JPH0312442B2 - - Google Patents

Info

Publication number
JPH0312442B2
JPH0312442B2 JP56139663A JP13966381A JPH0312442B2 JP H0312442 B2 JPH0312442 B2 JP H0312442B2 JP 56139663 A JP56139663 A JP 56139663A JP 13966381 A JP13966381 A JP 13966381A JP H0312442 B2 JPH0312442 B2 JP H0312442B2
Authority
JP
Japan
Prior art keywords
magnetic powder
less
ferrite
magnetoplumbite
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56139663A
Other languages
Japanese (ja)
Other versions
JPS5842203A (en
Inventor
Osamu Kubo
Tsutomu Nomura
Masahiro Fukazawa
Tadashi Ido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56139663A priority Critical patent/JPS5842203A/en
Publication of JPS5842203A publication Critical patent/JPS5842203A/en
Publication of JPH0312442B2 publication Critical patent/JPH0312442B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • G11B5/70678Ferrites

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高密度記録用磁性粉の製造方法に関
する。 従来、ビデオ記録、デジタル記録等に用いられ
ている磁気記録媒体は、γ−Fe2O3、CrO2等の針
状粒子を支持体上に塗布配向させたものが広く用
いられているまた、近年記録密度の一層の向上が
望まれており、記録の最小単位もサブミクロンの
領域に入りつつある。このような高密度記録にお
いて、十分なS/N比を得るためには磁性粉の粒
径を最小記録単位よりも十分小さくする必要があ
る。たとえばビデオ記録の場合には、最短記録波
長約1μmに対して約0.3μmの長さを有する磁性粉
が必要である。ところで、上記γ−Fe2O3、CrO2
のような針状粒子においては、十分な磁気特性を
もち、かつ0.3μm以下の長さを有する粒子を得る
ことは難かしく、現在より高密度の記録に対して
十分対応できないことが明らかとなつた。 一方、現状の記録媒体では、磁気記録層に一軸
異方性を付与し、その磁化容易軸方向に、信号を
記録させており、このために、一軸性の磁化容易
軸を有する磁性粉を、記録方向とその容易軸方向
が平行となるように、塗布配向させた媒体が一般
に用いられる。この一軸性の磁化容易軸を有する
粒子としては、γ−Fe2O3、CrO2等のほかに、
Baフエライト等に代表される六方晶系フエライ
トが有望である。しかしこの種のフエライトは、
保磁力が大きすぎ、そのままでは、ヘツドによる
記録が十分に行なわれないために原子置換を施し
て、保磁力の制御を行う必要がある。ところでこ
の種のフエライト系磁性粉においても、磁性粉の
粒径が高密度記録に適した範囲でありながら、磁
気特性の優れた磁性粉を得ることは困難であつ
た。 本発明者らは、高密度磁気記録用磁性粉とし
て、粒径が0.3μm以下で、かつ塗料に均一に分散
させるために要求されるところの、焼結凝集のな
い、機械的によく分離された、置換型六方晶系フ
エライト(置換型マグネトプランバイト型フエラ
イト)を提供すべく、種々の実験研究を行つた結
果、ガラス形成物質とフエライト原料とを混合溶
融、非晶質化し熱処理を施こしてガラスマトリツ
クス中にマグネトプランバイト型フエライト微粒
子を析出させるいわゆるガラス結晶化法におい
て、特定の熱処理条件を採用することにより、高
密度磁気記録に必要な最大粒径が0.3μm以下で粒
度分布が均一な、かつ磁気特性の優れた磁性粉が
得られることを見出し、本発明を完成するに至つ
たものである。 すなわち、本発明はガラス形成物質と、一般式
AO・nFe2O3(ただしAはBa、Sr、Pbの中から選
ばれた少なくとも一種で、一部Caと置換し得る)
で示されるマグネトプランバイト型フエライトの
基本成分及び保磁力制御のための置換成分を含む
原料混合物を溶融し、急速冷却を施して非晶質体
化した後、この非晶質体に熱処理を施して、保磁
力の制御された、置換型マグネトプランバイト型
フエライト微粒子を析出させ、しかる後、ガラス
マトリツクスより、その微粒子を抽出する工程か
らなる磁気記録用磁性粉の製造方法において、前
記非晶質を昇温速度200℃/時間以下で昇温加熱
した後、得られる微粒子のn値が6.2以下を示す
ような温度で加熱して最大粒径が0.3μm以下の微
粒子を作製する高密度磁気記録用磁性粉の製造方
法に関するものである。 本発明を詳細に説明する。本発明方法によつて
製造されるマグネトプランバイト型フエライト
は、一般式AO・n{(Fe1-xMx)2O3}で表わされ
るものである。式中、AはBa、Sr、Pbから選ば
れた少なくとも1種の元素であり、さらにその1
部をCaで置換することもできる。好ましい元素
はBaである。また、Mはマグネトプランバイト
型フエライトの保磁力を制御するための置換成分
であり、Co、Ti、In、Zn、Ge、Nb、Zr、V、
Laなどを単独、あるいは2種以上を併用する。
具体的にはIn、Co−Ti、Co−Zr、Co−Ge、Co
−La、Co−V、Zn−Ti、Zn−V、Zn−Ge、Zn
−Zr、Zn−Nbが挙げられるが、特に好ましく
は、Co−Ti、Co−Zrである。この置換元素の置
換量(式中xで表わされる)を制御することによ
り所望の保磁力を有する磁性粉を得ることができ
る。 またnはAOと(Fe1-xMx)2O3との構成比であ
り理論的には6の値をとることが完全なマグネト
プランバイト型フエライトを得る点から望ましい
が実用上5.0〜6.2であれば充分である。 本発明の製造方法の第1段階として、上記ガラ
ス形成物質と、マグネトプランバイト型フエライ
トの基本成分および置換成分からなる原料混合物
とを混合溶融する。この原料混合物は、上記一般
式で示されるマグネトプランバイト型フエライト
を構成する各金属元素の酸化物、炭酸塩等の混合
物もしくはそれらの混合物を、固相反応させ、あ
らかじめフエライト化させたものであり、そのフ
エライトとしての配合量は一般式におけるxおよ
びnの値により決定される。マグネトプランバイ
ト型フエライト成分とガラス形成物質の配合割合
は、マグネトプランバイト型フエライト成分のう
ちのAOとガラス形成物質とが等モル量より、ガ
ラス形成物質が下まわる程度の量比で配合され
る。 混合溶融は、原料混合物を一般に周知の混合機
で混合した後、白金等の不活性な容器中で高周波
加熱等これも周知の手段で加熱溶融する。溶融時
の雰囲気は空気中でさしつかえない。 本発明において用いるガラス形成物質とは、マ
グネトプランバイト型フエライトの各成分と共に
ガラス質を形成する材料であり、具体的には
B2O3、P2O5、B2O3−SiO2系等が挙げられるが、
B2O3が特に好ましい。 次いで、この溶融物を急速冷却して非晶質化す
る。非晶質化は、例えば高速回転している金属ロ
ール、あるいは金属ドラム中に溶融物を滴下する
いわゆる単ロール法、圧延急冷法あるいは遠心急
冷法として公知の手段を採用することができる。
得られる非晶質体は厚さ80μm以下特に好ましく
は60μm以下とすることが必要である。 この厚さが80μmを越えると、急冷効果が十分
でなく次工程の熱処理を施す前に、非晶質体中
に、すでにマグネトプランバイト型フエライトが
一部析出しており、熱処理によつて、ミクロンオ
ーダーの粗大粒子に成長するため、好ましくな
い。 得られた非晶質体中には、マグネトプランバイ
ト型フエライトを構成する各元素は含まれている
ものの、未だ結晶化するに至つておらず、これを
熱処理することによつて結晶化が促進される。ガ
ラスマトリツクス中におけるマグネトプランバイ
ト型フエライトの結晶化の機構自体は必ずしも明
確になつてはいないが、おおよそ次の通りであろ
うと推測される。 即ち非晶質から、フエライト微粒子が析出し始
める低温領域ではまずFe2O3成分を中心として核
が形成されるが、この核もしくは微結晶は、化学
量論的組成よりも異常にFe2O3成分が多い。即ち
マグネトプランバイト型の一般式AO・nFe2O3
おけるnが6よりはるかに大きい組成となつてお
り、この時点では、正常なフエライト格子を構成
していないものとみられる。そしてこれらの微結
晶の飽和磁化、保磁力ともに、本来の値より、は
るかに小さいのである。しかし、熱処理温度を高
めてゆくに従がい、nが本来の値に近ずき、磁気
特性も良好となる。本発明者らの検討の結果十分
な磁気特性を有するためには、少なくとも上記フ
エライトのnが6.2以下となるような温度で熱処
理することが必要であることが明らかとなつた。
又この温度は、一般に、ガラス結晶化温度と、融
点の中間付近に存在した。 要するに、本発明の意図するところは、析出す
る粒子の磁気特性を高めるため、できるだけ高い
温度で、熱処理を施し、一方では、高温熱処理に
よる、粒径の粗大化を防ぐために、昇温速度を小
さくして、粒成長を抑制しようとするものであ
る。昇温速度を小さくすることにより、微粒子化
される理由は、低温で、長時間熱処理されるた
め、核が多数できること、及び、急激な加熱に比
較して、ガラスの粘性が高く、粒成長しにくいた
めと考えられる。 本発明における熱処理は、200℃/時間以下の
昇温速度で昇温するように加熱し得られる微粒子
のn値が6.2以下を示すような温度に達したらそ
の温度で一定時間保持し結晶化が充分進行した段
階で加熱を停止することによつて行なわれる。こ
の際昇温速度が200℃/時間を上まわると得られ
る結晶の粒度分布の幅が広がり、最大粒径を高密
度記録に必要な0.3μm以下とするためには保持温
度を結晶化温度程度の比較的低温に設定する必要
があり、飽和磁化、保持力とも満足すべき特性が
得られない。これに対して200℃/時間以下の昇
温速度で加熱した場合には、結晶の粒度分布の幅
が狭くなるため、保持温度を融点に近い温度に設
定することができ、最大粒径が0.3μmを越えるこ
となく充分な磁気特性を有する磁性粉が得られ
る。なお、この昇温速度の下限について、これを
特に限定する理由はないが、製造工程の作業性の
点から35℃/時間以上であることが望ましい。n
値が6.2以下を示すような温度とは、前述したよ
うにガラス結晶化温度と融点との中間付近の温度
であり、一般的には650℃以上の温度である。ま
た、この温度に保持する時間は、少なくとも30分
であることが必要である。 次いで熱処理された非晶質体を希酸処理するこ
とにより、ガラスマトリツクスを溶解除去し、マ
グネトプランバイト型フエライト微粒子を分離す
る。この際用いられる希酸としては、例えば希酢
酸、希塩酸、希硝酸等の有機酸および無機酸が挙
げられる。この希酸処理によりガラスマトリツク
スが除去され、マグネトプランバイト型フエライ
トの微粒子が最大粒子径0.3μm以下の微粉状とし
て得られ、これを常法により乾燥することによつ
て機械的に分離された磁性粉を製造できる。 このようにして得られた磁性粉は、樹脂バイン
ダー、溶剤、分散剤、その他の添加剤と共に非磁
性支持体上に塗布し、磁気テープ等の磁気記録媒
体を製造することができる。この磁気記録媒体
は、従来一般に用いられているγ−Fe2O3やCrO2
等の針状粒子を用いた磁気記録媒体と比較して極
めて高密度の磁気記録が可能となることが明らか
となつた。 以下、実施例により本発明を説明する。 実施例 1 保磁力制御された六方晶系フエライトとして、
構成原子である鉄の一部をTi−Co原子対で置換
したマグネトプランバイト型Baフエライトを選
び、ガラス形成物質としてB2O3を選択した。作
成した非晶質組成はB2O3……31.0モル%、BaO
……39.0モル%、Fe2O3……22.56モル%、TiO2
…3.72モル%、CoO……3.72モル%である。非晶
質作成は、まず原料を混合機にて十分混合し、こ
の混合物を先端にノズルを有する白金製容器に仕
込んだ。次いで、その混合物を高周波加熱ヒータ
ーにて、1350℃に加熱して溶解した後、上記白金
製容器上方より、ガス圧をかけて、混合溶解物を
直径20cm、回転数100r.p.mの双ロール上に注い
で、急冷し、厚さ60μmの非晶質リボンを作成し
た。この非晶質の結晶化温度は約630℃であつた。
この非晶質を電気炉中にて昇温速度200℃/時間
以下、熱処理温度650℃以上で熱処理を施した後、
20%酢酸溶液にてフエライト粒子を抽出した。第
1表に得られた数種の試料の平均粒径(Dm)、
最大粒径(Dmax)、粒度分布から求めた半値幅
(△D)をDmで徐した値(△D/Dm)、飽和磁
化(6g)、保磁力(Hc)を示す。 比較例 1 実施例1で作成した非晶質を昇温速度200℃/
時間以上、熱処理温度650℃以上にて熱処理を行
つた。得られた数種の試料の諸特性を実施例1と
比較して第1表に示した。 実施例 2 実施例1と同様な方法で、B2O3……35.0モル
%、BaO……40.0モル%、Fe2O3……18.80モル
%、TiO2……3.10モル%、CoO……3.10モル%な
るガラス組成の非晶質を作成した。この非晶質を
電気炉中で、昇温速度200℃/時間以下、熱処理
温度650℃以上で熱処理を施し、実施例1と同様
に微粒子をガラスマトリツクスより抽出した。得
られた数種の試料の諸特性を第1表に示す。 比較例 2 実施例2で作成した非晶質を電気炉中で、昇温
速度200℃/時間以上、熱処理温度650℃以上で熱
処理を施した。得られた数種の試料の諸特性を調
べ実施例2と比較して第1表に示した。
The present invention relates to a method for producing magnetic powder for high-density recording. Conventionally, magnetic recording media used for video recording, digital recording, etc. are widely used in which acicular particles of γ-Fe 2 O 3 , CrO 2 , etc. are coated and oriented on a support. In recent years, there has been a desire for further improvement in recording density, and the minimum unit of recording is entering the submicron range. In such high-density recording, in order to obtain a sufficient S/N ratio, it is necessary to make the particle size of the magnetic powder sufficiently smaller than the minimum recording unit. For example, in the case of video recording, magnetic powder having a length of about 0.3 μm is required for the shortest recording wavelength of about 1 μm. By the way, the above γ-Fe 2 O 3 , CrO 2
It is difficult to obtain acicular particles with sufficient magnetic properties and a length of 0.3 μm or less, and it has become clear that they cannot be used for higher-density recording. Ta. On the other hand, in current recording media, uniaxial anisotropy is imparted to the magnetic recording layer, and signals are recorded in the direction of the easy axis of magnetization. Generally, a medium is used that is coated and oriented so that the recording direction and its easy axis direction are parallel. In addition to γ-Fe 2 O 3 , CrO 2 , etc., particles with this uniaxial easy axis of magnetization include
Hexagonal ferrites such as Ba ferrite are promising. However, this kind of ferrite is
The coercive force is too large, and recording by the head cannot be performed satisfactorily as it is, so it is necessary to perform atomic substitution to control the coercive force. However, even with this type of ferrite-based magnetic powder, it has been difficult to obtain magnetic powder with excellent magnetic properties even though the particle size of the magnetic powder is within a range suitable for high-density recording. The present inventors have developed a magnetic powder for high-density magnetic recording that has a particle size of 0.3 μm or less and is mechanically well separated without sintering agglomeration, which is required for uniform dispersion in paint. In addition, in order to provide substituted hexagonal ferrite (substituted magnetoplumbite ferrite), we conducted various experimental studies and found that a glass-forming substance and a ferrite raw material were mixed, melted, amorphized, and heat treated. In the so-called glass crystallization method, in which fine magnetoplumbite-type ferrite particles are precipitated in a glass matrix, by adopting specific heat treatment conditions, it is possible to achieve a particle size distribution with a maximum particle size of 0.3 μm or less, which is necessary for high-density magnetic recording. The inventors discovered that it was possible to obtain a magnetic powder that was uniform and had excellent magnetic properties, leading to the completion of the present invention. That is, the present invention provides a glass-forming material and a general formula
AO・nFe 2 O 3 (However, A is at least one selected from Ba, Sr, and Pb, and can be partially replaced with Ca)
A raw material mixture containing the basic components of magnetoplumbite-type ferrite shown in In the method for producing magnetic powder for magnetic recording, the method comprises the steps of precipitating substituted magnetoplumbite type ferrite fine particles with controlled coercive force, and then extracting the fine particles from a glass matrix. High-density magnetic material is heated at a heating rate of 200°C/hour or less, and then heated at a temperature such that the resulting fine particles have an n value of 6.2 or less to produce fine particles with a maximum particle size of 0.3 μm or less. The present invention relates to a method for producing magnetic powder for recording. The present invention will be explained in detail. The magnetoplumbite type ferrite produced by the method of the present invention is represented by the general formula AO.n {(F e1-x Mx) 2 O 3 }. In the formula, A is at least one element selected from Ba, Sr, and Pb;
It is also possible to replace the moiety with Ca. A preferred element is Ba. In addition, M is a substitution component for controlling the coercive force of magnetoplumbite ferrite, and includes Co, Ti, In, Zn, Ge, Nb, Zr, V,
Use La etc. alone or in combination of two or more.
Specifically, In, Co-Ti, Co-Zr, Co-Ge, Co
-La, Co-V, Zn-Ti, Zn-V, Zn-Ge, Zn
Examples include -Zr and Zn-Nb, with Co-Ti and Co-Zr being particularly preferred. By controlling the amount of substitution element (represented by x in the formula), magnetic powder having a desired coercive force can be obtained. In addition, n is the composition ratio of AO and (F e1-x Mx) 2 O 3, and theoretically it is desirable to take a value of 6 in order to obtain a perfect magnetoplumbite type ferrite, but in practice it is 5.0 to 6.2. If so, it is sufficient. In the first step of the production method of the present invention, the above-mentioned glass-forming substance and a raw material mixture consisting of a basic component and a substituted component of magnetoplumbite-type ferrite are mixed and melted. This raw material mixture is a mixture of oxides, carbonates, etc. of each metal element constituting the magnetoplumbite ferrite represented by the above general formula, or a mixture thereof, which has been previously converted into ferrite through a solid phase reaction. , the blending amount as ferrite is determined by the values of x and n in the general formula. The blending ratio of the magnetoplumbite-type ferrite component and the glass-forming substance is such that the amount of the glass-forming substance is lower than the equimolar amount of AO of the magnetoplumbite-type ferrite component and the glass-forming substance. . In the mixing and melting process, the raw material mixture is generally mixed in a well-known mixer, and then heated and melted in an inert container made of platinum or the like using a well-known means such as high-frequency heating. The atmosphere during melting may be air. The glass-forming substance used in the present invention is a material that forms glass together with each component of magnetoplumbite-type ferrite, and specifically,
Examples include B 2 O 3 , P 2 O 5 , B 2 O 3 −SiO 2 system, etc.
Particularly preferred is B 2 O 3 . This melt is then rapidly cooled to become amorphous. For the amorphization, for example, known means such as the so-called single roll method in which the melt is dropped into a metal roll rotating at high speed or a metal drum, the rolling quenching method, or the centrifugal quenching method can be employed.
The thickness of the obtained amorphous body must be 80 μm or less, particularly preferably 60 μm or less. If the thickness exceeds 80 μm, the quenching effect will not be sufficient and some magnetoplumbite-type ferrite will have already precipitated in the amorphous material before the next heat treatment, and the heat treatment will cause This is not preferable because it grows into coarse particles on the micron order. Although the obtained amorphous body contains the elements that make up magnetoplumbite ferrite, it has not yet crystallized, and heat treatment promotes crystallization. be done. Although the mechanism of crystallization of magnetoplumbite-type ferrite in a glass matrix is not necessarily clear, it is presumed to be roughly as follows. In other words, in the low-temperature region where ferrite fine particles begin to precipitate from an amorphous state, a nucleus is first formed centered on the three Fe 2 O components, but this nucleus or microcrystal has an abnormally higher Fe 2 O content than the stoichiometric composition. There are many 3 components. In other words, n in the general formula AO·nFe 2 O 3 of the magnetoplumbite type is much larger than 6, and at this point it seems that a normal ferrite lattice is not formed. Both the saturation magnetization and coercive force of these microcrystals are much smaller than their original values. However, as the heat treatment temperature is increased, n approaches its original value and the magnetic properties become better. As a result of studies conducted by the present inventors, it has become clear that in order to have sufficient magnetic properties, it is necessary to heat-treat at least the above-mentioned ferrite at a temperature such that n is 6.2 or less.
Moreover, this temperature generally existed near the intermediate point between the glass crystallization temperature and the melting point. In short, the purpose of the present invention is to perform heat treatment at as high a temperature as possible in order to enhance the magnetic properties of the precipitated particles, while at the same time reducing the heating rate to prevent coarsening of the particle size due to high temperature heat treatment. This is intended to suppress grain growth. The reason why the glass becomes fine particles by reducing the heating rate is that many nuclei are formed due to the heat treatment at low temperature for a long time, and the viscosity of the glass is higher compared to rapid heating, which causes grain growth. This is thought to be because it is difficult. The heat treatment in the present invention is performed by heating at a heating rate of 200°C/hour or less, and when the resulting fine particles reach a temperature where the n value is 6.2 or less, the temperature is maintained for a certain period of time to prevent crystallization. This is done by stopping the heating when it has sufficiently progressed. At this time, if the heating rate exceeds 200℃/hour, the width of the grain size distribution of the obtained crystals will widen, and in order to keep the maximum grain size below 0.3 μm, which is necessary for high-density recording, the holding temperature should be around the crystallization temperature. It is necessary to set the temperature at a relatively low temperature, and satisfactory characteristics cannot be obtained in terms of saturation magnetization and coercive force. On the other hand, when heating at a temperature increase rate of 200°C/hour or less, the width of the grain size distribution of the crystals becomes narrower, so the holding temperature can be set close to the melting point, and the maximum grain size is 0.3 Magnetic powder having sufficient magnetic properties without exceeding μm can be obtained. Although there is no reason to specifically limit the lower limit of the temperature increase rate, it is preferably 35° C./hour or more from the viewpoint of workability in the manufacturing process. n
The temperature at which the value is 6.2 or less is, as described above, a temperature near the middle between the glass crystallization temperature and the melting point, and is generally a temperature of 650° C. or higher. Also, the time to be maintained at this temperature needs to be at least 30 minutes. Next, the heat-treated amorphous body is treated with dilute acid to dissolve and remove the glass matrix and separate the magnetoplumbite type ferrite fine particles. Examples of the dilute acids used in this case include organic acids and inorganic acids such as dilute acetic acid, dilute hydrochloric acid, and dilute nitric acid. The glass matrix was removed by this dilute acid treatment, and fine particles of magnetoplumbite-type ferrite were obtained in the form of a fine powder with a maximum particle size of 0.3 μm or less, which was mechanically separated by drying by a conventional method. Can produce magnetic powder. The magnetic powder thus obtained can be coated on a non-magnetic support together with a resin binder, a solvent, a dispersant, and other additives to produce a magnetic recording medium such as a magnetic tape. This magnetic recording medium uses conventionally commonly used γ-Fe 2 O 3 and CrO 2
It has become clear that extremely high-density magnetic recording is possible compared to magnetic recording media using acicular particles such as the above. The present invention will be explained below with reference to Examples. Example 1 As a hexagonal ferrite with controlled coercive force,
A magnetoplumbite-type Ba ferrite in which some of the constituent iron atoms were replaced with Ti-Co atom pairs was selected, and B 2 O 3 was selected as the glass-forming substance. The amorphous composition created was B 2 O 3 ...31.0 mol%, BaO
...39.0 mol%, Fe 2 O 3 ... 22.56 mol%, TiO 2 ...
...3.72 mol%, CoO...3.72 mol%. To create the amorphous material, first, the raw materials were sufficiently mixed using a mixer, and this mixture was placed in a platinum container having a nozzle at the tip. Next, the mixture was heated to 1350°C using a high-frequency heater to melt it, and gas pressure was applied from above the platinum container to transfer the mixed melt onto twin rolls with a diameter of 20 cm and a rotation speed of 100 rpm. The mixture was poured into water and rapidly cooled to produce an amorphous ribbon with a thickness of 60 μm. The crystallization temperature of this amorphous material was approximately 630°C.
After heat-treating this amorphous material in an electric furnace at a heating rate of 200°C/hour or less and a heat treatment temperature of 650°C or higher,
Ferrite particles were extracted with a 20% acetic acid solution. Average particle diameter (Dm) of several samples obtained in Table 1,
The maximum particle diameter (Dmax), the value obtained by dividing the half-width (△D) determined from the particle size distribution by Dm (△D/Dm), the saturation magnetization (6 g), and the coercive force (Hc) are shown. Comparative Example 1 The amorphous material prepared in Example 1 was heated at a heating rate of 200°C/
Heat treatment was performed at a heat treatment temperature of 650° C. or higher for more than an hour. The various properties of the several types of samples obtained are shown in Table 1 in comparison with those of Example 1. Example 2 In the same manner as in Example 1, B2O3 ... 35.0 mol%, BaO...40.0 mol%, Fe2O3 ... 18.80 mol%, TiO2 ...3.10 mol%, CoO... An amorphous glass with a glass composition of 3.10 mol% was prepared. This amorphous material was heat-treated in an electric furnace at a heating rate of 200° C./hour or less and a heat treatment temperature of 650° C. or higher, and fine particles were extracted from the glass matrix in the same manner as in Example 1. Table 1 shows the properties of the several types of samples obtained. Comparative Example 2 The amorphous material prepared in Example 2 was heat-treated in an electric furnace at a heating rate of 200° C./hour or higher and a heat treatment temperature of 650° C. or higher. Various properties of the several types of samples obtained were investigated and compared with those of Example 2, as shown in Table 1.

【表】【table】

【表】 第1表から明らかなように、一般に抽出した微
粒子のnが約6.2より小さい場合に、十分な飽和
磁化が得られていることがわかる。しかし比較例
でみてわかるように昇温速度が300℃/時間程度
になると、nが6.2以下を示すような高い温度で
は、粒径が粗大化して、0.3μm以上の粒径を有す
る粒子が存在する。しかし昇温速度200℃/時間
以下では、nが6.2以下で高い飽和磁化を有し、
かつ、最大粒径も0.3μm以下に制御された微粒子
が得られることがわかる。 さらにこれらの微粒子を塗料化し、フイルム上
に塗布して、磁気テープを試作し、粒径約0.3μm
のγ−Fe2O3を塗布した磁気テープと、特性比較
を行つた。記録波数1×104cm-1における再生出
力(リングヘツドによる記録再生)を第1表に比
較する。同表より200℃/時間以下で熱処理を行
つた、n<6.2の試料は、出力特性において、従
来のγ−Fe2O3をしのいでいる。特に昇温速度
100℃/時間以下で熱処理した試料のテープ特性
がすぐれていることがわかる。 実施例 3 第2表に示すような組成および熱処理条件で、
実施例1と同様な方法で磁性粉を製造した。その
結果、同表に示したようにいずれも粒径が0.3μm
以下であり、またHcは900Oe以下、σgは57〜
59emu/gの値を示した。 比較例 3 実施例1の試料aについて、非晶質体化して得
られる非晶質の厚みを100μmとしたほかは実施
例1と同様な方法で磁性粉を製造した。その結果
得られた磁性粉は最大粒径2μm平均粒径0.3μmで
あり高密度記録用としては最適でなかつた。
[Table] As is clear from Table 1, sufficient saturation magnetization is generally obtained when n of the extracted fine particles is smaller than about 6.2. However, as can be seen from the comparative example, when the temperature increase rate is about 300°C/hour, at high temperatures where n is 6.2 or less, the particle size becomes coarse, and some particles have a particle size of 0.3 μm or more. do. However, at a heating rate of 200°C/hour or less, n is 6.2 or less and has high saturation magnetization.
Moreover, it can be seen that fine particles with a maximum particle size controlled to 0.3 μm or less can be obtained. Furthermore, these fine particles were made into a paint and applied onto a film to make a prototype magnetic tape, with a particle size of approximately 0.3 μm.
The characteristics were compared with a magnetic tape coated with γ-Fe 2 O 3 . Table 1 compares the reproduction output (recording and reproduction using a ring head) at a recording wave number of 1×10 4 cm -1 . From the same table, the samples with n<6.2, which were heat-treated at 200° C./hour or less, exceeded the conventional γ-Fe 2 O 3 in terms of output characteristics. Especially the heating rate
It can be seen that the tape properties of the samples heat-treated at 100°C/hour or less are excellent. Example 3 With the composition and heat treatment conditions shown in Table 2,
Magnetic powder was produced in the same manner as in Example 1. As a result, as shown in the same table, the particle size was 0.3μm in all cases.
below, Hc is below 900Oe, and σg is 57~
The value was 59emu/g. Comparative Example 3 Magnetic powder was produced in the same manner as in Example 1 except that sample a of Example 1 was made into an amorphous material and the thickness of the amorphous material was 100 μm. The magnetic powder obtained as a result had a maximum particle size of 2 μm and an average particle size of 0.3 μm, which was not optimal for high-density recording.

【表】 以上の結果より、粒径が0.3μm以下に制御さ
れ、かつ磁気特性の良好な置換マグネトプランバ
イト型フエライトは、現在のγ−Fe2O3粒子より
も、さらに高密度記録に適した粉末となり得るこ
と、及びそのような微粒子をガラス結晶化法で作
製するためには、上記の熱処理条件が必要である
ことが明らかである。
[Table] From the above results, substituted magnetoplumbite-type ferrite, whose particle size is controlled to 0.3 μm or less and has good magnetic properties, is more suitable for high-density recording than the current γ-Fe 2 O 3 particles. It is clear that the above-mentioned heat treatment conditions are necessary to produce fine particles by the glass crystallization method.

Claims (1)

【特許請求の範囲】 1 ガラス形成物質と、一般式AO・nFe2O3(た
だし、AはBa、Sr、Pbの中から選ばれた少なく
とも1種、あるいはこれらの一部をCaで置換し
たものを表す)で示されるマグネトプランバイト
型フエライトの基本成分および保磁力制御のため
の置換成分を含む原料混合物を溶融し、急速冷却
を施して非晶質体化した後、この非晶質体に熱処
理を施して保磁力の制御された置換型マグネトプ
ランバイト型フエライト微粒子を析出させ、しか
る後ガラスマトリツクスよりその微粒子を抽出す
る工程からなる磁性粉の製造方法において、非晶
質体化により得られた厚さ80μm以下の非晶質を
昇温速度200℃/時間以下で加熱昇温した後、得
られる微粒子のn値が6.2以下を示す温度で加熱
保持し、最大粒径が0.3μm以下の微粒子を作成す
ることを特徴とする高密度磁気記録用磁性粉の製
造方法。 2 マグネトプランバイト型フエライトがバリウ
ムフエライトであることを特徴とする特許請求の
範囲第1項記載の高密度磁気記録用磁性粉の製造
方法。 3 ガラス形成物質がB2O3であることを特徴と
する特許請求の範囲第1項又は第2項記載の高密
度磁気記録用磁性粉の製造方法。 4 保磁力制御のための置換成分がCo−Tiであ
ることを特徴とする特許請求の範囲第1項、第2
項又は第3項記載の高密度磁気記録用磁性粉の製
造方法。 5 非晶質体化により得られた非晶質の厚みが
60μm以下であることを特徴とする特許請求の範
囲第1項記載の高密度磁気記録用磁性粉の製造方
法。 6 加熱昇温速度が100℃/時間以下であること
を特徴とする特許請求の範囲第1項記載の高密度
磁気記録用磁性粉の製造方法。
[Claims] 1. A glass-forming substance and a compound with the general formula AO·nFe 2 O 3 (where A is at least one selected from Ba, Sr, and Pb, or a part of these is replaced with Ca) A raw material mixture containing the basic components of magnetoplumbite ferrite shown in In a method for producing magnetic powder, which comprises a step of precipitating substituted magnetoplumbite-type ferrite fine particles with controlled coercive force through heat treatment, and then extracting the fine particles from a glass matrix, The obtained amorphous material with a thickness of 80 μm or less is heated at a heating rate of 200° C./hour or less, and then heated and held at a temperature where the n value of the resulting fine particles is 6.2 or less, and the maximum particle size is 0.3 μm. A method for producing magnetic powder for high-density magnetic recording, characterized by producing the following fine particles. 2. The method for producing magnetic powder for high-density magnetic recording according to claim 1, wherein the magnetoplumbite-type ferrite is barium ferrite. 3. The method for producing magnetic powder for high-density magnetic recording according to claim 1 or 2, wherein the glass-forming substance is B 2 O 3 . 4 Claims 1 and 2, characterized in that the replacement component for coercive force control is Co-Ti.
A method for producing magnetic powder for high-density magnetic recording according to item 1 or 3. 5 The thickness of the amorphous material obtained by amorphization is
The method for producing magnetic powder for high-density magnetic recording according to claim 1, wherein the particle size is 60 μm or less. 6. The method for producing magnetic powder for high-density magnetic recording according to claim 1, wherein the heating temperature increase rate is 100° C./hour or less.
JP56139663A 1981-09-07 1981-09-07 Manufacture of magnetic powder for high density magnetic recurding medium Granted JPS5842203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56139663A JPS5842203A (en) 1981-09-07 1981-09-07 Manufacture of magnetic powder for high density magnetic recurding medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56139663A JPS5842203A (en) 1981-09-07 1981-09-07 Manufacture of magnetic powder for high density magnetic recurding medium

Publications (2)

Publication Number Publication Date
JPS5842203A JPS5842203A (en) 1983-03-11
JPH0312442B2 true JPH0312442B2 (en) 1991-02-20

Family

ID=15250514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56139663A Granted JPS5842203A (en) 1981-09-07 1981-09-07 Manufacture of magnetic powder for high density magnetic recurding medium

Country Status (1)

Country Link
JP (1) JPS5842203A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151340A (en) * 1983-02-16 1984-08-29 Fuji Photo Film Co Ltd Manufacture of magnetic ferrite powder for magnetic recording
JPS59207605A (en) * 1983-05-11 1984-11-24 Tohoku Metal Ind Ltd Manufacture of powder for magnetic recording
JPS6065728A (en) * 1983-09-19 1985-04-15 Toshiba Corp Production of magnetic powder
JPS6077129A (en) * 1983-09-30 1985-05-01 Toshiba Corp Magnetic powder of barium ferrite
JPS62216920A (en) * 1986-03-14 1987-09-24 Dowa Mining Co Ltd Magnetoplumbite type ferrite powder and its production
JP4675581B2 (en) * 2004-05-31 2011-04-27 Agcテクノグラス株式会社 Method for producing hexagonal ferrite magnetic powder
JP4530733B2 (en) * 2004-06-21 2010-08-25 富士フイルム株式会社 Hexagonal ferrite magnetic powder, method for producing the same, and magnetic recording medium

Also Published As

Publication number Publication date
JPS5842203A (en) 1983-03-11

Similar Documents

Publication Publication Date Title
JPS6136685B2 (en)
JPS6015577B2 (en) Method for producing magnetic powder for magnetic recording
US4493779A (en) Process for the preparation of ferrite magnetic particulate for magnetic recording
JPH0239844B2 (en)
JPH0312442B2 (en)
JPS6077129A (en) Magnetic powder of barium ferrite
JP2607456B2 (en) Magnetic powder for magnetic recording and method for producing the same
JP3083891B2 (en) Magnetic powder for magnetic recording medium and method for producing the same
JP2802653B2 (en) Magnetic powder for high-density magnetic recording and method for producing the same
JP2691790B2 (en) Method for producing magnetic powder for magnetic recording medium
JPS6127329B2 (en)
JPS644330B2 (en)
JPS6323133B2 (en)
JPS6181608A (en) Preparation of powder of hexagonal ferrite particle
JPS6340302A (en) Magnetic powder for high-density magnetic recording
JPH069167B2 (en) Method for producing hexagonal ferrite powder
JPH05326233A (en) Production of magnetic powder
JPS6353134B2 (en)
JP2717735B2 (en) Method for producing magnetic powder for magnetic recording medium
JP2717720B2 (en) Method for producing magnetic powder for magnetic recording medium
JPH0685370B2 (en) Method for producing hexagonal ferrite powder
JPS6194303A (en) Manufacture of hexagonal system ferrite particle powder
JPH0341964B2 (en)
JPH0727809B2 (en) Method for producing hexagonal ferrite powder
JPS6121921A (en) Preparation of magnetic powder