JPS5842203A - Manufacture of magnetic powder for high density magnetic recurding medium - Google Patents

Manufacture of magnetic powder for high density magnetic recurding medium

Info

Publication number
JPS5842203A
JPS5842203A JP56139663A JP13966381A JPS5842203A JP S5842203 A JPS5842203 A JP S5842203A JP 56139663 A JP56139663 A JP 56139663A JP 13966381 A JP13966381 A JP 13966381A JP S5842203 A JPS5842203 A JP S5842203A
Authority
JP
Japan
Prior art keywords
less
particles
amorphous
magnetic recording
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56139663A
Other languages
Japanese (ja)
Other versions
JPH0312442B2 (en
Inventor
Osamu Kubo
修 久保
Tsutomu Nomura
野村 力
Masahiro Fukazawa
深沢 昌広
Tadashi Ido
井戸 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56139663A priority Critical patent/JPS5842203A/en
Publication of JPS5842203A publication Critical patent/JPS5842203A/en
Publication of JPH0312442B2 publication Critical patent/JPH0312442B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • G11B5/70678Ferrites

Abstract

PURPOSE:To obtain magnetic powder for high density magnetic recording medium by heating and maintaing amorphous magnetic powder made from glass material and a magnetoplumbite-type ferrite at a temperature at which its particles have an (n) value of less than the specified value and forming particles from it. CONSTITUTION:A raw material mixture including glass material of such as B2O3 and B2O3-SiO2, the fundamental component of a magnetoplumbite-type ferrite given by a general formula Ao.nFe2O3 (where A is chosen from Ba, Sr or Pb and is partically substitutable for Ca) and its substitution component for contralling the coercive force, is molten and colled rapidly to obtain amorphous material. This amorphous material is then heat-treated at a certain temperature below 200 deg.C for 1hr or less at which its particles have an (n) value of less than 6.2, precipitating substitution-type magnetoplumbite type ferrite particles having the controlled coercive force. These particles are extracted from the glass matrix and are formed into particles having a maximum particle diameter of less than 0.3mum, which can be used to form a recording medium for high density magnetic recording.

Description

【発明の詳細な説明】 本発明は、高書度記錐用磁性粉の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for producing magnetic powder for high-grade drills.

従来、ビデオ紀鍮、デジタル記鎌等に用いられている磁
気記録媒体は、r −F@lO1,Crag等の針状粒
子を支持体上に塗布配向させたものが広く用いられてい
る。また、近年記録v11度の一層の向上が菫まれてお
p1記録の最小単位もナプ建クロンの領域に入夛つり参
る。このような高f11度記舜において、十分な8/N
比を得るためKは磁+!に11の粒径を最小記録単位よ
〕も十分小さくする必要がある。
BACKGROUND ART Conventionally, magnetic recording media used in video recording devices, digital recorders, etc. are widely used in which acicular particles such as r-F@lO1, Crag, etc. are coated and oriented on a support. In addition, in recent years, with the further improvement of record v11 degrees, the smallest unit of p1 record has entered the realm of napkin chron. In such a high f11 degree recording, sufficient 8/N
To obtain the ratio, K is magnetic+! In addition, it is necessary to make the particle size of 11 particles sufficiently smaller than the minimum recording unit.

たとえばビデオ記録の場合には、最短記録波長的1μm
に対して約0.3μmの長さを有する磁性粉が必要であ
る。とζろで、上記r−re@o、、 Cr01O! 
51針状粒子Kji−いては、十分な磁気特性をもち、
かつ0.3zm以下の長さを有する粒子を得ることは難
かしく、現在よ〕高密度の記録に対して十分対応できな
いことが明らかとなりた。
For example, in the case of video recording, the shortest recording wavelength is 1 μm.
Magnetic powder having a length of approximately 0.3 μm is required. And ζro, the above r-re@o,, Cr01O!
51 acicular particles Kji- have sufficient magnetic properties,
Furthermore, it has become clear that it is difficult to obtain particles having a length of 0.3 zm or less, and that it is not possible to sufficiently cope with high-density recording at present.

一方、現状の記録媒体では、磁気記録層に一軸異方性を
付与し、その磁化容易軸方向に、信号を記録させてお)
、この九めに、−軸性の磁化容易軸を有する礁atを、
記録方向とその容易軸方向が平行となるように、塗布配
向させ九謀体が一般KJ’l−られる。この−軸性O磁
化容鳥軸を有する粒子としてはs r −F@vor、
 Cr偽等のほかに、Baミツツイト等に代表される六
方晶系フェライトが有望で参る。しかしこの種の7エツ
イトは、保磁力が大暑す「、そのま壕では、ヘッドによ
る記録が十分に行なわれない丸めに原子置換を施して、
保磁力の制御を行う必要がある。ところで、この種07
mライト系磁性粉においても、磁性粉の粒径が高書嵐記
#に遍し九範囲で6υながら、磁気特性の優れた磁性粉
を得ることは困−であうた。
On the other hand, in current recording media, the magnetic recording layer is given uniaxial anisotropy, and signals are recorded in the direction of the axis of easy magnetization.
, in this ninth position, a reef at which has a -axial easy axis of magnetization,
The coating is generally oriented so that the recording direction and the easy axis direction are parallel to each other. As a particle having this -axis O magnetization bird axis, s r -F@vor,
In addition to Cr pseudo, hexagonal ferrites such as Ba mitsutite are promising. However, this type of 7-piece has a very high coercive force, and if it is left in the trench, the head will not be able to record sufficiently.
It is necessary to control the coercive force. By the way, this species 07
Even in the case of m-lite magnetic powder, it was difficult to obtain magnetic powder with excellent magnetic properties, although the particle size of the magnetic powder was 6υ in the nine ranges of Kosho Ranki #.

本発明者らは、高密度磁気記録用磁性粉として、粒gI
kが張3声鴫以下で、かつ塗料に均一に分散させる丸め
Kll*されろところの、焼結凝集のない、機械的によ
く分離され友、置換型六方晶系フェライト(置換臘マグ
ネトプツyバイト臘)岑りィト)を、提供すぺく、種々
の実験研究を行った織果、ガラス形成物質とフェライト
原料とを温合溶融、非晶質化し熱処理を施ζしてガラス
マトリックス中にマダネトプクンバイトflayエツィ
ト黴粒子を析出させ4zわゆるガラス結晶化法において
、特定の熱処理条件を採用することによυ、高密度磁気
記・鍮に必要な最大粒径が0.3zm以下で粒度分布が
均−碌、かつ磁気IIl#性の優れ九ll性肴が得られ
ることを見出し、本発明を完成するに至りたものである
The present inventors have developed grain gI as magnetic powder for high-density magnetic recording.
It is a substituted hexagonal ferrite (substituted hexagonal ferrite) which is mechanically well separated without sintering agglomeration, and has a k of less than 3 yen, and is rounded to be uniformly dispersed in the paint.臘)岑RITO), which we have conducted various experiments and research on, is made by heating and melting the glass-forming substance and ferrite raw material, making it amorphous, and then heat-treating it to create a matrix of microorganisms in the glass matrix. By precipitating netopkumbite mold particles and adopting specific heat treatment conditions in the so-called glass crystallization method, the maximum grain size required for high-density magnetic recording and brass is 0.3zm or less. The inventors have discovered that it is possible to obtain a magnetic dish with uniform distribution and excellent magnetic properties, leading to the completion of the present invention.

すなわち、本発明はガラス形成物質と、一般式ム0.a
F@tOn(ただしAFiBa、Sr、PbfJ中から
選ばれた少なくとも一種で、一部Caと置換し得る)で
示されるマグネドブクンバイト臘フェライトの基本成分
及び保磁力制御のための置換成分を含む原料混合吻を溶
融し、急速冷却を施して非晶質体化し九後、この非晶質
体に熱処理を施して、保磁力の制御され九、置換量マグ
ネドグクンパイ) 117工ツイト黴粒子を析出させ、
しかる後、ガラスマトリックスよ〕、その微粒子を抽出
する工!かもなる磁気記録用磁性粉の製造方法において
、前記非晶質を昇温速度200℃/時間以下で昇温加熱
し丸後、得られる微粒子のn値が6.2以下を示すよう
な温度で加熱して最大粒径が0.3μm以下の微粒子を
作製する高密度磁気記録用磁性粉の製造方法に関する4
0である。
That is, the present invention comprises a glass-forming material and a compound having the general formula 0. a
Contains the basic component of magnetobukumbite ferrite represented by F@tOn (at least one selected from AFiBa, Sr, and PbfJ, which can be partially replaced with Ca) and a replacement component for coercive force control. The raw material mixture is melted and rapidly cooled to form an amorphous body.After that, this amorphous body is heat-treated to control the coercive force and the amount of substitution. precipitate,
After that, the glass matrix], the process to extract the microparticles! In the method for producing magnetic powder for magnetic recording, the amorphous material is heated at a heating rate of 200°C/hour or less, and then heated at a temperature such that the n value of the resulting fine particles is 6.2 or less. 4 Concerning a method for producing magnetic powder for high-density magnetic recording by heating to produce fine particles with a maximum particle size of 0.3 μm or less
It is 0.

本発明を詳JIKII明する0本発明方法によって損遺
されるマグネドグ2ンバイト減7エ2イトは、一般式ム
0・n((F・*−xMx)宜Os)で表わされるもの
である0式中、ムはBm 、 8r 、 Pbから選ば
れえ少なくとも1種の元素でToシ、さらにその1部を
Caで置換することもできる。好ましい元素はBmであ
る。
The present invention will be explained in detail in detail. The magnetog2mbite reduction 782ite that is lost by the method of the present invention is expressed by the general formula M0・n ((F・*−xMx) y Os)0 In the formula, M is selected from Bm, 8r, and Pb, and at least one element can be substituted with To, and a part of it can also be replaced with Ca. A preferred element is Bm.

1*、Mはマグネトブランバイト盟フェ2イトの保磁力
を制御する丸めの置換成分でTo夛、C01T工。
1*, M is a rounded substitution component that controls the coercive force of phe2ite in the magnetoblumbite group.

Lm、Za、G@、NI+、Zr、V、La&どを単独
、あるいは2種以上を併用する。具体的にはIn 、 
Co−Tl 、 Co−Zr。
Lm, Za, G@, NI+, Zr, V, La & etc. may be used alone or in combination of two or more. Specifically, In,
Co-Tl, Co-Zr.

L嘱 Co−(h 、 ee−’Ik、 Co−V、 ZEI
−TI 、 Zn −V 、 Zn−(h 、 k−Z
r 。
L嘱Co-(h, ee-'Ik, Co-V, ZEI
-TI, Zn -V, Zn-(h, k-Z
r.

Zm −Nb #111Ff to tL ルカ、*に
好−*しくは、Co−Ti。
Zm -Nb #111Ff to tL Luca, *preferably-* Preferably, Co-Ti.

C・−Zrである。この置換元素の置換量(式中Xで表
わされる)を制御することにより所望の保磁力を有する
am、tを得ることができる。
It is C.-Zr. By controlling the amount of substitution (represented by X in the formula) of this substitution element, am and t having desired coercivity can be obtained.

を九nはム0と(Fat−xMXhOsとの構成比−T
’S、D鳳論的Ka8の値をとることが完全なマグネト
プランパイ)臘フェライトを得る点から望ましいが実用
上&0−12であれば充分である。
9n is the composition ratio of Mu0 and (Fat-xMXhOs-T
It is desirable to take a theoretical value of Ka8 from the viewpoint of obtaining a perfect magnetopran ferrite, but for practical purposes, a value of &0-12 is sufficient.

本発明の展進方法の1slRIIIとして、上記ガラス
形成物質と、マグネドブクンバイトJi17 s ’)
 4トの基本成分および置換成分からなる原料混合物と
を温合溶融する。この原料混合物は、上記一般式で示さ
れるマグネドグクンバイトfi7エ2イトを構成する各
金属元素の酸化物、炭酸塩等の混合物もしくはそれらの
混合物を、固相反応させ、あらかじめフェツイト化させ
なものであ〉、そのフJIクイトとしての配合量は一般
式におけるXjPよびnの値によ)決定される。マグネ
ドグクンパイ) 117 xフィト成分とガラス形成物
質の配合割合は、マグネドグクンパイ) 型7 g ’
)イト成分のうちのAOとガラス形成物質とが等モル量
よ)、ガラス形成物質が下まわるsRの量比で配合され
る。
As 1slRIII of the development method of the present invention, the above-mentioned glass-forming substance and magnedobucumbite Ji17s')
A raw material mixture consisting of four basic components and a substituted component is heated and melted. This raw material mixture is made by subjecting oxides, carbonates, etc. of each metal element constituting the magnetogumbite fi7e2ite represented by the above general formula, or a mixture thereof, to a solid phase reaction, and then converting them into fetuite in advance. The amount to be added as a compound is determined by the values of XjP and n in the general formula. Magnedogukunpai) 117
) Among the light components, AO and the glass-forming substance are mixed in equimolar amounts), and the glass-forming substance is blended in a lower sR ratio.

温合溶融は、原料混合物を一般に周知の得會機で混合し
丸後、白金等の不活性な容器中で高周波加熱等これも周
知の手段で加熱溶融する。溶融時の雰囲気は空気中でさ
しつか見ない。
In heating and melting, the raw material mixture is generally mixed in a well-known machine and then heated and melted in an inert container made of platinum or the like using a well-known means such as high-frequency heating. The atmosphere at the time of melting is only briefly observed in the air.

本発@において用いるガラス形成物質とは、マグネトブ
ランバイト型フェライトの各成分と共に!ラス質を形成
する#科で6夛、具体的にはB、偽。
The glass-forming substances used in this publication are the components of magnetobrambite ferrite! There are 6 members of the #family that form the rasp, specifically B, false.

八〇@・BmOa−84へ系等が挙げられるが、B晶が
特に静合し−。
80@・BmOa-84 system etc. are mentioned, but the B crystal is especially statically combined.

次いで、この溶融物を急速冷却して非晶質化する。非晶
質化は、例えば高速回転している金属g−ル、あるiは
余興ドラム中に溶融物を滴下する−わゆる単歎−ル法、
圧延急冷法あるいは遠心急冷流上して全知の手段を採用
することができる。
This melt is then rapidly cooled to become amorphous. Amorphization can be achieved, for example, by dropping the molten material into a high-speed rotating metal grate or an entertainment drum - the so-called single grate method.
Any known means such as rolling quenching or centrifugal quenching may be employed.

得られる非晶質体は厚さ80声m以下脣に好ましくは@
Ops以下とすることが必要である。
The obtained amorphous body preferably has a thickness of 80 meters or less.
It is necessary to keep it below Ops.

この厚さがJIG/linを越えると、急冷効果が十分
でなく次工薯の藤処1を施す前に、非晶質体中に、すで
にマグネトブランバイト型フェライトが一部#出してお
)、熟処JIKようて、j/aンオーダーの@大粒子に
成長する丸め、好ましくな−。
If this thickness exceeds JIG/lin, the quenching effect will not be sufficient and some magnetobrambite ferrite will already come out in the amorphous body before the next step, Fujidokoro 1) , Judokoro JIK Yote, rounding that grows into large particles of J/A order, is unfavorable.

得られ大神晶質体中には、マグネドグ2ンパイ) 11
7 xライトを構成する各元素は含まれているものの、
未だ結晶化するに至りておらず、これを熱処理すること
Kよりて結晶化が促進される。ガクスマトリックス中K
かけるマグネトブランバイト型フェライトの結晶化の機
構自体は必ずしも明確になってはいないが、おおよそ次
の通シで参ろうと虞欄される。
In the obtained Ogami crystalloid, there are 2 Magnedogs) 11
7 Although each element that makes up x light is included,
It has not yet reached the point of crystallization, and by heat-treating it, crystallization is promoted by K. Gacus Matrix Medium K
The crystallization mechanism of magnetobrambite-type ferrite is not necessarily clear, but it is likely to be explained in the following passage.

即ち非晶質から、フェライト黴粒子が析出し始める低温
領域ではまずF・101成分を中心として横が形成され
るが、この核もしくは微結晶は、化学量論的組成よりも
異常KF・gos成分が多い。即ちマグネドグ2ンパイ
)IIの一般弐ム0・nF@*oaK>けるaが6より
はゐかに大きい組成となってお〉。
In other words, in the low-temperature region where ferrite mold particles begin to precipitate from an amorphous state, horizontal layers are first formed centering on the F-101 component, but these nuclei or microcrystals are composed of abnormal KF-gos components rather than the stoichiometric composition. There are many. That is, the composition of Magnedog II is much larger than 6 for the general value of 0.nF@*oaK.

この時点では、正常な7エライト格子を構成していない
ものとみられる。そしてこれらの微結晶の飽和磁化、保
磁力ともに、本来の値よ)、はるかく小さ−のである。
At this point, it appears that a normal heptadite lattice is not formed. Both the saturation magnetization and coercive force of these microcrystals are much smaller than their original values.

しかし、熱処理温度を高めてゆくに・従がい、nが本来
の値に近すき、磁気q#性4良好となる。本発明者らの
検討の結果十分な磁気4I性を有するためKFi、少な
くとも上記フエ2′イトの鳳が亀2以下となるような温
度で熱処理することが必要で番ることが明らかとなりた
。又この温度は、一般に、ガラス結晶化温度と、融点の
中間付近に専在した。
However, as the heat treatment temperature is increased, n becomes closer to the original value and the magnetic q# property 4 becomes better. As a result of studies conducted by the present inventors, it has become clear that in order to have sufficient magnetic 4I properties, it is necessary to heat-treat KFi at a temperature such that at least the above-mentioned Fe2'ite has a temperature of 2 or less. In addition, this temperature was generally located somewhere between the glass crystallization temperature and the melting point.

棗するに、本発明の意図するところは、析出すゐ粒子の
磁気**を高める丸め、できるだけ高い温度で、熱処理
を膣し、一方では、高温熱処理による、Il!径の種火
化を紡ぐ丸めに、昇温速度を小さくして、粒成長を抑制
しようとするものである。
In short, the intention of the present invention is to round the precipitated particles to increase their magnetism, heat-treating them at as high a temperature as possible; The aim is to suppress grain growth by reducing the heating rate and rounding up the grain diameter.

昇温速度を小さくすることにより、微粒子化され為履−
は、低温で、長時間熱処理される丸め、核が多欲できる
こと、及び、急激な加熱に比較して、sクスの粘性が高
く、粒成長しにくいためと考えられ為。
By reducing the heating rate, the particles are made into fine particles.
This is thought to be due to the fact that S-cus is heat-treated at low temperatures for a long period of time, which results in rounding and the formation of nuclei, and that S-cus has a higher viscosity and is less likely to grow grains compared to rapid heating.

本発@における熱処理は、200℃/時間以下の昇温速
度で外温するように加熱し、得られる微粒子のl値が&
2以下を示すような温度に適したらその温度で一定時間
保持し結晶化が充分進行した段階で加熱を修止すること
Kよりて行なわれる。この際昇温速度が200υ/時間
を上まわると得られる結蟲O粒鷹分嶺の幅が広が〕、最
大粒径を高密度記ME必要なへ3μm以下とするために
は保持温度を曽蟲化温IIL11度の比較的低温に設定
する必要があ)、−卵礁化、保持力とも満足すべき特性
が得られない。これに対してzoo’0/時間以下の昇
温速度で加熱し九場合には、結晶の粒度分布の幅が狭く
なるため、保持温度を膠点く近い温度に設定することか
でi、最大粒径が0.3μmを越えることなく充分な磁
気特性を有する磁性粉が得られる。なお、この昇温速度
の下限にりいて、これを特に限定する理由性ないが、製
造工1の作業性の点からssυ/時間以上であることが
望ましい。n値が&、2以下を示すような温度とは、前
述しえようにガラス結晶化温度と融点との中間付近の温
度であ)、一般的には6sO℃以上の温度である。まえ
、この温IRK保持する時間は、少なくとも30分であ
ることが必要である。
The heat treatment in this development @ is performed by heating externally at a temperature increase rate of 200°C/hour or less, and the l value of the resulting fine particles is &
When the temperature is suitable, such that the temperature is 2 or less, the temperature is maintained for a certain period of time, and heating is stopped when crystallization has sufficiently progressed. At this time, if the temperature increase rate exceeds 200 υ/hour, the width of the obtained grain ridges will increase], and in order to keep the maximum grain size to 3 μm or less than the required high density grain, the holding temperature must be adjusted. It is necessary to set the temperature at a relatively low temperature of 11 degrees Celsius), - Satisfactory characteristics cannot be obtained in terms of egg formation and holding power. On the other hand, when heating at a temperature increase rate of less than zoo'0/hour, the width of the grain size distribution of the crystals becomes narrower, so setting the holding temperature to a temperature close to the solidification temperature will increase the maximum temperature. Magnetic powder having sufficient magnetic properties can be obtained without the particle size exceeding 0.3 μm. Although there is no reason to specifically limit the lower limit of the temperature increase rate, from the viewpoint of the workability of the manufacturing worker 1, it is desirable that the temperature increase rate be at least ssυ/hour. The temperature at which the n value is &,2 or less is, as mentioned above, a temperature near the middle between the glass crystallization temperature and the melting point), and is generally a temperature of 6 sO<0>C or more. First, the time for holding this warm IRK must be at least 30 minutes.

次いで熱処理された非晶質体を希酸処理することくより
、ガラスマトリックスを溶解除去し、マグネトブランバ
イト証フエツィト黴粒子を分離する。この際用いられる
希酸としては、例えば希酢酸、希塩酸、希硝酸等の有機
酸および無機酸が挙げられる。この希酸処理によυjガ
ラスマトリックス除去され、マグネトブテンバイト!1
7!ツィトの微粒子が最大粒子a O,Sμm以下の黴
肴状として得られ、これを常法によ)乾燥□することに
よって機械的に分離され九磁性粉を製造できる。
Next, the heat-treated amorphous body is treated with a dilute acid to dissolve and remove the glass matrix and separate the magnetobrambite-proof huezite mold particles. Examples of the dilute acids used in this case include organic acids and inorganic acids such as dilute acetic acid, dilute hydrochloric acid, and dilute nitric acid. This dilute acid treatment removes the υj glass matrix and turns it into a magnetobutene bite! 1
7! Fine particles of T. nigra are obtained in the form of a mold with a maximum particle size of less than a O, S μm, which is mechanically separated by drying (by a conventional method) to produce a nine-magnetic powder.

このようKして得られた磁性粉は、樹脂バイン〆−s剤
1分歌剤、その他の添加剤と共に非磁性支持体上Km布
し、磁気テープ等の磁気記帰媒体を側進することができ
る。この磁気記鍮媒体は、従来−mK用いられているr
 −re l o14P Crom等の針状軟子を用い
丸磁気記鎌織体と比較して極めて高書度の磁気記鍮が可
能となることが明らかとなっ九。
The magnetic powder thus obtained is spread over a non-magnetic support along with a resin binder, a binder agent, and other additives, and a magnetic recording medium such as a magnetic tape is passed sideways. I can do it. This magnetic recording medium is r
It has become clear that it is possible to use needle-like soft particles such as -re l o14P Chrome to produce magnetic recording materials with extremely high writing accuracy compared to round magnetic recording materials.9.

以下、実施例によ〕本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1 保磁力制御され九六万晶系7エライトとして、構成原子
で桑る鉄の一部をTムーCo原子対でflllL九マダ
ネトプテンパイト1lBaフェライトを選び、ガラス形
成物質としてB1Osを選択した0作成した非Jk 質
JIIE ハB@O@−31,04#% 、 BaO・
= 39.04 # % 。
Example 1 As coercivity-controlled 960,000-crystalline 7-elite, a part of iron is selected as a constituent atom, and 1lBa ferrite is selected as a TmuCo atom pair, and B1Os is used as a glass-forming substance. Selected 0 created non-Jk quality JIIE HaB@O@-31,04#%, BaO・
= 39.04 #%.

F@會Or” 2LS@ Jl k % 、 Tl01
”・3.72 モk % 、 CoO+++ 3.72
令々鴨である。非晶質作成は、まず原料を混合機にて十
分混合し、この混合物を先端にノズルを有する白金側容
器に仕込んだ。次いで、その温合−を高周波加熱ヒータ
ーにて、13!$0’OK加熱して溶解した後、上記白
金製容器上方より、ガス圧をかけて、混合溶解物を直I
Ik2(m、回転数100Or、p、mの双ロール上に
注いで、急冷し、厚さ60戸mの非晶質すメンを作成し
た。この非晶質の結晶化温度は約630℃であった。こ
の非晶質を電気炉中にて昇温適度200℃/時間以下、
熱処理温度650℃以上で熱処理を施した後、20%酢
酸溶液にて7工2イト粒子を抽出した。第1表に得られ
た数種の試料の平均粒II(Dm)、最大粒径(Dnu
x)、粒度分布から求め喪中値幅(ΔD)をDmで像し
九億(ΔD/Dm)、飽和磁化(6p) *保磁力(H
c)を示す。
F@kaiOr” 2LS@Jl k %, Tl01
”・3.72 Mok%, CoO+++ 3.72
It's a duck. To create the amorphous material, first, the raw materials were sufficiently mixed in a mixer, and this mixture was charged into a platinum side container having a nozzle at the tip. Next, heat the mixture using a high-frequency heater for 13 seconds. $0'OK After heating and melting, gas pressure is applied from above the platinum container to directly pour the mixed melt.
Ik2 (m) was poured onto twin rolls with a rotational speed of 100 Orp, p and m, and rapidly cooled to create an amorphous glass with a thickness of 60 m. The crystallization temperature of this amorphous material was approximately 630°C. This amorphous material was heated in an electric furnace at a moderate temperature of 200°C/hour or less.
After heat treatment at a heat treatment temperature of 650°C or higher, the 7-2ite particles were extracted with a 20% acetic acid solution. Table 1 shows the average grain II (Dm), maximum grain size (Dnu
x), obtained from the particle size distribution and imaged the mid-range value width (ΔD) with Dm, 900 million (ΔD/Dm), saturation magnetization (6p) * Coercive force (H
c).

比較例1 実施例1で作成した非晶質を昇温速度Zoo℃/時間以
上、熱処塩温度650℃以上に″C略処理を行う丸。
Comparative Example 1 A circle in which the amorphous material prepared in Example 1 was subjected to approximately ``C'' treatment at a heating rate of Zoo°C/hour or higher and a heat treatment salt temperature of 650°C or higher.

得られ丸数種の試料の#特性を実施例1と比較して第1
11に示した。
Comparing the #characteristics of several kinds of samples obtained with Example 1,
11.

実施例2 夷亀例1と同様な方法で、B雪Oa・・・3翫04ル鴨
Example 2 In the same manner as in Example 1, B snow Oa... 3 lines 04 le duck.

kiao −・−4(LO4# % 、 Ih@0@=
 1&804 #% 、 TiO2−= 3.104に
%、 Coo・・・3L104−ル稀なるガラス組成の
非晶質を作成し丸。この非晶質を電気炉中で、昇温速度
200℃/時間以下、熱処理温度650℃以上で熱処理
を施し、実施例1と同様に微粒子をガラスマトリックス
より抽出しえ、得られ九数種の試料の緒特性を第1真に
示す。
kiao −・−4 (LO4#%, Ih@0@=
1 & 804 #%, TiO2-=3.104%, Coo...3L104-R creates an amorphous glass composition with a rare composition. This amorphous material was heat-treated in an electric furnace at a heating rate of 200°C/hour or less and a heat treatment temperature of 650°C or more, and fine particles were extracted from the glass matrix in the same manner as in Example 1. The characteristics of the sample are shown in the first true.

比較例2 実施例2で作成し大神晶質を電気炉中で、昇温遮IIL
20G℃/時間以上、熱処理温度650℃以上で熱処理
を施し九。得られ九数種の試料の緒特性を調べ実施例2
と比較して第1表に示した。
Comparative Example 2 The Ogami crystal produced in Example 2 was heated in an electric furnace and heated through IIL.
Heat treated at 20G°C/hour or more at a heat treatment temperature of 650°C or more9. Examining the characteristics of nine kinds of samples obtained Example 2
A comparison is shown in Table 1.

以下余白 第1表から明らかなように、一般に抽出した微粒子のn
が約賑2よシ小さい場合に、十分な飽和磁化が得られて
いることがわかる。しかし比較例でみてわかるように昇
温速度が30■/時間程度になると、−が&2以下を示
すような高い温度では、粒径が楓大化して、0.3μm
以上の粒径を有する粒子が存在する。しかし昇温遍g 
200℃/時間以下では、nが賑2以下で高い飽和磁化
を有し、かつ、最大粒径もα3ptt*以下に制御され
た微粒子が得られることがわかる。
As is clear from Table 1 in the margin below, n of the extracted fine particles is generally
It can be seen that sufficient saturation magnetization is obtained when is smaller than about 2. However, as can be seen from the comparative example, when the temperature increase rate is about 30 μ/hour, the particle size increases to 0.3 μm at high temperatures where - is less than &2.
There are particles having a particle size of the above particle size. However, the temperature increase
It can be seen that at 200° C./hour or less, fine particles having high saturation magnetization with n of 2 or less and a maximum particle size controlled to α3ptt* or less can be obtained.

さらにこれらの微粒子を塗料化し、フィルム上に塗布し
て、磁気テープを試作し、粒径約0.3μmのr−F・
most”塗布した磁気テープと、特性比較を行り九。
Furthermore, these fine particles were made into paint and coated on a film to make a prototype magnetic tape.
The characteristics were compared with the magnetic tape coated with "most".

l!鍮波数I X 1G’(m−における再生出力・(
リングヘッドによる記鍮再生)を第1表KJt較する。
l! Brass wave number I X 1G' (reproduction output at m- (
Compare the recording brass regeneration with a ring head) in Table 1 KJt.

同表よJl zoo℃/時間以下で熱処理を立りた、麿
〈&20試料は、出力特性において、従来のy −Fe
10gをしovhでいる。411に昇温速度100℃/
時間以下で熱処理し九試料Oテープ特性がすぐれている
ことがわかる。
According to the same table, the Maro & 20 sample, which was heat-treated at a temperature of less than
I weigh 10g and stay ovh. 411 heating rate 100℃/
It can be seen that the nine samples had excellent tape characteristics after being heat-treated for less than an hour.

実施例3 II2真に示すような姐成および熱感ffi鍮件で、実
施例1と同様な方法で磁**を製造した。その結果、同
表に示したように−ずれも粒径が0.3声m以下でTo
〉、家たHcは9000@以下、#tは57〜59・1
m1/lの値を示し九。
Example 3 A magnet** was produced in the same manner as in Example 1, with the same temperature and heat sensitivity as shown in II2. As a result, as shown in the same table, when the particle size was less than 0.3 meters, the To
〉, Hc is below 9000@, #t is 57-59・1
9. Indicates the value of m1/l.

比較例3 実施例1の試料1について、非晶質体化して得られる非
晶質の厚みを100声mとし九はかは実施例1と同様な
方法で磁性肴を製造しえ、その緒釆得られた1lIit
は最大sa2μm平均粒孤平均粒重で春υ高書直Ie錐
用としては適轟でなかつた。
Comparative Example 3 Regarding Sample 1 of Example 1, if the thickness of the amorphous material obtained by converting it into an amorphous body was 100 m, a magnetic dish could be produced in the same manner as in Example 1, and the The result was 1lIit.
With a maximum sa of 2 μm and an average particle weight, it was not suitable for use with a spring υ Takasho straight Ie drill.

以下余白 以上の結果よシ、@!価がo、spm以下に制御され、
かつ磁気特性の良好な置換Jlvグネトプクンバイト臘
7募ライトは、構在のr−F@l偽粒子粒子も、さらに
高l!度記帰に適し九粉末となシ得ること、及びそOよ
うな微粒子をガラス結晶化法で作製する丸めには、上記
の熱処理条件が必要であることが明らかである。
The results below are more than the margins, @! The value is controlled to below o, spm,
And the replacement Jlv Gnetopkumbite 臘7 recruitment light with good magnetic properties also has a higher l! It is clear that the above-mentioned heat treatment conditions are necessary to obtain a powder suitable for hardening and for rounding such fine particles to be produced by the glass crystallization method.

Claims (1)

【特許請求の範囲】 0 (1)  ガラス形成物質と、一般式杏1−nF@鵞0
. (ただし、AはBa 、 Sr、、 Pbの中から
選ばれた少なくとも1種、あるいはこれらの一部をCm
で置換したも換成分を含む原料混合物を溶融し、急速冷
却を施して非晶質体化した後、との非晶質体に熱処理を
施して保磁力の制御された置換臘マグネトブランバイト
臘フェツイト徽粒子を析出させ、しかる後ガラスマトリ
ックスよ)その微粒子を抽出する工程からなるa**の
製造方法において、非晶質体化によ)得られた厚さ80
μm以下の非晶質を昇温遭jl1200℃/時間以下で
加熱昇温した後、得られる微粒子のn値が6.2以下を
示す温度で加熱保持し、最大粒通が0.3声m以下の微
粒子を作成することを特徴とする高密度磁気記鎌用磁a
Sの製造方法。 (冨)マダネトプクンパイト!1lL7エツイトがパリ
クム7zツイトであることを特徴とする特許請求O範囲
第1項記載の萬密度磁気記碌用磁性粉の製造7J法。 (S)  Sラス形成物質がa、O,であることを特徴
とする特許−求0@IIIIE 1項又は第2項記載の
高密度磁気記−m**肴の製造方法。 (4)  保磁力制御の丸めの置換成分がCo −TJ
で番ることを特徴とする特許請求の範S第五項、第冨項
又はIIs項記載の高密度磁気記録用磁+!klI&の
側進方法。 (5)非晶質体化によシ得られ大神晶質の厚みが*op
rm以下であることを特徴とする特許請求の1IIa嬉
1項l!載の高書鷹磁気記―用磁性粉の製造方法。 (@)  加熱昇温適度がlOO℃/時間以下であるこ
とを畳黴とすhIII許請求のm1ll@1項紀鎮の高
書度礁気g働用磁憔看O纒造方法。
[Claims] 0 (1) Glass-forming substance and general formula 杏1-nF@鵞0
.. (However, A is at least one selected from Ba, Sr, and Pb, or a part of these is Cm
A raw material mixture containing a substituted component is melted and rapidly cooled to form an amorphous body, and then the amorphous body is heat-treated to produce a substituted magnetoblanbite with controlled coercive force. In the manufacturing method of a**, which consists of the step of precipitating fezite particles and then extracting the fine particles from a glass matrix, the thickness obtained (by converting into an amorphous state) is 80
After heating an amorphous substance of 1200°C/hour or less, heating and holding the resulting fine particles at a temperature where the n value is 6.2 or less, the maximum grain size is 0.3 m. High-density magnetic recording sickle magnet a characterized by creating the following fine particles:
Manufacturing method of S. (Tomi) Madanetopukunpaito! 7J method for producing magnetic powder for multi-density magnetic recording according to claim 1, wherein the 1lL7et is Paricum 7ztite. (S) A method for producing a high-density magnetic recording-m** appetizer according to item 1 or 2, characterized in that the S lath forming substance is a, O, or the like. (4) The rounding substitution component for coercive force control is Co -TJ
The magnet for high-density magnetic recording according to the fifth, fifth, or second claim of the patent claim, characterized in that the magnet +! Lateral advancement method of klI&. (5) The thickness of Ogami crystal obtained by amorphization is *op
rm or less! A method for producing magnetic powder for use in Kosho Taka Magnetography. (@) A method of manufacturing high-quality reef air g-operated magnetic cylindrical fabrication method of m1ll@1 section Kichin, which is claimed to be tatami mold when the heating temperature increase moderation is less than 100°C/hour.
JP56139663A 1981-09-07 1981-09-07 Manufacture of magnetic powder for high density magnetic recurding medium Granted JPS5842203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56139663A JPS5842203A (en) 1981-09-07 1981-09-07 Manufacture of magnetic powder for high density magnetic recurding medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56139663A JPS5842203A (en) 1981-09-07 1981-09-07 Manufacture of magnetic powder for high density magnetic recurding medium

Publications (2)

Publication Number Publication Date
JPS5842203A true JPS5842203A (en) 1983-03-11
JPH0312442B2 JPH0312442B2 (en) 1991-02-20

Family

ID=15250514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56139663A Granted JPS5842203A (en) 1981-09-07 1981-09-07 Manufacture of magnetic powder for high density magnetic recurding medium

Country Status (1)

Country Link
JP (1) JPS5842203A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151340A (en) * 1983-02-16 1984-08-29 Fuji Photo Film Co Ltd Manufacture of magnetic ferrite powder for magnetic recording
JPS59207605A (en) * 1983-05-11 1984-11-24 Tohoku Metal Ind Ltd Manufacture of powder for magnetic recording
JPS6065728A (en) * 1983-09-19 1985-04-15 Toshiba Corp Production of magnetic powder
JPS6077129A (en) * 1983-09-30 1985-05-01 Toshiba Corp Magnetic powder of barium ferrite
JPS62216920A (en) * 1986-03-14 1987-09-24 Dowa Mining Co Ltd Magnetoplumbite type ferrite powder and its production
JP2005340690A (en) * 2004-05-31 2005-12-08 Asahi Techno Glass Corp Hexagonal ferrite magnetic powder and its manufacturing method
JP2006005300A (en) * 2004-06-21 2006-01-05 Fuji Photo Film Co Ltd Hexagonal ferrite magnetic powder, its manufacturing method, and magnetic recording medium

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151340A (en) * 1983-02-16 1984-08-29 Fuji Photo Film Co Ltd Manufacture of magnetic ferrite powder for magnetic recording
JPH0512842B2 (en) * 1983-02-16 1993-02-19 Fuji Photo Film Co Ltd
JPS59207605A (en) * 1983-05-11 1984-11-24 Tohoku Metal Ind Ltd Manufacture of powder for magnetic recording
JPH0531281B2 (en) * 1983-05-11 1993-05-12 Tokin Corp
JPS6065728A (en) * 1983-09-19 1985-04-15 Toshiba Corp Production of magnetic powder
JPH0451490B2 (en) * 1983-09-30 1992-08-19 Tokyo Shibaura Electric Co
JPS6077129A (en) * 1983-09-30 1985-05-01 Toshiba Corp Magnetic powder of barium ferrite
JPH0417897B2 (en) * 1986-03-14 1992-03-26 Dowa Mining Co
JPS62216920A (en) * 1986-03-14 1987-09-24 Dowa Mining Co Ltd Magnetoplumbite type ferrite powder and its production
JP2005340690A (en) * 2004-05-31 2005-12-08 Asahi Techno Glass Corp Hexagonal ferrite magnetic powder and its manufacturing method
JP2006005300A (en) * 2004-06-21 2006-01-05 Fuji Photo Film Co Ltd Hexagonal ferrite magnetic powder, its manufacturing method, and magnetic recording medium
US7381482B2 (en) 2004-06-21 2008-06-03 Asahi Techno Glass Corporation Hexagonal ferrite magnetic powder, method for producing the same and magnetic recording medium
JP4530733B2 (en) * 2004-06-21 2010-08-25 富士フイルム株式会社 Hexagonal ferrite magnetic powder, method for producing the same, and magnetic recording medium

Also Published As

Publication number Publication date
JPH0312442B2 (en) 1991-02-20

Similar Documents

Publication Publication Date Title
JPS6015577B2 (en) Method for producing magnetic powder for magnetic recording
JPH0239844B2 (en)
JPH0512842B2 (en)
JPS5842203A (en) Manufacture of magnetic powder for high density magnetic recurding medium
JPS6077129A (en) Magnetic powder of barium ferrite
JP7176526B2 (en) Method for manufacturing magnetic powder
JP3251753B2 (en) Method for producing Ba ferrite magnetic powder
JPH01200605A (en) Magnetic powder
JP3083891B2 (en) Magnetic powder for magnetic recording medium and method for producing the same
JP2802653B2 (en) Magnetic powder for high-density magnetic recording and method for producing the same
JP2691790B2 (en) Method for producing magnetic powder for magnetic recording medium
JPH069167B2 (en) Method for producing hexagonal ferrite powder
KR960000502B1 (en) Method of preparing magnetic hexagonal ferrite powder
JPH0727809B2 (en) Method for producing hexagonal ferrite powder
JPS6194303A (en) Manufacture of hexagonal system ferrite particle powder
JPS61236104A (en) Hexagonal crystal ferrite for magnetic recording medium and manufacture thereof
JPH0685370B2 (en) Method for producing hexagonal ferrite powder
JPS6355122A (en) Magnetic powder
JP2717735B2 (en) Method for producing magnetic powder for magnetic recording medium
JPS6127329B2 (en)
JPS6353134B2 (en)
JPS6121921A (en) Preparation of magnetic powder
JPS6065728A (en) Production of magnetic powder
JPH03248505A (en) Manufacture of magnetic powder for magnetic recording
JP2717720B2 (en) Method for producing magnetic powder for magnetic recording medium