のないセラミックコンデンサ素子を提供
することを目的とする。
An object of the present invention is to provide a ceramic capacitor element that has sufficient sintered density when fired at a low temperature and is free from the above-mentioned structural defects.

〔課題を解決するための手段と作用〕[Means and actions to solve the problem]

本発明は、第1図に示すAO−Do2− B2O3系三
角成分図(A Fi13a l Be + Mg + 
Ca + S r + 1<aから選ばれる少なくとも
一種の元素、DはTi。
The present invention is based on the triangular component diagram of the AO-Do2-B2O3 system (A Fi13a l Be + Mg +
At least one element selected from Ca + S r + 1<a, and D is Ti.

zr、Hf、Thから選ばれる少なくとも一種の元素)
において、へ050モル%−820,5Qモル%の点、
DO255モル%−人045モル%の点、D0245モ
ル%−人055モル%の点を結ぶ腺で囲−まれる組成領
域内にある混合物を溶融し、この融液を急冷して得られ
るガラス体を熱処理してADO3で表わされる結晶を析
出させ、これを粉砕後、希酸処理によりガラス成分を除
去して得られるADO3結晶粉末を用いたことを特徴と
するセラミックコンデンサ素子である。
at least one element selected from zr, Hf, Th)
In, the point of 050 mol% - 820,5Q mol%,
A glass body obtained by melting a mixture within the compositional region surrounded by a gland connecting the point DO255 mol% - Human 045 mol% and the point D0245 mol% - Human 055 mol%, and rapidly cooling this melt. This is a ceramic capacitor element characterized by using ADO3 crystal powder obtained by heat-treating ADO3 to precipitate crystals represented by ADO3, pulverizing the crystals, and removing glass components by dilute acid treatment.

ここで上記組成領域について説明する。Here, the above composition range will be explained.

上記ガラス体を熱処理する際、まずAs2O3(あるい
は人0・B203)相が析出する。これは示差熱分析、
x糎回折の結果等から人DO3に優先して析出すること
を確認した。したがつ1、ADO3の基本成分となるA
OがB2O3と等量モルよシ少ない場合、人OはB2O
3と化合してAs2O3となり易いため、目的とするA
DO3の析出量が減少し、残部はDo2として析出する
。Do2は後工程の希酸処理によって除去することが困
痙であp、ADO3結晶粉末中に残存するので好ましく
ない。またB2O3量の増加とともに浴融温度の上昇を
まねき経済性が悪化する。以上の影響を考慮すると第1
図に示したAO、Do2. B2O3%−頂点とする三
角成分図におけるa−btLすなわち人050モル%−
B2035 Qモル%の点とDo2)5モル%−人04
5モル%の点を結んだ巌よすもAOが過剰な領域が好ま
しい組成範囲となる。
When the glass body is heat-treated, an As2O3 (or As2O3) phase is first precipitated. This is differential thermal analysis,
It was confirmed from the results of x-glue diffraction that it precipitates preferentially to human DO3. Therefore, A is the basic component of ADO3.
If O is less than the equivalent molar amount of B2O3, human O has B2O
Because it easily combines with 3 to form As2O3, the target A
The amount of DO3 precipitated decreases, and the remainder precipitates as Do2. It is difficult to remove Do2 by dilute acid treatment in the post-process, and it remains in the ADO3 crystal powder, which is not preferable. Furthermore, as the amount of B2O3 increases, the melting temperature of the bath increases, resulting in poor economic efficiency. Considering the above effects, the first
AO shown in the figure, Do2. B2O3% - a-btL in the triangular component diagram with the vertex, that is, 050 mol% -
B2035 Q mole% point and Do2) 5 mole% - person 04
A preferred composition range is a region in which Iwayosumo AO is in excess, connecting the points of 5 mol %.

一方、人OがB、03のモル数よりも過剰である場合に
は、AOがガラス体中に残存し、ADO3−1−A B
204+人0が生成する。人0はAs2O3と共に希酸
処理によって容易に除去できるが、AO3dの増加に伴
ってADO3の収率が低下し、希酸処理工程への負担が
増大し生産性を著しく損うため、少なくとも第1図にお
けるa  CN 、すなわちA050モル%−B10.
5 Qモル%の点とDo、45モル%−人055モル%
の点を結んだ巌よりもDo2が過剰となる領域が好まし
い組成範囲となる。
On the other hand, if ADO3-1-A B is in excess than the number of moles of ADO3-1-A B
204 + 0 people generate. Although ADO3 can be easily removed together with As2O3 by dilute acid treatment, as AO3d increases, the yield of ADO3 decreases, increasing the burden on the dilute acid treatment process and significantly impairing productivity. a CN in the figure, that is, A050 mol%-B10.
5 Q mole% point and Do, 45 mole% - person 055 mole%
A preferred composition range is a region where Do2 is in excess compared to the point where the points are connected.

以上から第1図における点II、b、Cによって囲まれ
た範囲の組成を選択する。さらに化学以jシ比としてd
[tLいのはa −d llAで示したAO50モル%
−B20350モル%の点とD0□50モル%−人05
0モル%の点とを結んだ線上の組成となる場合である。
From the above, the composition in the range surrounded by points II, b, and C in FIG. 1 is selected. Furthermore, as a chemical ratio, d
[tL Ino is a-d 50 mol% of AO indicated by llA
-B20350 mol% point and D0□50 mol%-Person 05
This is a case where the composition is on a line connecting the 0 mol % point.

本発明においてはガラス体を熱処理してガラス相から人
D03結晶を析出させる。この反応は固相内での原子拡
散に支配されるためゆっくりとした反応となυ、析出す
るADO3を非常にg細で粒径のそろった粒子とするこ
とが可能である。このため本発明にかかるセラミックコ
ンデンサは粉末成形を行ってもち密で粉末粒子間に間隙
が生じにくく比較的低温度で良好な焼結性を示す。
In the present invention, the glass body is heat-treated to precipitate human D03 crystals from the glass phase. Since this reaction is dominated by atomic diffusion within the solid phase, it is a slow reaction, and it is possible to form the precipitated ADO3 into extremely fine particles with uniform particle size. For this reason, the ceramic capacitor according to the present invention is compact after powder compaction, and shows good sinterability at relatively low temperatures with no gaps between the powder particles.

〔実施例〕〔Example〕

以下本発明の実施例をBa (Ti、xZrX)03(
X=0.2、以下同じ)を使用した例について説明する
Examples of the present invention will be described below with reference to Ba (Ti, xZrX)03(
An example using X=0.2 (the same applies hereinafter) will be described.

原料混合物を溶融・冷却して得られるガラス体において
、Ba (T 1l−)(Zrx ) 03 : Ba
O@ B2O3がモル比で50:50となるように、そ
れぞれBaCO3+ H3BO3、TIO□、 ZrO
2を所定付秤h」混合して白金ルツボに1&谷し、13
00〜1400℃に加熱浴融した。この溶融物を白金ル
ツボ底部のノズルから流出させ、水冷双ロール上に注い
で急冷して薄片状のガラス体とした。次にこのガラス体
を粉砕し、所定の容器に充填して電気炉内にせた。この
・焼結体をボールミルまたは振動ミルによって微粉砕し
た後、10%酢酸溶液で処理してガラス形成成分を溶解
除去した。次いで洗浄液のpHが6以上になる壇で水洗
を繰り返し、その後脱水、乾燥全行なってB )l (
T i 1−x Z rx ) 03結晶粉末を得た。
In the glass body obtained by melting and cooling the raw material mixture, Ba (T 1l-) (Zrx) 03 : Ba
BaCO3+ H3BO3, TIO□, ZrO, respectively, so that O@B2O3 has a molar ratio of 50:50.
Mix 2 on a specified scale and put it in a platinum crucible, 13
The mixture was melted in a heating bath at a temperature of 00 to 1400°C. This melt was flowed out from a nozzle at the bottom of the platinum crucible, poured onto water-cooled twin rolls, and rapidly cooled to form a flaky glass body. Next, this glass body was crushed, filled into a predetermined container, and placed in an electric furnace. This sintered body was finely pulverized using a ball mill or a vibration mill, and then treated with a 10% acetic acid solution to dissolve and remove glass-forming components. Next, wash with water repeatedly on a stage where the pH of the washing solution becomes 6 or more, and then dehydrate and dry the whole product.
A T i 1-x Z rx ) 03 crystal powder was obtained.

得られたBa (T11−xZrx) 03粉末は、所
定の形状に1ン2の圧力でプレス成形し、これを複数閲
作成して1000〜1300℃の間で各々異なる温度で
2時間焼成した。このようにして作成したセラミックコ
ンデンサ素子について焼結密度を測定した結果を第2図
の曲線Aに示す。
The obtained Ba (T11-xZrx) 03 powder was press-molded into a predetermined shape at a pressure of 1 to 2, and a plurality of molded pieces were prepared and fired at different temperatures between 1000 and 1300°C for 2 hours. Curve A in FIG. 2 shows the results of measuring the sintered density of the ceramic capacitor element thus produced.

また、比較例として固相反応法、共沈法によって作製し
たBa (TI□−xZrx )03(X=0.2 )
粉末を用いてコンデンサ素子を作成し、上記実施例と同
機にして焼成温度による焼結密度の変化を調べた。その
結果を第2図に併記する。
In addition, as a comparative example, Ba (TI□-xZrx)03 (X = 0.2) prepared by solid phase reaction method and coprecipitation method
A capacitor element was made using the powder, and the change in sintered density due to firing temperature was investigated using the same machine as in the above example. The results are also shown in Figure 2.

第2図において曲線Bは固相反応法によって作製したも
の、曲線Cは共沈法によって作製したものの比較例を示
している。
In FIG. 2, curve B shows a comparative example of a product prepared by a solid phase reaction method, and curve C shows a comparative example of a product prepared by a coprecipitation method.

第2図に示すように本実施例のセラミックコンデンサ素
子は、焼成温度1200℃で5. a 1,1という高
い焼結密度が得られ、クラックやボイドの発生も見られ
なかった。
As shown in FIG. 2, the ceramic capacitor element of this example was fired at a firing temperature of 1200°C. A high sintered density of a 1.1 was obtained, and no cracks or voids were observed.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明のセラミックコンデンサ素子は、従
来のものに較べて低い焼成温度で十分な焼結密度を有し
、ボイド、クラック等の構造欠陥がなく信頼性が高い。
As described above, the ceramic capacitor element of the present invention has sufficient sintered density at a lower firing temperature than conventional ceramic capacitor elements, is free from structural defects such as voids and cracks, and is highly reliable.

また低温で焼成が可能であるため、積層化した場合にも
内部電極としてA%等等比重的安価材料の使用比率を高
めることができ、製品のコストダウンがはがれる。
Furthermore, since firing is possible at a low temperature, even when laminated, it is possible to increase the proportion of inexpensive materials with equal specific gravity, such as A%, used as internal electrodes, thereby reducing the cost of the product.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るAO−DO□−8203系の相図
(三角成分図)。 第2図は本発明に係る実施例および比較例のBa(T’
l−X”X )03 (x=0.2 )セラミックコン
デンサ素子の焼成温度と焼結密度との関係を示す曲線図
である。 第2図
FIG. 1 is a phase diagram (triangular component diagram) of the AO-DO□-8203 system according to the present invention. FIG. 2 shows Ba(T'
1-X"

Claims (1)

【特許請求の範囲】[Claims] 誘電材料の基本成分AO(AはBa,Be,Mg,Ca
,Sr,Raから選ばれる少なくとも一種の元素)とD
O_2(DはTi,Zr,Hf,Thから選ばれる少な
くとも一種の元素)およびガラス形成成分とを含む混合
物を溶融し、この融液を急冷して得られる非晶質体を熱
処理してADO_3で表わされる結晶を含む焼結体とし
、この焼結体を粉砕した後、希酸処理によりガラス成分
を除去して得られるADO_3結晶粉末を用いたことを
特徴とするセラミックコンデンサ素子。
Basic components of dielectric materials AO (A is Ba, Be, Mg, Ca
, Sr, Ra) and D
A mixture containing O_2 (D is at least one element selected from Ti, Zr, Hf, and Th) and a glass-forming component is melted, and the amorphous body obtained by rapidly cooling the melt is heat-treated to form ADO_3. A ceramic capacitor element characterized in that it uses ADO_3 crystal powder obtained by pulverizing the sintered body and removing the glass component by treatment with dilute acid.
JP16619488A 1988-07-04 1988-07-04 Ceramic capacitor element Pending JPH0215607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16619488A JPH0215607A (en) 1988-07-04 1988-07-04 Ceramic capacitor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16619488A JPH0215607A (en) 1988-07-04 1988-07-04 Ceramic capacitor element

Publications (1)

Publication Number Publication Date
JPH0215607A true JPH0215607A (en) 1990-01-19

Family

ID=15826833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16619488A Pending JPH0215607A (en) 1988-07-04 1988-07-04 Ceramic capacitor element

Country Status (1)

Country Link
JP (1) JPH0215607A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4998575A (en) * 1988-07-28 1991-03-12 The Yokohama Rubber Co., Ltd. Heavy loading tubless tire with defined polygonal section bead core

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4998575A (en) * 1988-07-28 1991-03-12 The Yokohama Rubber Co., Ltd. Heavy loading tubless tire with defined polygonal section bead core

Similar Documents

Publication Publication Date Title
JPS61275108A (en) Preparation of powder of dielectric substance
Sebastian et al. Tailoring the microwave dielectric properties of Ba (Mg1/3Ta2/3) O3 ceramics
US4152280A (en) Molten salt synthesis of modified lead zirconate titanate solid solution powder
CN101595060B (en) Method for producing solid solution fine particle
JPH0215607A (en) Ceramic capacitor element
CN100358835C (en) Method for high temperature quick synthesizing blender or compound titanate ceramic powder
JP2609944B2 (en) Oxide material showing superconductivity and method for producing the same
JPWO2004083122A1 (en) Method for producing bismuth titanate fine particles
US6592805B1 (en) Method for producing sintered electroceramic materials from hydroxide and oxalate precursors
JPH0524862B2 (en)
JPH01219014A (en) Production of dielectric material powder
JPS62123018A (en) Production of ferroelectric powder
JPS6272556A (en) Manufacture of fine polycrystal mgal2o4 spinel
JPH03279216A (en) Production of perovskite type oxide
JPH06100364A (en) Production of lead titanate zirconate-based high density ceramic
JPH0524863B2 (en)
JPH05319894A (en) Easily sinterable powder for microwave dielectric
JPH0624975B2 (en) Method for producing titanate powder
JPS62138354A (en) Manufacture of readily sinterable lead-containing oxide powder
KR100492935B1 (en) Low temperature sintering of piezoelectric element
JPH11302074A (en) Production of compound oxide sintered body
JP2540639B2 (en) Method for manufacturing bismuth-based superconductor
JPH08337423A (en) Production of oxide piezoelectric material
JPH09235667A (en) Sputtering target for forming ferroelectric film and its production
JPS62143826A (en) Production of composite perovskite type compound