JPS6163530A - Production of hard magnetic material - Google Patents

Production of hard magnetic material

Info

Publication number
JPS6163530A
JPS6163530A JP18478384A JP18478384A JPS6163530A JP S6163530 A JPS6163530 A JP S6163530A JP 18478384 A JP18478384 A JP 18478384A JP 18478384 A JP18478384 A JP 18478384A JP S6163530 A JPS6163530 A JP S6163530A
Authority
JP
Japan
Prior art keywords
liquid
sro
magnetic material
hard magnetic
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18478384A
Other languages
Japanese (ja)
Other versions
JPH025691B2 (en
Inventor
Kenji Morinaga
健次 森永
Tsutomu Yanagase
柳ケ瀬 勉
Kenichi Takagi
研一 高木
Yoshikazu Kondo
近藤 嘉一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP18478384A priority Critical patent/JPS6163530A/en
Publication of JPS6163530A publication Critical patent/JPS6163530A/en
Publication of JPH025691B2 publication Critical patent/JPH025691B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a hard magnetic material having extremely high coercivity, easily, by melting an SrO-Fe2O3 oxide, vitrifying the oxide by quenching with a liquid, and crystallizing the glass by keeping at a specific temperature for a specific time. CONSTITUTION:An SrO-Fe2O3 oxide is melted, and the molten liquid is vitrified by quenching with a liquid at a cooling rate of 10<2>-10<8> deg.C/sec. The glass is crystallized by maintaining at 450-1200 deg.C for 1 musec-200hr to separate fine crystals of SrO.6Fe2O3. A hard magnetic material having extremely high coercivity can be produced by this method. The liquid-quenching of the molten oxide can be carried out effectively e.g. by spraying the molten oxide toward a substrate having relatively high thermal conductivity, or by blasting nonreducing gas against the liquid dripped to a rotary member, etc. The above oxide used as the raw material is preferably composed of about 40-80mol% Fe2O3, about 20-60% SiO, and if necessary, about <=10% Sm2O3, etc. SrO.6F2O3 crystals having an average particle diameter of 90-2,000Angstrom can be precipitated by the above procedure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は硬質磁性材料の製造法に関し、より詳し、くは
ガラス結晶化法による、保磁力の極めて高い硬質磁性材
料の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a hard magnetic material, and more particularly, to a method for producing a hard magnetic material having an extremely high coercive force by a glass crystallization method.

〔従来の技術〕[Conventional technology]

従来永久磁石は、外部から電気エネルギーを供給せずに
安定した磁界!発生させる材料として小型の発電機、モ
ータ、スピーカ、計測器、治具、リレー等にしばしば用
いられている。
Conventional permanent magnets have a stable magnetic field without supplying electrical energy from outside! The material that generates it is often used in small generators, motors, speakers, measuring instruments, jigs, relays, etc.

永久磁石用材料は上記用途からしても残留磁束密度(磁
化0)強さ)と、保磁力が大きいものが望まれ、種々の
研究がなされて米ている。
Materials for permanent magnets are desired to have high residual magnetic flux density (magnetization 0 strength) and coercive force for the above-mentioned purposes, and various studies are being conducted.

残留磁束密度!向上させる手段としては、基本的に、結
晶粒を整粒化して容易磁化軸の方向!そろえる方法と、
磁場冷却する事によって一軸結晶磁気異方性を付与する
方法の二つの方法がある。
Residual magnetic flux density! Basically, as a means to improve it, the direction of the easy magnetization axis is adjusted by arranging the crystal grains! How to arrange it and
There are two methods of imparting uniaxial magnetocrystalline anisotropy by cooling in a magnetic field.

一方保磁力を高める手段としては、格子変態。On the other hand, lattice transformation is a means to increase coercive force.

析出硬化、規則格子の形成等により内部応力を大きくし
て磁壁移動!困難にする方法と、もう一つには一軸結晶
磁気異方性エネルギーの大きい強磁性体7選んでこれt
単磁区微粒子化し、磁化過程2回転磁化のみによって行
わしめるようC二する方法がある。
Precipitation hardening, formation of a regular lattice, etc. increase internal stress and cause domain wall movement! One method is to make it difficult, and the other is to select 7 ferromagnetic materials with large uniaxial magnetocrystalline anisotropy energy.
There is a method of making single magnetic domain fine grains and performing C2 so that the magnetization process is performed only by double-rotation magnetization.

そして近来、六方晶のマグネトブランバイト型結晶構造
f + ツBa0 ・6Fe203 、 SrO.6F
e203 、およびPbO,6Fe203は、■比重が
小さい°、◎電気抵抗が大きい、θ化学的に安定であっ
て、組成上Nt。
Recently, hexagonal magnetobrambite crystal structure f + Ba0 6Fe203, SrO. 6F
e203, PbO, and 6Fe203 are: ■ have a low specific gravity °, ◎ have a large electrical resistance, θ are chemically stable, and have a composition of Nt.

Co  Y含まず比較的簡単に製造出来るために価格が
安い、ことなどから、アルニコ磁石と共に、永久磁石材
料としてしばしば用いられている。
It is often used as a permanent magnet material along with alnico magnets because it does not contain CoY and can be produced relatively easily and is therefore inexpensive.

バリウムフェライトすなわちBa0・5F’、2o3等
が優れた永久磁石材料となり得る一つの大きな原因は、
C軸方向を磁化容易方向とする一軸結晶磁気異方性エネ
ルギーが大きいため磁化反転に要する磁界強度が大きく
なり、それが保磁力の上昇につながるからである。
One major reason why barium ferrite, such as Ba0.5F', 2o3, etc., can be an excellent permanent magnet material is that
This is because the uniaxial magnetocrystalline anisotropy energy with the C-axis direction as the direction of easy magnetization is large, so the magnetic field strength required for magnetization reversal becomes large, which leads to an increase in coercive force.

そこで、BaO・6Fe203  等の−#l結晶磁気
異方  ・性エネルギーの大きい強磁性体を単磁区微粒
子化して磁化過程を回転磁化のみによって行わしめる事
により、高保磁力磁性材料を得る研究が従来から多くな
されている。これらは例えばC1B、 Me e 。
Therefore, research has been carried out to obtain high coercive force magnetic materials by turning ferromagnetic materials with -#l magnetocrystalline anisotropy and high sexual energy, such as BaO.6Fe203, into single-domain fine particles and performing the magnetization process only by rotational magnetization. A lot has been done. These are for example C1B, Me e.

J、 C1Jeschke : J、Appl、 Ph
ys、vol 34  & 4<1963>P1271
やB、 T、 8hirk、 W、 R,Buesse
m: J、Am、Caram、  8oci、 vol
 5344<1970>P】92 等の文献に見ること
が出来る。
J, C1Jeschke: J, Appl, Ph
ys, vol 34 &4<1963>P1271
Ya B, T, 8hirk, W, R, Buesse
m: J, Am, Caram, 8oci, vol.
5344<1970>P]92.

またガラス結晶化法については、例えば小池・入床: 
セ−y ミックスvol 18&10 <1983> 
P2S5に記載されているが、この場合、ガラス形成酸
化物(Network Formar)としてB2O3
が添加さ扛ている。
Regarding the glass crystallization method, for example, Koike and Iruto:
Se-y mix vol 18 & 10 <1983>
P2S5, but in this case, B2O3 is used as the glass-forming oxide (Network Forma).
is added.

一方、w、HoMeiklejohn、 Q P、Be
an : Phy、 Rev。
On the other hand, w, HoMeiklejohn, Q P, Be
an: Phy, Rev.

vol 105 A3 <1957> B9O4には1
表面ン薄く酸化したCO微粒子!磁場中で77°K ま
で冷却し、た時、M−Hループが非対称になる事が記載
されている。
vol 105 A3 <1957> 1 for B9O4
CO particles with thin oxidation on the surface! It has been described that the M-H loop becomes asymmetric when cooled to 77°K in a magnetic field.

この現象は1強磁性体のスピンと反強磁性体のスピンと
の交換相互作用によって生じるもので、交換異方性とし
て知られている。
This phenomenon is caused by exchange interaction between the spins of a ferromagnetic material and the spins of an antiferromagnetic material, and is known as exchange anisotropy.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

従って、BaO・6Fe203等の一軸結晶磁気異方性
エネルギーの大きい強磁性体のサイズ!制御して単磁区
微粒子サイズとし、更に反強磁性体と共存せしめれば、
前述の交換相互作用ζ:より、従来の強磁性単磁区微粒
子が有する保磁力以上の保磁力tもった硬質磁性材料の
開発が期待できると考えられる。
Therefore, the size of ferromagnetic materials such as BaO・6Fe203 with large uniaxial crystal magnetic anisotropy energy! If we control the single-domain fine particle size and coexist with antiferromagnets,
Based on the above-mentioned exchange interaction ζ, it is thought that we can expect the development of a hard magnetic material having a coercive force t greater than that of conventional ferromagnetic single-domain fine particles.

ところが、従来のガラス結晶化法による強磁性微粒子の
製造法では、ガラス製造時ζ;ガラス形成酸化物として
多量のB2O3″4r:添即するため、結晶化の際にB
2O3′%:含む常磁性相が析出する事を避けられなか
った。そしてこの常磁性相の存在のために結晶化による
析出相ン強磁性相と反強磁性相0)2相に制御する事が
出来ず、前述の交換相互作用!期待し得ないという問題
点があった。
However, in the conventional glass crystallization method for producing ferromagnetic particles, a large amount of B2O3'4r is added as a glass-forming oxide during glass production.
2O3'%: Precipitation of the paramagnetic phase containing 2O3'% was unavoidable. Due to the existence of this paramagnetic phase, it is not possible to control the precipitation phase by crystallization into two phases: a ferromagnetic phase and an antiferromagnetic phase, resulting in the above-mentioned exchange interaction! The problem was that it was not what we expected.

しかし、B2O3等のガラス形成酸化物を含まないFe
2O3’t’ベースとしたBaO(8ro、 pbo)
 −F e 203系その他の酸化物は、ガラス化が極
めて困難であるという問題点があった。
However, Fe without glass-forming oxides such as B2O3
BaO (8ro, pbo) based on 2O3't'
-Fe 203-based oxides and other oxides have a problem in that they are extremely difficult to vitrify.

そこで本発明者等は、種々の実験及び考察の結果Ba0
 ・6Fe203. SrO・6Fe203およびPb
o * 6 Fe 203の王者中、最も一軸結晶磁気
異方性エネルギーが大きいフェリ磁性相であるSrO・
6Fe2O3、もしくは更に反強磁性相としてのSm2
O3・Fe2O3等と!液体急冷法によってガラス化し
た後一定の条件下で結晶化する事によって析出させる事
に成功し5本発明を完成するに到った。
Therefore, as a result of various experiments and considerations, the present inventors found that Ba0
・6Fe203. SrO・6Fe203 and Pb
o * 6 Among the champions of Fe 203, SrO, which is a ferrimagnetic phase with the largest uniaxial magnetocrystalline anisotropy energy,
6Fe2O3 or even Sm2 as an antiferromagnetic phase
With O3, Fe2O3, etc.! After vitrification using a liquid quenching method, they succeeded in precipitating the crystallization under certain conditions, completing the present invention.

〔本発明の目的〕[Object of the present invention]

本発明の目的は、酸化物系硬質磁性材料中で最も高い保
磁力を有する硬質磁性材料の製造?E’P提供するにあ
る。
The purpose of the present invention is to produce a hard magnetic material having the highest coercive force among oxide-based hard magnetic materials. E'P provides.

本発明の他の目的はガラス作製時においてガラス形成酸
化物としての8203 ’l添加しないで5rO−Fe
203系酸化物ガラス!作製し、該ガラスの結晶化によ
る析出相?、常磁性相を含まない、強磁性相、もしくは
強磁性相及び反強磁性相の二相に制御した硬質磁性材料
の製造法ビ提供するにある。
Another object of the present invention is to eliminate 5rO-Fe without adding 8203'l as a glass-forming oxide during glass production.
203 series oxide glass! Precipitated phase due to crystallization of the glass? The present invention provides a method for producing a hard magnetic material having a ferromagnetic phase or two phases of a ferromagnetic phase and an antiferromagnetic phase without containing a paramagnetic phase.

〔本発明の構成〕[Configuration of the present invention]

本発明C:より。 Invention C: From.

SrOFe2O3系酸化物を加熱溶融して液体とし、つ
いでこの液体t】02℃/s e c乃至108℃/s
ee ノ冷却速度で液体急冷法により急冷してガラス化
し、該ガラス全450℃乃至1200℃に] fi B
eC乃至200hr保定して結晶化することにより、微
細なSrO・6Fe203 ’!a’析出させることt
特徴とする硬質磁性材料の製造法、及び S rO−Fe 203−8mzOy系酸化物’gm熱
SMLで液体とし、ついでこの液体!102°(7’s
 e c乃至10’C〆seaの冷却速度で液体急冷法
により急冷し7てガラス化し、該ガラス全450℃乃至
1200℃に3 )LSee乃至zoohr保定して結
晶化することにより、微細なSrO ・6Fe2O3と
Sm2O3・Fe 203と全析出させることを特徴と
する硬質磁性材料の製造法が提供される。
The SrOFe2O3-based oxide is heated and melted to become a liquid, and then this liquid t]02℃/s e c to 108℃/s
Vitrification by rapid cooling using a liquid quenching method at a cooling rate of ee to a total temperature of 450°C to 1200°C]
By holding and crystallizing eC for 200 hours, fine SrO.6Fe203'! a' to precipitate t
The manufacturing method of the hard magnetic material, which is characterized by S rO-Fe 203-8mzOy-based oxide'gm, is made into a liquid by thermal SML, and then this liquid! 102° (7's
The glass is rapidly cooled by a liquid quenching method at a cooling rate of e c to 10' C〆sea, and then vitrified, and the glass is crystallized while maintaining the glass at a temperature of 450° C. to 1200° C.3) to form fine SrO. A method for producing a hard magnetic material is provided, which is characterized in that 6Fe2O3 and Sm2O3.Fe 203 are completely precipitated.

原料 出発原料である酸化物について以下に詳述する。material The oxide which is the starting material will be explained in detail below.

まづFa 203  であるが、この酸化物形態は急冷
直前の状態!云うのであって、それ以前の段階。
First of all, it is Fa 203, but this oxide form is in the state just before rapid cooling! I mean, it's the stage before that.

例えば溶融前の粉末状態ではpe + FeQ FC3
04r     ’Fe3O4,FeCJ!2  等或
いはこれらの同一部の水和物であってもよい。けだし、
これらの物質は大気中で加熱溶融される際、SやCIA
等の不純物は揮散除去され、 Fe酸化物はすべて酸素
結合比の最も高いFe2O3の形態になってしまうから
である。
For example, in the powder state before melting, pe + FeQ FC3
04r 'Fe3O4, FeCJ! 2 or the same parts thereof may be used. Barefoot,
When these substances are heated and melted in the atmosphere, S and CIA
This is because impurities such as .

従って、所謂鉄源としては格別限定されたものは必要な
い。
Therefore, there is no need for a particularly limited iron source.

ついで、SrOについても、 Fe2O3と同様に急冷
直前n状態がSrOであればよく、それ以前の段階テハ
sr、 SrSO4,8rCj12. SrCO3等で
あってもよい。
Next, with regard to SrO, as with Fe2O3, the n state just before quenching may be SrO, and the previous stages Tesr, SrSO4, 8rCj12. It may also be SrCO3 or the like.

理由はFe 203の場合と同じである。The reason is the same as in the case of Fe203.

また、添加剤であるSm工Oyについては、これは一般
的にはSm2O3であるが、最も安定と云われる8m2
03の他に5r1101.5±2等の酸化物が考えられ
るので、ナマリウム酸化物¥Smxo yと表わした。
Regarding the additive SmOy, it is generally Sm2O3, but 8m2 is said to be the most stable.
In addition to 03, other oxides such as 5r1101.5±2 can be considered, so they are expressed as Namarium oxide\Smxo y.

なお、添加剤はSm酸化物の他に、La、 Bu、 G
a。
In addition to Sm oxide, additives include La, Bu, and G.
a.

Ho、 Er  等の希土類元素の酸化物が有効である
Oxides of rare earth elements such as Ho and Er are effective.

これらの出発原料は後述する適切なガラス体における成
分比ン保つことさえ可能であれば、粉末状、顆粒状、塊
状、薄片状、泥状等のいづnの形状でもよく、特に粉末
状、顆粒状に限定されるものではない。
These starting materials may be in the form of powder, granules, lumps, flakes, slurry, etc., as long as it is possible to maintain the component ratio in an appropriate glass body, which will be described later. It is not limited to the following.

成分比 本発明において、ガラス形成酸化物全添加せずガラス化
容易成分7選んでガラス化?図る見地よO,成分比が特
に重要である。
Component ratio In the present invention, can we select seven components that are easy to vitrify without adding any glass-forming oxides? From a practical standpoint, the component ratio is particularly important.

本発明では微細なSrO・6Fe203 ’に析串させ
る事が不可欠であるため、成分比もmoj+%で表示す
るのが好都合である。従って本発明では成分比はすべて
mo42%で表示する。
In the present invention, since it is essential to deposit on fine SrO.6Fe203', it is convenient to express the component ratio in moj+%. Therefore, in the present invention, all component ratios are expressed as mo42%.

本発明における適切な成分比(ガラス体の成分比、以下
同様)は次のとお11である。
The appropriate component ratio (component ratio of the glass body, hereinafter the same) in the present invention is as follows.

すなわち、 F e 203  ・・・・・・・・・・・・・・・・
・・・・・・・・ 40〜80mof%SrO・・・・
・・・・・・・・・・・・・・・・・・・・ 20〜6
0mon%E3rnxOy  ・・−・・・・・・・・
・・・・・・・・・・・・ lOmo!%以下である。
That is, F e 203 ・・・・・・・・・・・・・・・
・・・・・・・・・ 40~80mof%SrO・・・・
・・・・・・・・・・・・・・・・・・・・・ 20~6
0mon%E3rnxOy・・・・・・・・・・・・
・・・・・・・・・・・・ lOmo! % or less.

上記成分比7選ぶ理由は次のとおりである。The reason for choosing the above component ratio of 7 is as follows.

Fe2O3は40 mol!%を割ると、SrO・6F
e203が後工程である結晶化熱処理において析出しな
いからであlj、またFe2O3が80 mallダを
超えると現実的な冷却速度(現状では速くても約101
2°C/+1eO)全超える超高速の冷却速度(例えば
101“(::/5ee)でなければガラス化しないよ
うになるからである。
Fe2O3 is 40 mol! Dividing %, SrO・6F
This is because e203 does not precipitate in the subsequent crystallization heat treatment, and when Fe2O3 exceeds 80 malla, the cooling rate is realistic (at present, it is about 101 mm at most).
This is because vitrification will not occur unless the cooling rate is extremely high (for example, 101" (::/5ee)) exceeding 2°C/+1eO.

SrOはFe2O3との組合せ上、同じ理由で20〜5
 Q mol!%が望ましい。
SrO is 20-5 for the same reason in combination with Fe2O3.
Q mol! % is desirable.

5inxOyは、上記5rO−Fe203に対する添那
物の形で把え、l Omol!%以下が望ましい。10
 mof%?超えると、ガラス化が困難にな11、また
製品である硬質磁性材料の磁気特性′5r−損なうから
である。
5inxOy can be understood as a supplement to the above 5rO-Fe203, and l Omol! % or less is desirable. 10
mof%? If it exceeds this, it becomes difficult to vitrify11, and the magnetic properties of the hard magnetic material used as the product are impaired.

加熱溶融 刀口熱溶融手段としては、まづ坩堝や溶解炉で電気加熱
またはガス加熱する方圧が考えられ、実験室的には白金
坩堝中で電気抵抗加熱する方法がある。工業的な溶解炉
加熱では炉壁材料(例えばマグネシア、アルミナ、ムラ
イト系耐火物、マグネシウム−クロメート、クロミウム
ーマグネシア等の耐火物)からの汚染ン完全に防ぐ事が
困難であり、かつ原料が酸化物である故誘導加熱法が使
えない等の理由でこの方法を採用する場合には若干の工
夫!要する。
Heat melting As a means for hot melting, electrical heating or gas heating in a crucible or melting furnace can be considered, and in the laboratory, there is a method of electrical resistance heating in a platinum crucible. In industrial melting furnace heating, it is difficult to completely prevent contaminants from furnace wall materials (e.g. refractories such as magnesia, alumina, mullite-based refractories, magnesium-chromate, chromium-magnesia, etc.), and the raw materials are oxidized. If you are using this method for reasons such as the fact that induction heating cannot be used because of the nature of the product, there are some ingenuity! It takes.

そこで容器を用いないで原料ビ加熱溶融する手段を種々
検討した結果溶射fT:’v用いろことにより極めて好
結果が得られる事が判った。
Therefore, after investigating various means for heating and melting the raw materials without using a container, it was found that very good results could be obtained by using thermal spraying fT:'v.

ここに溶射法とは、例えば酸素アセチレン等のフレーム
溶射法及びプラズマジェットによるプラズマ溶射決算!
含む概念である。
Thermal spraying methods here include flame spraying using oxygen acetylene, etc., and plasma spraying using plasma jets!
It is a concept that includes

いづれにせよ、被加熱物(原料)は既に酸化物であるの
で、特に雰囲気全調整する事なく空気中で溶射を行なえ
るので都合が良い。
In any case, since the material to be heated (raw material) is already an oxide, thermal spraying can be carried out in air without having to make any particular adjustments to the atmosphere, which is convenient.

酸化物の溶融状態は、高熱ガス中における微細な小滴(
液体)もしくは気体(特にプラズマ溶射の場合)である
ものと思われる。
The molten state of the oxide is formed by fine droplets (
It may be a liquid (liquid) or a gas (particularly in the case of plasma spraying).

なお、酸素アセチレン炎によるフレーム溶射の場合、ガ
ス雰囲気が、時に還元性になる場合があり、これは好ま
しくないので、一般に02過剰の状態(酸化炎)に保つ
ようにする事が重要である。
In the case of flame spraying using an oxyacetylene flame, the gas atmosphere may sometimes become reducing, which is not preferable, so it is generally important to maintain a state of excess 02 (oxidizing flame).

また前述の坩堝等の耐熱容器による服熱溶融沃や、溶射
法の場合のいづれにおいても、原料0〕サイジング、ミ
キシング、成分比調整等Q〕ため、中間処理として再加
熱乃至予備即熱等の処理を行なう場合がある。
In addition, in both the above-mentioned heat-melting process using a heat-resistant container such as a crucible, and in the case of thermal spraying, intermediate treatments such as reheating or pre-heating are necessary because raw materials (0) sizing, mixing, component ratio adjustment, etc. (Q) are used. Processing may be performed.

急冷 一旦加熱溶融した酸化物液体は基板もしくは回転体に衝
突させられ、急速に冷却される。
Rapid Cooling Once heated and melted, the oxide liquid collides with a substrate or a rotating body and is rapidly cooled.

本発明において重要なのは、得らnる一定の冷却速度範
囲と、ガラス化酸化物の収率の二点である。
Two important points in the present invention are the constant cooling rate range that can be obtained and the yield of vitrified oxide.

冷却速度範囲はガラス化を可能ならしめる範囲、すなわ
ちlO乃至10℃7’s e cである必要がある。
The cooling rate range needs to be within a range that allows vitrification, ie 1O to 10°C 7'sec.

本発明ではガラス形成物質を加えないので、冷却速度が
特に重要になる。
Since no glass-forming substances are added in the present invention, cooling rate is particularly important.

しかし、ガラス化後の成分比全選択する事C:よりガラ
ス形成物質を加えないでも、実用的な冷却速度範囲でガ
ラス化が可能となった。冷却速度の上限は、可能ならば
108℃/s e c  よりも速ければ速い程ガラス
化自体は容易となるが、現実にこfl’に工業的に実施
する事は困難である。そのため、本発明では冷却速度の
上限ン】θ℃/sec  とした。
However, by selecting all the component ratios after vitrification (C), vitrification became possible within a practical cooling rate range without adding any glass-forming substances. As for the upper limit of the cooling rate, if possible, the faster the cooling rate is faster than 108° C./sec, the easier the vitrification itself will be, but in reality, it is difficult to implement this on an industrial scale. Therefore, in the present invention, the upper limit of the cooling rate is set to θ°C/sec.

また冷却速度下限は少くとも102℃/sec  lユ
達しなければガラス化出来ないためである。
Further, the lower limit of the cooling rate is because vitrification cannot be achieved unless the cooling rate reaches at least 102° C./sec.

本発明の冷却速度範囲でガラス化が容易で、かつ微細な
SrO・6Fe203が後の結晶化工程において充分に
析出する様にするためには、次のような成分比を選ばね
ばならない。
In order to facilitate vitrification within the cooling rate range of the present invention and to ensure that fine SrO.6Fe203 is sufficiently precipitated in the subsequent crystallization step, the following component ratio must be selected.

第1図は、SrO−Fe203系酸化物の状態図である
FIG. 1 is a phase diagram of SrO-Fe203-based oxide.

第1図において、ガラス化領域(r)は液相線上B。In FIG. 1, the vitrified region (r) is B above the liquidus line.

C,Dによって囲まれた領域であり、ガラス化領域(I
I)は同じく液相線上F’、G、Hによって囲まれた領
域である。これらの二つのガラス化領域の存在は実験上
確かめられている。
This is the area surrounded by C and D, and the vitrified area (I
I) is also a region surrounded by F', G, and H on the liquidus line. The existence of these two vitrified regions has been experimentally confirmed.

本発明では繰返し述べるようにAAを通る垂線で表わさ
れるSrO・6 F e 203が析出する事が必要で
あるが、前述した従来技術ではガラス化に経ずしてSr
O・6Fe203 k析出しようとしても、望ましい粒
径のSrO・5 Fe 203が得らn−ない事が、本
発明者等の実験によって明らかになった。
In the present invention, it is necessary to precipitate SrO.6 Fe 203 represented by a perpendicular line passing through AA, as described repeatedly, but in the prior art described above, SrO.6 Fe 203 is precipitated without undergoing vitrification.
Experiments conducted by the present inventors have revealed that even if an attempt is made to precipitate O.6Fe203k, SrO.5Fe203 having the desired particle size cannot be obtained.

そこで種々の実験及び考察Q)結果、ガラス化ン経て望
ましい微細なSrO・6Fe203が析出する条件とし
てB点とD点の間すなわちSrOのIn02%として2
0〜60%の範囲ン選ぶ必要があることが判明した。
Therefore, as a result of various experiments and considerations Q), the conditions for the precipitation of desirable fine SrO 6Fe203 through vitrification are between points B and D, that is, 2 as In02% of SrO.
It has been found that it is necessary to choose a range between 0 and 60%.

なお、ガラス化領域(U)も存在するが、この領域でL
C3SrO・2Fe203 +S rFe03−1が析
出し、SrO・6Fe203が析出しないので好ましく
ない。
Note that there is also a vitrified region (U), but in this region L
C3SrO.2Fe203 +S rFe03-1 precipitates and SrO.6Fe203 does not precipitate, which is not preferable.

本発明で最も望ましい条件は、3rOmojL%が35
〜45の範囲である。この範囲では冷却速度もそれ程高
くなくてよく (約102710”°C/5ee)、し
かも望ましい微細なSrO・6Fe203が析出し易い
という特徴がある。
The most desirable condition in the present invention is that 3rOmojL% is 35
-45 range. In this range, the cooling rate does not need to be so high (approximately 102710"°C/5ee), and the desirable fine SrO.6Fe203 is easily precipitated.

なおガラス化の確認はX線回折法によるハローパターン
認識ないし電顕による制限視野回折像観察によって行っ
た。
The vitrification was confirmed by halo pattern recognition using X-ray diffraction or selected area diffraction image observation using an electron microscope.

またもう一つの手段としては、メスバウアー効果全測定
してガラス体の常磁性を確認する事によって行うことも
出来る。特に磁気的性質を製品に求める見地からすると
、この方法が極めて有効である。
Another method is to confirm the paramagnetism of the glass body by measuring the entire Mössbauer effect. This method is extremely effective, especially from the standpoint of requiring magnetic properties in products.

ところで本発明C二おけるガラス(ガラス体、ガラス化
)とは、全く結晶質(規則性のある原子配列)!含まな
い完全な非晶質体のみン指しているのではなく、X線光
学的には規則性Z示す場合であっでも磁気的に常磁性を
示す状態例えば微結晶状態!も含むものである。
By the way, the glass (glass body, vitrification) in the present invention C2 is completely crystalline (regular atomic arrangement)! I am not referring only to completely amorphous bodies that do not contain any amorphous substances, but states that exhibit paramagnetism magnetically even if they exhibit regularity Z from an X-ray optical perspective, for example, a microcrystalline state! It also includes.

以下に具体的な急冷手段について補足する。The specific quenching means will be supplemented below.

例えばフレーム溶射法の場合、溶融酸化物微粒子ン含む
高温ガス!出来るだけ絞って厚さ5〜10n程度の銅製
基板でなるターゲットに溶射し、薄層状ガラス体を得る
事が出来る。
For example, in the case of flame spraying, high-temperature gas containing molten oxide particles! A thin layered glass body can be obtained by thermal spraying onto a target made of a copper substrate with a thickness of about 5 to 10 nm by narrowing it down as much as possible.

この場合、ターゲットは熱伝導性が高い事、一定の熱容
量Z有することが必要である。
In this case, the target needs to have high thermal conductivity and a certain heat capacity Z.

発明者等の行った実験では、ガラス体はターゲットに付
着せず、また付、t L、でも容易に剥離し、後の工程
に好都合であった。
In experiments conducted by the inventors, the glass body did not adhere to the target, and was easily peeled off even after deposition, which was convenient for subsequent steps.

なお、ターゲット!回転ドラムにして、連続的にガラス
体を取り出すことも出来た。
In addition, target! It was also possible to use a rotating drum to take out glass bodies continuously.

また液体急冷法の他の手段としては、銅製ディスクまた
はドラムなどの高速回転体に液体(溶融酸化物)!高圧
の非還元性ガス(空気pN2等またはAr 、 He 
 等の不活性ガス)で吹き付け、粉末状ガラス体を得る
方法その他がある。
Another method of liquid quenching is to use a high-speed rotating body such as a copper disk or drum to cool the liquid (molten oxide)! High pressure non-reducing gas (air pN2 etc. or Ar, He
There are other methods such as spraying with an inert gas (e.g., inert gas) to obtain a powdered glass body.

結晶化 結晶化処理は、 (1)炉中等温処理法 (2)  レーザー照射法 (3)赤外線照射法 (4)抵抗卯熱茫 等によって行なう。crystallization The crystallization process is (1) Furnace mesothermal treatment method (2) Laser irradiation method (3) Infrared irradiation method (4) Resistance bunny fever etc.

(])は比較的長い保定時間で結晶化するのに適し、(
乃は短時間高エネルギー密度で結晶化させるのに適して
いる。(3)は(2)に比してビーム全収斂し難いので
、高エネルギー密度が得られない。(4)はガラス体全
予め成形しなければならないので、面倒である。
(]) is suitable for crystallization with a relatively long retention time, and (
No is suitable for crystallization at high energy density for a short period of time. In (3), it is more difficult to fully converge the beam than in (2), so a high energy density cannot be obtained. (4) is troublesome because the entire glass body must be formed in advance.

従って当面(1)または(2ンが主流になろう。Therefore, (1) or (2) will be the mainstream for the time being.

結晶化のための保定温度は450 ”C乃至1200℃
の範囲がよく、望ましくは600℃乃至1000℃の範
囲が好適である。その理由は450 ’Cよりも低いと
結晶化に極めて長時間7要するからであIJ、1200
”(J−超えると結晶粒が粗大化するからである。
Holding temperature for crystallization is 450”C to 1200℃
The range is preferably from 600°C to 1000°C. The reason is that it takes a very long time to crystallize at temperatures lower than 450'C.IJ, 1200
(J-), this is because crystal grains become coarse.

結晶化のための熱処理保定時間は1μscc乃至200
hrの範囲がよい。
The heat treatment retention time for crystallization is 1 μscc to 200 μscc.
The hr range is good.

炉中加熱の場合望ましくは10 min乃至1ohrの
の範囲が好適である。
In the case of heating in a furnace, the preferred heating time is 10 min to 1 ohr.

範囲限定理由はレーザー照射1/IY用いても1μsc
c未満では安定した結晶化が望めないからであり。
The reason for the limited range is 1μsc even if laser irradiation is used at 1/IY.
This is because if it is less than c, stable crystallization cannot be expected.

−万比較的低温の炉中等温処理を行なう際、200hr
 y5−超えると結晶の粗大化が生じる傾向があり、ま
たエネルギーコストも炉外への熱放散によって高くなる
からである。
- 200 hours when performing thermal treatment in a relatively low temperature furnace
This is because if it exceeds y5-, the crystals tend to become coarser, and energy costs also increase due to heat dissipation outside the furnace.

なお1本発明においては、上記結晶化処理1;よって析
出したSrO・6Fe203の平均粒径が、90^乃至
2000大である事が重要である。
In the present invention, it is important that the average grain size of the SrO.6Fe203 precipitated in the crystallization treatment 1 is from 90 to 2000.

望ましくは150X乃至450λの範囲がよい。Preferably, the range is from 150X to 450λ.

限定理由は次の通りである。The reason for the limitation is as follows.

すなわち平均粒径が90Xに達しないと析出粒子は超常
磁性!示し1強磁性体としての特性を示さないからであ
り、また2oooiを超えると単磁区構造のスケール!
外れ、多磁区構造となり。
In other words, unless the average particle size reaches 90X, the precipitated particles are superparamagnetic! This is because it does not exhibit the characteristics of a ferromagnetic material, and if it exceeds 2oooi, it is on the scale of a single magnetic domain structure!
This results in a multi-domain structure.

磁壁!生じるので本発明効果が達成出来なくなるからで
ある。
Domain wall! This is because the effects of the present invention cannot be achieved because of this.

〔本発明の作用〕[Operation of the present invention]

先づ、少なくとも微細なSrO・6Fe203がガラス
体より晶出すると、極めて高い保磁力Z示すようになる
。その原因は前にも述べたようにC軸方向全磁化容易方
向とする一軸結晶磁気異方性エネルギーが大きくなるの
で磁化反転に要する磁界強度が大きくなり、かつガラス
状態から晶出した微細なSrO・6Fe203が単磁区
構造!もつために保磁力が極めて高くなるものである。
First, when at least fine SrO.6Fe203 crystallizes from the glass body, it exhibits an extremely high coercive force Z. The reason for this is that, as mentioned earlier, the uniaxial magnetocrystalline anisotropy energy in the C-axis direction, which is the easy direction of total magnetization, increases, so the magnetic field strength required for magnetization reversal increases, and the fine SrO crystallized from the glass state increases.・6Fe203 has a single domain structure! This makes the coercive force extremely high.

更に添加剤であるSm2O3・Fe2O3が同時析出す
るときは、これが反強磁性を示すため、 SrO・6F
e203との交換相互作用により、SrO・6Fe20
3の各単磁区!更に強固に磁気的に束縛し、回転を困難
にする。
Furthermore, when the additive Sm2O3/Fe2O3 is co-precipitated, it exhibits antiferromagnetism, so SrO/6F
Due to the exchange interaction with e203, SrO 6Fe20
3 each single magnetic domain! Furthermore, it is magnetically bound more firmly, making rotation difficult.

その結果、バリウムフェライトよりもより高い保磁力が
得られるのである。
As a result, it has a higher coercive force than barium ferrite.

以下に実施例により本発明を更に詳細に説明する。The present invention will be explained in more detail below using Examples.

〔実施例1〕 Fe2O3,SrCO3f用いてSrO謬40moj!
 %e Fe20Fe203−6O%となるように精秤
し、十分混合した後にCO2を除去するために白金ルヅ
ボで1500℃X1hr加熱溶融した。その溶融試料全
白金皿に流し出し冷却、粉砕後が→ス作製用試料とした
。こ(7J試料1Pt−Rh(30%)線を発熱体とし
たフィラメント上で少量溶融し、上部から高圧にガスで
高速回転体(Cuドラム)に吹き付けて約0.5111
の粉末状急冷ガラ1フ作った。
[Example 1] 40 moj of SrO using Fe2O3 and SrCO3f!
The mixture was accurately weighed so that %e Fe20Fe203-6O% was obtained, and after thorough mixing, it was heated and melted at 1500° C. for 1 hour in a platinum crucible to remove CO2. The molten sample was poured into an all-platinum plate, cooled, and crushed, which was used as a sample for making →. A small amount of this (7J sample 1 Pt-Rh (30%) wire) was melted on a filament using a heating element, and a high-pressure gas was blown from the top onto a high-speed rotating body (Cu drum) to give a temperature of about 0.5111.
I made one cup of powdered quenched glass.

このガラスを電気炉中で熱処理温度800℃、熱処理時
間1 hrで結晶化処理した。なお雰囲気は大気中であ
る。
This glass was crystallized in an electric furnace at a heat treatment temperature of 800° C. and a heat treatment time of 1 hr. Note that the atmosphere is atmospheric.

〔実施例2〕 成分比がSrO婁40 mo1%、 Fe2O3−57
3mai1%。
[Example 2] Component ratio: SrO 40 mo 1%, Fe2O3-57
3 mai 1%.

Sm2O3w 2 moj2 %  となるように試薬
全調合した他は実施例1と同様の製法に従った。
The same manufacturing method as in Example 1 was followed except that all the reagents were prepared so that Sm2O3w2moj2%.

〔実施例3〕 成分比が5rOx40 mail %、 Fe2O3x
56 moi% eSm203 w 4 moj2% 
となるように試料を調合した他は実施例1と同様の製法
に従った。
[Example 3] Component ratio is 5rOx40 mail%, Fe2O3x
56 moi% eSm203 w 4 moj2%
The same manufacturing method as in Example 1 was followed except that the sample was prepared as follows.

〔実施例4〕 成分比が5rO−40moIL%s Fe2O3−54
moIt%。
[Example 4] Component ratio is 5rO-40mol%s Fe2O3-54
moIt%.

Sm2O3w 6 m61%となるように試料全調合し
た他は実施例】と同様の製法に従った。
The same manufacturing method as in Example was followed except that all samples were prepared so that Sm2O3w6m was 61%.

〔実施例5〕 Fe2O3、SrCO3f用いて成分比がSrOm 4
0 mai1% e  Fe2Q3”” 55 mo1
%、 Sm2O3sw4 moJ!% トナルように精
秤し、十分混合した後、CO2’Ift除去するため1
500℃X1hr溶融した。その溶融試料!白金皿に流
し出し冷却粉砕後ガラス作製用試料とした。
[Example 5] Using Fe2O3 and SrCO3f, the component ratio was SrOm 4
0 mai1% e Fe2Q3"" 55 mo1
%, Sm2O3sw4 moJ! % Weigh accurately and mix thoroughly, then add 1 to remove CO2'Ift.
It was melted at 500°C for 1 hour. That molten sample! It was poured into a platinum plate, cooled, and ground to prepare a sample for glass production.

この試料を、アセチレン−酸素の混合ガスを用いた溶射
装置で厚み約5cmの回転αドラムに吹き付は薄板状の
急冷ガラス試料を作製り、た。熱処理方法は、実施例1
と同様の方法に従った。
This sample was sprayed onto a rotating α drum with a thickness of approximately 5 cm using a thermal spraying device using a mixed gas of acetylene and oxygen to prepare a thin plate-like rapidly cooled glass sample. The heat treatment method is as in Example 1.
A similar method was followed.

この急冷ガラスの製作法の特徴は、実施例1の方法にく
らべて非常に多量の試料が得られ、かつ作製した試料は
、実施例】と同様の性質!有する点である。
The feature of this quenched glass production method is that a much larger amount of samples can be obtained compared to the method of Example 1, and the produced samples have the same properties as Example 1! It is a point to have.

〔実施例6〕 実施例3において結晶化熱処理条件のみ’g1000℃
×α5 hrに変更したもの。
[Example 6] In Example 3, only the crystallization heat treatment conditions were 'g1000°C.
×α5 hr changed.

〔実施例7〕 実施例3において結晶化熱処理条件のみを600’CX
L6hr  に変更したもの。
[Example 7] In Example 3, only the crystallization heat treatment conditions were changed to 600'CX.
Changed to L6hr.

〔比較例]〕[Comparative example]

成分比がBaOm 40 moJR%* Fe20a−
40mol! % 。
The component ratio is BaOm 40 moJR%* Fe20a-
40mol! %.

B2O3−20mof%となるように試薬!調合した他
は実施例1と同様の方法に従った。
Reagent so that B2O3-20mof%! The same method as in Example 1 was followed except for the preparation.

〔比較例2〕 成分比がSrOw 40 mor1%、 Fe2O3x
40 no1% 。
[Comparative Example 2] Component ratio: SrOw 40 mol1%, Fe2O3x
40 no1%.

B2O3”” 20 m011%となるように試薬を調
合した他は実施例1の方圧に従った。
The general pressure of Example 1 was followed except that the reagents were prepared so that the B2O3""20 m011%.

〔比較例3〕 成分比がBaOm 40 mof%、 Fa203=m
60 mai1%。
[Comparative Example 3] Component ratio is BaOm 40 mof%, Fa203=m
60 mai1%.

となるように精秤し、十分混合した後3500℃X1h
r  加熱し溶融した。この溶融試料を徐冷結晶化させ
て磁化測定用試料とした。
Weigh accurately and mix thoroughly, then heat at 3500℃ for 1 hour.
r Heated and melted. This molten sample was slowly cooled and crystallized to obtain a sample for magnetization measurement.

この試料は、前述のもののように、まずガラス化させて
熱処理により微結晶を析出させたものではない。
This sample was not first vitrified and heat treated to precipitate microcrystals as described above.

以上の実施例及び比較例について測定した保磁力及び晶
出したSrO・6Fe2O3の粒径ya−第1表にまと
める。
The coercive force measured for the above Examples and Comparative Examples and the particle size ya of crystallized SrO.6Fe2O3 are summarized in Table 1.

第    1   表 8 rO−Fe 203−8m203  系結晶化ガラ
ス(7)保磁力Hcハ、SrO・6Fe203の粒径に
依存し、ある粒径テmaximumをとる。
Table 1: rO-Fe 203-8m203-based crystallized glass (7) Coercive force Hc depends on the grain size of SrO.6Fe203, and takes a certain maximum grain size.

8m203 ノ存在は、SrOFe2O3Sm2O3系
結晶化ガラスの保磁力!上昇させる。本発明で得られる
最高の保磁力の実例は、実施例3,5,6.7の、40
 S ro + 56 F e 203°45m203
 ノ結m 化if Q /C1,オイてSrO+ 6F
e203の粒’l 260X+=制御シタ時(800’
CX lhr、  I Q 00℃X0.5hr、60
0℃x 1.6 hr熱処理)で7000乃至7100
0eであった。
The existence of 8m203 is the coercive force of SrOFe2O3Sm2O3-based crystallized glass! raise. Examples of the highest coercive force obtained with the present invention are Examples 3, 5, and 6.7, 40
S ro + 56 F e 203°45m203
If Q/C1, SrO+ 6F
e203 grain'l 260X+= control shift (800'
CX lhr, IQ 00℃X0.5hr, 60
7000 to 7100 at 0℃ x 1.6 hr heat treatment)
It was 0e.

なお、レーザー照射により、極く短時間結晶化熱処理し
たものも同等の保磁カン示した。
In addition, the same coercivity was obtained even when the sample was subjected to a very short crystallization heat treatment by laser irradiation.

いづれにせよ本発明実施例結果はすべて比較例に比して
高い保磁力!示している。
In any case, the results of the examples of the present invention all have higher coercive force than the comparative examples! It shows.

〔本発明の効果〕[Effects of the present invention]

本発明により、前述の目的のすべてが達成される。すな
わち保磁力の極めて高い硬質磁性材料が得られる。しか
も本発明は工業化が容易であるという特徴!有している
The invention achieves all of the above objectives. In other words, a hard magnetic material with extremely high coercive force can be obtained. Moreover, the present invention is characterized by easy industrialization! have.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は5rO−Fe203系酸化物の状態図である。 FIG. 1 is a phase diagram of 5rO-Fe203-based oxide.

Claims (8)

【特許請求の範囲】[Claims] (1)SrO−Fe_2O_3系酸化物を加熱溶融して
液体とし、ついでこの液体を10^2℃/sec乃至1
0^8℃/secの冷却速度で液体急冷法により急冷し
てガラス化し、該ガラスを450℃乃至1200℃に1
μsec乃至200hr保定して結晶化することにより
、微細なSrO・6Fe_2O_3を析出させることを
特徴とする硬質磁性材料の製造法。
(1) SrO-Fe_2O_3-based oxide is heated and melted to make it a liquid, and then this liquid is heated at 10^2℃/sec to 1
Vitrification is achieved by rapid cooling using a liquid quenching method at a cooling rate of 0^8°C/sec, and the glass is heated from 450°C to 1200°C for 1
A method for producing a hard magnetic material, characterized in that fine SrO.6Fe_2O_3 is precipitated by crystallization while holding for μsec to 200 hr.
(2)液体急冷法が、比較的熱伝導性の高い基板に溶融
酸化物を溶射する溶射法である特許請求の範囲第1項に
記載の硬質磁性材料の製造法。
(2) The method for producing a hard magnetic material according to claim 1, wherein the liquid quenching method is a thermal spraying method in which molten oxide is thermally sprayed onto a substrate having relatively high thermal conductivity.
(3)液体急冷法が、回転体上に落下させた液体に非還
元性ガスを吹きつけて冷却する液体急冷法である特許請
求の範囲第1項に記載の硬質磁性材料の製造法。
(3) The method for producing a hard magnetic material according to claim 1, wherein the liquid quenching method is a liquid quenching method in which a liquid dropped onto a rotating body is cooled by spraying a non-reducing gas onto the liquid.
(4)析出したSrO・6Fe_2O_3の平均粒径が
90Å乃至2000Åである特許請求の範囲第1項乃至
第3項に記載の硬質磁性材料の製造法。
(4) The method for producing a hard magnetic material according to claims 1 to 3, wherein the average particle diameter of the precipitated SrO.6Fe_2O_3 is 90 Å to 2000 Å.
(5)SrO−Fe_2O_3−SmxOy系酸化物を
加熱溶融して液体とし、ついでこの液体を10^2℃/
sec乃至10^8℃/secの冷却速度で液体急冷法
により急冷してガラス化し、該ガラスを450℃乃至1
200℃に1μsec乃至200hr保定して結晶化す
ることにより、微細なSrO・6Fe_2O_3とSm
_2O_3・Fe_2O_3とを析出させることを特徴
とする硬質磁性材料の製造法。
(5) Heat and melt SrO-Fe_2O_3-SmxOy-based oxide to make it a liquid, and then heat this liquid at 10^2℃/
The glass is rapidly cooled and vitrified by a liquid quenching method at a cooling rate of sec to 10^8 °C/sec, and the glass is heated to 450 °C to 1
By crystallizing at 200℃ for 1μsec to 200hr, fine SrO・6Fe_2O_3 and Sm
A method for producing a hard magnetic material, characterized by precipitating _2O_3 and Fe_2O_3.
(6)液体急冷法が、比較的熱伝導性の高い基板に溶融
酸化物を溶射する溶射法である特許請求の範囲第5項に
記載の硬質磁性材料の製造法。
(6) The method for producing a hard magnetic material according to claim 5, wherein the liquid quenching method is a thermal spraying method in which molten oxide is thermally sprayed onto a substrate having relatively high thermal conductivity.
(7)液体急冷法が、回転体上に落下させた液体に非還
元性ガスを吹きつけて冷却する液体急冷法である特許請
求の範囲第5項に記載の硬質磁性材料の製造法。
(7) The method for producing a hard magnetic material according to claim 5, wherein the liquid quenching method is a liquid quenching method in which a liquid dropped onto a rotating body is cooled by spraying a non-reducing gas onto the liquid.
(8)析出したSrO・6Fe_2O_3の平均粒径が
90Å乃至2000Åである特許請求の範囲第5項乃至
第7項に記載の硬質磁性材料の製造法。
(8) The method for producing a hard magnetic material according to claims 5 to 7, wherein the average particle diameter of the precipitated SrO.6Fe_2O_3 is 90 Å to 2000 Å.
JP18478384A 1984-09-03 1984-09-03 Production of hard magnetic material Granted JPS6163530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18478384A JPS6163530A (en) 1984-09-03 1984-09-03 Production of hard magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18478384A JPS6163530A (en) 1984-09-03 1984-09-03 Production of hard magnetic material

Publications (2)

Publication Number Publication Date
JPS6163530A true JPS6163530A (en) 1986-04-01
JPH025691B2 JPH025691B2 (en) 1990-02-05

Family

ID=16159213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18478384A Granted JPS6163530A (en) 1984-09-03 1984-09-03 Production of hard magnetic material

Country Status (1)

Country Link
JP (1) JPS6163530A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02288206A (en) * 1989-04-27 1990-11-28 Toshiba Glass Co Ltd Manufacture of magnetic powder
JP2004079922A (en) * 2002-08-22 2004-03-11 Hitachi Ltd Magnet and motor using it
JP2010212501A (en) * 2009-03-11 2010-09-24 Tdk Corp Exchange spring magnetic powder
EP2336276A1 (en) * 2009-12-12 2011-06-22 KOPF SynGas GmbH & Co. KG Gas cooler with knocking device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02288206A (en) * 1989-04-27 1990-11-28 Toshiba Glass Co Ltd Manufacture of magnetic powder
JP2004079922A (en) * 2002-08-22 2004-03-11 Hitachi Ltd Magnet and motor using it
JP2010212501A (en) * 2009-03-11 2010-09-24 Tdk Corp Exchange spring magnetic powder
EP2336276A1 (en) * 2009-12-12 2011-06-22 KOPF SynGas GmbH & Co. KG Gas cooler with knocking device

Also Published As

Publication number Publication date
JPH025691B2 (en) 1990-02-05

Similar Documents

Publication Publication Date Title
Shirk et al. Magnetic properties of barium ferrite formed by crystallization of a glass
US3716630A (en) Hard magnetic ferrites
El Shabrawy et al. Crystallization of MgFe2O4 from a glass in the system K2O/B2O3/MgO/P2O5/Fe2O3
JPS6163530A (en) Production of hard magnetic material
Kazin et al. Glass crystallization synthesis of ultrafine hexagonal M-type ferrites: Particle morphology and magnetic characteristics
US4773938A (en) Finely divided isometric hexaferrite pigments with a W-structure, processes for their preparation and their use
Sandu et al. Structure and magnetic properties of nanosized magnetite obtained by glass recrystallization
Lee et al. Glass formation and crystallization of barium ferrite in the Na 2 O-BaO-Fe 2 O 3-SiO 2 system
Ram Crystallization of acicular platelet particles of W-type hexagonal strontium ferrite for magnetic recording applications
US3630911A (en) Lead ferrite glass-ceramic articles and method of making the articles
El-Sayed et al. Structure and Magnetic Properties of Nickel–Zinc Ferrite Nanoparticles Prepared by Glass Crystallization Method
JPS644330B2 (en)
JPS6181608A (en) Preparation of powder of hexagonal ferrite particle
JP7385884B2 (en) Supersaturated solid solution soft magnetic material and its manufacturing method
JPS6121921A (en) Preparation of magnetic powder
JPS63195123A (en) Laminar zirconia based single crystal fine particle and production thereof
JPS60210801A (en) Manufacture of magnetic fine particle
JPH04321537A (en) Magnetic crystallized glass
JP2001287930A (en) Magnetic crystallized glass
US3492237A (en) Glass composition containing lithium ferrite crystals
Abe et al. Magnetic properties of glass ceramic in Fe3O4-MnO2-SiO2 system
KR960000502B1 (en) Method of preparing magnetic hexagonal ferrite powder
JPH0616449B2 (en) Manufacturing method of hexagonal ferrite for magnetic recording media
JPH0472601A (en) Manufacture of magnetic powder for magnetic recording medium
JP2024132846A (en) Undercooling solidification method for preparing amorphous nanocrystalline soft magnetic alloys with high iron content