JPS644330B2 - - Google Patents

Info

Publication number
JPS644330B2
JPS644330B2 JP54166813A JP16681379A JPS644330B2 JP S644330 B2 JPS644330 B2 JP S644330B2 JP 54166813 A JP54166813 A JP 54166813A JP 16681379 A JP16681379 A JP 16681379A JP S644330 B2 JPS644330 B2 JP S644330B2
Authority
JP
Japan
Prior art keywords
powder
recording
hexagonal ferrite
amorphous body
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54166813A
Other languages
Japanese (ja)
Other versions
JPS5690505A (en
Inventor
Osamu Kubo
Tadashi Ido
Norio Ozawa
Yoshasu Koike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP16681379A priority Critical patent/JPS5690505A/en
Publication of JPS5690505A publication Critical patent/JPS5690505A/en
Publication of JPS644330B2 publication Critical patent/JPS644330B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles

Description

【発明の詳細な説明】 本発明は、高密度垂直磁化記録に済する磁性粉
末の製造方法に関する。 磁気記録は一般に記録媒体の面内長手方向の磁
化を用いる方式(最短記録波長約1.2μm)によつ
ている。しかしこの面内長手方向の磁化を用いる
記録方式において記録の高密度化を図ると、記録
媒体内の減磁界が増加するため高密度記録を達成
し難いと云う不都合さがある。上記記録方式に対
し、垂直磁化記録方式によれば記録密度を高めて
も記録媒体内の減磁界が減少するので本質的に高
密度記録に適したものと云える。ところでこの垂
直磁化方式においては、記録媒体表面に垂直な方
向に磁化容易軸を有することが必要であり、この
種記録媒体としてCo―Crスパツタ膜が開発され
ている。 一方上記垂直媒体としては、特開昭55―86103
号公報に見られるように磁性粉とバインダーを混
合し、テープ上に塗布する、いわゆる塗布型媒体
も考えられる。この場合用いられる磁性粉として
は、たとえばBaFe12O19等の六方晶系フエライト
が挙げられる。即ち六方晶系フエライトは、平板
状をなしており、かつ磁化容易軸が面に垂直であ
るため、磁場配向処理もしくは、機械的処理によ
つて容易に垂直配向を行ない得るからである。し
かし上記六方晶系フエライトは、保磁力iHcが高
く、記録時にヘツドが飽和するため、例えば特開
昭56―60002号公報や特開昭56―67904号公報に見
られるように構成原子の一部を特定の他の原子で
置換することによつて、その保磁力を垂直磁化記
録に適した値まで低減化させてやることが必要で
ある。 さらには、上記六方晶系フエライトの結晶粒径
は0.01〜0.03μmの範囲に選択される。その理由
は、0.01μm未満では磁気記録に要する強磁性を
呈しないし、また0.3μmを超えると、高密度記録
としての垂直磁化記録を有利に行ない難いからで
ある。 又、あわせて、上記の如く、保磁力及び粒径と
もに、制御された磁性粉であつても、塗料中に、
均一に分散する性状を有していないと、良好な記
録媒体が得られないため、少なくとも磁性粉作製
時において、個々の粒子が焼結凝集しないこと
も、必要である。 本発明者等は、特開昭56―67904号公報に示さ
れているように上記の特徴を合わせもつ六方晶系
フエライト粉末の製造方法として、ガラス形成物
質に、目的とするフエライトの原料を混合し、溶
融し、粉砕した後、その粉末を溶融粒子化して急
速冷却することによつて得られる非晶質体に、熱
処理を施すことによつて、その中に、目的にかな
つたフエライト微粒子が析出することを見い出し
た。 本発明は上記知見に基づき、高密度磁気記録用
に適する良好な磁気特性を備えた置換六方晶系フ
エライトの微粉末を量産性よく容易に製造し得る
方法を提供しようとするものである。 以下本発明を詳細に説明すると、本発明は六方
晶系フエライトの基本成分および保磁力低減化の
ための置換成分からなる原料混合物にガラス形成
物質を加え混溶し、冷却後粉砕する工程と、 前記粉砕して得た粉末を高温高速プラズマ気流
中に送給して高速な溶融粉末流となした後この溶
融粒子を急速冷却し非晶質体とする工程と、 前記非晶質体に加熱処理を施し非晶質体中に置
換型六方晶系フエライトを微粒子状に析出させ、
この微粒子を分離する工程とを具備して成ること
を特徴とする高密度磁気記録用磁性粉の製造方法
であり例えば次のように行なわれる。 先ず六方晶系フエライトの基本成分および保磁
力低減化のための置換成分である酸化物、炭酸
塩、水酸化物などの混合物にガラス形成物質例え
ば酸化ホウ素、五酸化リン酸化珪素などを加え溶
融してから冷却粉砕により粉末化する。微細化の
程度は、第1図に示したプラズマ装置の粉末輸送
路を通過する程度の大きさであればよいが粒子が
小さいほど、プラズマ中での溶解が早くなり、経
済的には小さいほうが望ましい。しかる後、要部
を第1図に示す如きプラズマ装置1にて発生させ
た高温高速プラズマ気流中に、上記調製した粉末
を粉末送給路2から送給し、溶融粉末流3を形成
させる。かくして得た溶融粉末流3中の溶融粉末
(粒子)を例えば水槽4中に吹き込み(噴射させ)
急速冷却して非晶質体とする。次いで上記非晶質
体に600〜900℃程度の加熱処理を施すことによ
り、その非晶質体中に置換型六方晶系フエライト
の微粒子を析出させた後、酢酸、塩酸、フツ酸な
どの希薄水溶液中に浸漬などしてガラス質相成分
をエツチング除去することによつて粒径0.1〜
0.3μm程度の置換型六方晶系フエライト微粒体が
容易に得られる。 尚第1図において1aは陽極を、1bは陰極
を、1cはアルゴン―ヘリウムガス流入路をそれ
ぞれ示す。 また本発明方法において、上記溶融粒子の粒径
は、プラズマ溶射に供せられる粉末粒子の粒径に
よつて、制御されるため、この粉末粒子の粒径を
小さくかつ均一にすることによつて、上記の如
く、水中への溶射等、比較的簡便な冷却手段を用
いても、一様な非晶質を得ることが可能である
が、その他高速回転ロールによる急冷や、金属板
への溶射による急冷等の冷却手段を用いても良
い。 次に本発明を具体例をもつて説明する。 作製する磁性粉としては、構成イオンである
Fe3+をCo2+―Ti4+イオンの組み合わせで置換し
て、保磁力の低減化をねらつたマグネマグネトプ
ランバイト型Baフエライトを選び、その置換量
は分子式BaFe12-2xTixCoxO19において、x=0.8
とした。又ガラス形成物質としては、B2O3
BaO系ガラスを用いた。フエライト原料とガラ
ス形成物質の調合比はモル比でB2O3…0.254,
BaO…0.388,Fe2O3…0.274,TiO2…0.042,CoO
……0.042とした。 まず原料を混合機で十分混合し、1400℃の電気
炉中で空気雰囲気にて溶解した後、水中に注いで
固化させた。その固形物を粉砕し、270メツシユ
のふるいに通して、粒径50μm以下の粉末を得た。 この粉末を第1図に示すように高温、高速のプ
ラズマ気流中に送給して、高速度の溶融粉末流を
作り、それを水中に溶射することによつて、平均
粒径約20μmの球状粉末を得た。即ち陽極1aと
陰極1bの間にアルゴン―ヘリウムガスを送り、
両電極1a,1b間のアーク放電によりアルゴン
―ヘリウムをプラズマ化させその高温高速プラズ
マ気流を噴出させ、いわゆるプラズマジエツトを
形成させる一方粉末送給路2より上記粉末をアル
ゴンガスと共に、プラズマ気流中に送給すること
によつて、プラズマガスで溶融された粉末を溶融
粉末流3として噴出させ水槽4中に溶射させ急速
冷却した。 なお、本発明の溶射条件は電圧40V,電流
800Aとして溶融粉末の噴出口より、水槽までの
距離を100〜150mmとした。 上記によつて得た急冷粉末はX線回折結果によ
ると完全一様な非晶質体であつた。次にこの粉末
を空気雰囲気中にて750℃4時間熱処理した後、
20%酢酸溶液で10時間エツチングし、ガラス相除
去後、X線回折を行つたところ、Baフエライト
単相であることを確認した。また、平均粒径は第
2図として添附した写真に示す如く(69000倍率)
約500Åであり、これは従来公知の六方晶系フエ
ライトの製造方法と比較しても極めて微細であ
り、なおかつ、板状性、分散性ともに良好であつ
た。また本発明では原料粉末の溶融をプラズマ中
で行なうため、極めて短時間で原料粉末が溶解
し、従来良く知られている六方晶系フエライトの
製造方法と比較して量産性に優れていることが明
らかとなつた。 上記本発明法によつて得たTi―Co置換型Baフ
エライト磁性粉末の磁気特性と、例えば東北大学
科学計測研究所報告第22巻、第67ページ(1973
年)に見られるような通常の固相反応で得られる
同組成の単磁区粒子(平均粒径約0.1μm)の磁性
粉末の磁気特性を比較したところ表1に示す如く
であつた。、本発明によつて得た磁性粉末は、微
粒子化によりσgの若干の低下は見られるものの、
磁気特性的にも、従来方法によつて得られる磁性
粉に匹敵していることが理解できる。なお、本磁
性粉のσgは、ガラス結晶化法で従来試作されて
いた同一サイズのBaフエライトのそれ
(19emu/g、Hc890Oe)よりも大きいことは明
らかである。(IEEE Trans.Mag、MAG―7,
659(1971)参照) 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing magnetic powder suitable for high-density perpendicular magnetization recording. Magnetic recording generally relies on a method that uses magnetization in the in-plane longitudinal direction of the recording medium (shortest recording wavelength is about 1.2 μm). However, when attempting to achieve high recording density in this recording method using in-plane longitudinal magnetization, the demagnetizing field within the recording medium increases, making it difficult to achieve high density recording. In contrast to the above-mentioned recording methods, the perpendicular magnetization recording method reduces the demagnetizing field within the recording medium even if the recording density is increased, so it can be said to be essentially suitable for high-density recording. However, in this perpendicular magnetization method, it is necessary to have an axis of easy magnetization in a direction perpendicular to the recording medium surface, and a Co--Cr sputtered film has been developed as this type of recording medium. On the other hand, as the above-mentioned vertical medium, Japanese Patent Application Laid-Open No. 55-86103
A so-called coating type medium, in which magnetic powder and a binder are mixed and coated on a tape, as seen in the above publication, is also considered. Examples of the magnetic powder used in this case include hexagonal ferrite such as BaFe 12 O 19 . That is, since hexagonal ferrite has a flat plate shape and the axis of easy magnetization is perpendicular to the plane, it can be easily vertically aligned by magnetic field alignment treatment or mechanical treatment. However, the above-mentioned hexagonal ferrite has a high coercive force iHc and the head is saturated during recording, so some of the constituent atoms are It is necessary to reduce the coercive force to a value suitable for perpendicular magnetization recording by replacing it with a specific other atom. Furthermore, the crystal grain size of the hexagonal ferrite is selected to be in the range of 0.01 to 0.03 μm. The reason for this is that if it is less than 0.01 μm, it will not exhibit the ferromagnetism required for magnetic recording, and if it exceeds 0.3 μm, it will be difficult to advantageously perform perpendicular magnetization recording as high-density recording. In addition, as mentioned above, even if the magnetic powder has controlled coercive force and particle size,
If the magnetic powder does not have the property of being uniformly dispersed, a good recording medium cannot be obtained, so it is also necessary that the individual particles do not sinter and agglomerate, at least during the production of the magnetic powder. As shown in Japanese Patent Application Laid-open No. 56-67904, the present inventors have developed a method for producing hexagonal ferrite powder having the above characteristics by mixing a raw material for the desired ferrite with a glass-forming substance. After melting and pulverizing, the amorphous material obtained by melting and pulverizing the powder and rapidly cooling it is subjected to heat treatment to form fine ferrite particles suitable for the purpose. It has been found that it precipitates. Based on the above findings, the present invention aims to provide a method for easily producing fine powder of substituted hexagonal ferrite with good magnetic properties suitable for high-density magnetic recording with good mass productivity. To explain the present invention in detail below, the present invention includes a step of adding a glass-forming substance to a raw material mixture consisting of a basic component of hexagonal ferrite and a substitute component for reducing coercive force, mixing the mixture, cooling and pulverizing; A step of feeding the powder obtained by the pulverization into a high-temperature, high-speed plasma air stream to form a high-speed molten powder flow, and then rapidly cooling the molten particles to form an amorphous body; and heating the amorphous body. Treatment is performed to precipitate substitution type hexagonal ferrite in the form of fine particles in the amorphous body,
The method for producing magnetic powder for high-density magnetic recording is characterized by comprising a step of separating the fine particles, and is carried out, for example, as follows. First, a glass-forming substance such as boron oxide, silicon pentoxide phosphate, etc. is added to a mixture of the basic components of hexagonal ferrite and substitute components such as oxides, carbonates, and hydroxides for reducing the coercive force and melted. Then, it is cooled and pulverized into powder. The degree of refinement is sufficient as long as it can pass through the powder transport path of the plasma device shown in Figure 1, but the smaller the particles, the faster they will dissolve in the plasma, and economically, the smaller the particle size, the faster the particles will dissolve in the plasma. desirable. Thereafter, the prepared powder is fed from the powder feed path 2 into a high-temperature, high-speed plasma stream generated by a plasma device 1 whose main part is shown in FIG. 1 to form a molten powder stream 3. The molten powder (particles) in the molten powder stream 3 thus obtained is blown (injected) into a water tank 4, for example.
Rapidly cool to form an amorphous body. Next, the above amorphous body is subjected to heat treatment at about 600 to 900°C to precipitate fine particles of substituted hexagonal ferrite in the amorphous body, and then heated with dilute acetic acid, hydrochloric acid, hydrofluoric acid, etc. By etching and removing the glassy phase components by immersion in an aqueous solution, the particle size is 0.1~
Substituted hexagonal ferrite fine particles of about 0.3 μm can be easily obtained. In FIG. 1, 1a represents an anode, 1b represents a cathode, and 1c represents an argon-helium gas inflow path. Furthermore, in the method of the present invention, the particle size of the molten particles is controlled by the particle size of the powder particles to be subjected to plasma spraying. As mentioned above, it is possible to obtain a uniform amorphous state even by using a relatively simple cooling method such as thermal spraying into water, but it is also possible to obtain a uniform amorphous state using a relatively simple cooling method such as thermal spraying into water. Cooling means such as rapid cooling may also be used. Next, the present invention will be explained using specific examples. The magnetic powder to be produced consists of constituent ions.
We selected magnetoplumbite-type Ba ferrite, which aims to reduce the coercive force by replacing Fe 3+ with a combination of Co 2+ -Ti 4+ ions, and the amount of substitution is given by the molecular formula BaFe 12-2x Ti x Co x In O 19 , x=0.8
And so. Also, as a glass forming substance, B 2 O 3 -
BaO glass was used. The mixing ratio of the ferrite raw material and the glass forming substance is B 2 O 3 …0.254 in molar ratio,
BaO…0.388, Fe 2 O 3 …0.274, TiO 2 …0.042, CoO
...It was set to 0.042. First, the raw materials were thoroughly mixed in a mixer, melted in an electric furnace at 1400°C in an air atmosphere, and then poured into water to solidify. The solid was crushed and passed through a 270 mesh sieve to obtain a powder with a particle size of 50 μm or less. As shown in Figure 1, this powder is fed into a high-temperature, high-velocity plasma stream to create a high-velocity molten powder stream, which is sprayed into water to create a spherical shape with an average particle size of approximately 20 μm. A powder was obtained. That is, argon-helium gas is sent between the anode 1a and the cathode 1b,
Argon-helium is turned into plasma by arc discharge between the electrodes 1a and 1b, and a high-temperature, high-velocity plasma stream is ejected to form a so-called plasma jet.Then, the powder is fed from the powder feed path 2 along with argon gas into the plasma stream. The powder melted by the plasma gas was ejected as a molten powder stream 3, sprayed into a water tank 4, and rapidly cooled. The thermal spraying conditions of the present invention are a voltage of 40V and a current of 40V.
800A, and the distance from the molten powder spout to the water tank was 100 to 150 mm. According to the results of X-ray diffraction, the quenched powder obtained in the above manner was a completely uniform amorphous body. Next, this powder was heat-treated at 750°C for 4 hours in an air atmosphere, and then
After etching with a 20% acetic acid solution for 10 hours to remove the glass phase, X-ray diffraction was performed, and it was confirmed that it was a Ba ferrite single phase. In addition, the average particle diameter is as shown in the attached photo as Figure 2 (69000x magnification)
It was about 500 Å, which was extremely fine compared to conventional methods for producing hexagonal ferrite, and it had good plate-like properties and good dispersibility. In addition, since the raw material powder is melted in plasma in the present invention, the raw material powder is melted in an extremely short time and is superior in mass productivity compared to the conventional well-known manufacturing method of hexagonal ferrite. It became clear. The magnetic properties of the Ti--Co-substituted Ba ferrite magnetic powder obtained by the above-mentioned method of the present invention and, for example, the Tohoku University Scientific Measurement Research Institute Report Vol. 22, page 67 (1973
Table 1 shows a comparison of the magnetic properties of magnetic powders of single domain particles (average particle size approximately 0.1 μm) of the same composition obtained by a conventional solid-phase reaction such as that seen in 2010. Although the magnetic powder obtained by the present invention shows a slight decrease in σg due to fine particle size,
It can be seen that the magnetic properties are also comparable to magnetic powder obtained by conventional methods. It is clear that the σg of the present magnetic powder is larger than that of Ba ferrite of the same size (19 emu/g, Hc890 Oe), which was previously prototyped using the glass crystallization method. (IEEE Trans.Mag, MAG-7,
659 (1971)) [Table]

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施態様を説明するため
の説明図、第2図は本発明法によつて得た置換型
Baフエライト微粒子の状態を示す透過型電子顕
微鏡写真である。 1……プラズマ装置、1a……陽極、1b……
陰極、2……粉末送給路、3……溶融粒子流、4
……水槽。
Figure 1 is an explanatory diagram for explaining the embodiment of the method of the present invention, and Figure 2 is a substituted type obtained by the method of the present invention.
This is a transmission electron micrograph showing the state of Ba ferrite fine particles. 1...Plasma device, 1a...Anode, 1b...
Cathode, 2... Powder feed path, 3... Molten particle flow, 4
...Aquarium.

Claims (1)

【特許請求の範囲】 1 六方晶系フエライトの基本成分および保磁力
低減化のための置換成分からなる原料混合物にガ
ラス形成物質を加え混溶し、冷却後粉砕する工程
と、 前記粉砕して得た粉末を高温高速プラズマ気流
中に送給して高速な溶融粉末流となした後この溶
融粒子を急速冷却し非晶質体とする工程と、 前記非晶質体に加熱処理を施し非晶質体中に置
換型六方晶系フエライトを微粒子状に析出させ、
この微粒子を分離する工程とを具備して成ること
を特徴とする高密度磁気記録用磁性粉の製造方
法。
[Scope of Claims] 1. A step of adding a glass-forming substance to a raw material mixture consisting of a basic component of hexagonal ferrite and a substituted component for reducing coercive force, mixing the mixture, cooling and pulverizing; a step of feeding the powder into a high-temperature, high-speed plasma air stream to form a high-speed molten powder flow, and then rapidly cooling the molten particles to form an amorphous body; and heating the amorphous body to form an amorphous body. Substituted hexagonal ferrite is precipitated in fine particles in the mass,
A method for producing magnetic powder for high-density magnetic recording, comprising the step of separating the fine particles.
JP16681379A 1979-12-24 1979-12-24 Manufacture of magnetic powder for high density magnetic recording Granted JPS5690505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16681379A JPS5690505A (en) 1979-12-24 1979-12-24 Manufacture of magnetic powder for high density magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16681379A JPS5690505A (en) 1979-12-24 1979-12-24 Manufacture of magnetic powder for high density magnetic recording

Publications (2)

Publication Number Publication Date
JPS5690505A JPS5690505A (en) 1981-07-22
JPS644330B2 true JPS644330B2 (en) 1989-01-25

Family

ID=15838134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16681379A Granted JPS5690505A (en) 1979-12-24 1979-12-24 Manufacture of magnetic powder for high density magnetic recording

Country Status (1)

Country Link
JP (1) JPS5690505A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964531A (en) * 1982-09-30 1984-04-12 Toshiba Corp Preparation of magnetic powder
JPS59151340A (en) * 1983-02-16 1984-08-29 Fuji Photo Film Co Ltd Manufacture of magnetic ferrite powder for magnetic recording
JP2735833B2 (en) * 1987-09-28 1998-04-02 住友金属鉱山株式会社 Method for producing powder for resin-bonded magnet
US5352627A (en) * 1993-05-10 1994-10-04 Cooper Gregory A Monolithic high voltage nonlinear transmission line fabrication process
JP4675581B2 (en) * 2004-05-31 2011-04-27 Agcテクノグラス株式会社 Method for producing hexagonal ferrite magnetic powder
JP6077198B2 (en) * 2011-05-11 2017-02-08 Dowaエレクトロニクス株式会社 Hexagonal ferrite agglomerated particles

Also Published As

Publication number Publication date
JPS5690505A (en) 1981-07-22

Similar Documents

Publication Publication Date Title
JPS6136685B2 (en)
US4493874A (en) Production of a magnetic powder having a high dispersibility
US4569775A (en) Method for manufacturing a magnetic powder for high density magnetic recording
JPS6323134B2 (en)
JPS644330B2 (en)
US5277977A (en) Ferromagnetic stabilized ultrafine spherical hexagonal crystalline Fe2
US5221322A (en) Method of making ferromagnetic ultrafine particles
JP3251753B2 (en) Method for producing Ba ferrite magnetic powder
US5256479A (en) Ferromagnetic ultrafine particles, method of making, and recording medium using the same
JPH0312442B2 (en)
JPS6324935B2 (en)
JPH025691B2 (en)
JPH05326233A (en) Production of magnetic powder
JPS6127329B2 (en)
JP2802653B2 (en) Magnetic powder for high-density magnetic recording and method for producing the same
JPH10261514A (en) Magnetic material
KR102357085B1 (en) Magnetic powder and manufacturing method of magnetic powder
JPS6353134B2 (en)
JPH069167B2 (en) Method for producing hexagonal ferrite powder
JPS6355122A (en) Magnetic powder
JP2691790B2 (en) Method for producing magnetic powder for magnetic recording medium
JP2001093716A (en) Powder for magnetic recording medium and method for manufacturing thereof
JP3900737B2 (en) Ferrite and manufacturing method thereof
KR960000501B1 (en) Method of preparing high density magnetic hexagonal ferrite powder
JP2717720B2 (en) Method for producing magnetic powder for magnetic recording medium