JPH01153769A - Composition for forming transparent electrically conductive film of zinc oxide - Google Patents

Composition for forming transparent electrically conductive film of zinc oxide

Info

Publication number
JPH01153769A
JPH01153769A JP31477987A JP31477987A JPH01153769A JP H01153769 A JPH01153769 A JP H01153769A JP 31477987 A JP31477987 A JP 31477987A JP 31477987 A JP31477987 A JP 31477987A JP H01153769 A JPH01153769 A JP H01153769A
Authority
JP
Japan
Prior art keywords
zinc oxide
conductive
fine powder
film
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31477987A
Other languages
Japanese (ja)
Other versions
JPH086055B2 (en
Inventor
Nobuyoshi Kawamoto
河本 信義
Kenichi Yasuda
謙一 安田
Tatsuo Yazaki
矢崎 達雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAKUSUI CHEM IND Ltd
Original Assignee
HAKUSUI CHEM IND Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAKUSUI CHEM IND Ltd filed Critical HAKUSUI CHEM IND Ltd
Priority to JP62314779A priority Critical patent/JPH086055B2/en
Publication of JPH01153769A publication Critical patent/JPH01153769A/en
Publication of JPH086055B2 publication Critical patent/JPH086055B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title composition widely usable for automobiles and electronic devices, imparting inexpensive and transparent electrically conductive films, containing fine powder of electrically conductive zinc oxide as an electrical conductivity imparting component in a specific ratio. CONSTITUTION:(A) A film forming composition is blended with (B) 20-70wt.% (calculated as solid content) fine powder of electrically conductive zinc oxide having <=0.1mum specific surface area diameter by BET method and <=10<4>OMEGAcm volume specific resistance in 100kg/cm<2> pressure state to give the titled composition suitable as an ultraviolet cutting material in glass of show window and in transparent plastic material or surface protecting agent for molded article of resin by using ultraviolet light screening effects.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、導電性付与成分として導電性酸化亜鉛を含み
、安価で透明な導電膜を形成することのできる組成物に
関するものであり、この導電膜形成組成物は、クリーン
・ルームあるいはは自動車や車輌等の窓、ブラウン管な
どの静電防止膜、コンピュータをはじめとする様々の電
子機器におけるCRTデイスプレー等の各種タッチパネ
ル、ELパネル、液晶セル等の表面に形成される静電防
止膜、透明静電記録紙の如き様々の情報産業記録紙や磁
気テープ等への導電膜形成材、更には導電性の塗料やイ
ンキ構成材等として幅広く利用することができる。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a composition containing conductive zinc oxide as a conductivity-imparting component and capable of forming an inexpensive and transparent conductive film. The conductive film-forming composition can be used in clean rooms or windows of automobiles and vehicles, antistatic films on cathode ray tubes, various touch panels such as CRT displays, EL panels, and liquid crystal cells in various electronic devices such as computers. It is widely used as an antistatic film formed on the surface of materials such as transparent electrostatic recording paper, conductive film forming material for various information industry recording papers such as magnetic tape, etc., and as a constituent material for conductive paints and inks. can do.

[従来の技術] 上記の様な用途に適用される透明導電膜の形成手段とし
ては、以下に示す様な色々の方法が知られている。
[Prior Art] As means for forming a transparent conductive film applied to the above-mentioned uses, various methods as shown below are known.

■金、パラジウム、クロム系合金の如き金属薄膜を、ポ
リエステル等の透明樹脂シートもしくはフィルムあるい
はガラス等の表面に蒸着させる方法。
■A method in which a thin metal film such as gold, palladium, or chromium-based alloy is deposited on the surface of a transparent resin sheet or film such as polyester, or glass.

■膜形成基材全体を透明導電ポリマーの如く透明で導電
性を備えたものとする方法。
(2) A method of making the entire film-forming substrate transparent and conductive, such as a transparent conductive polymer.

■300〜600℃程度に加熱した透明基板の表面に、
InC14やS n C14等の様な金属塩の有機溶媒
溶液をスプレー付着させて熱分解せしめ、導電性をもっ
た金属酸化物薄膜を形成する方法。
■On the surface of a transparent substrate heated to about 300-600℃,
A method of spraying a solution of a metal salt such as InC14 or S n C14 in an organic solvent and thermally decomposing it to form a conductive metal oxide thin film.

■In、Sn等の金属アルコキシドやアセチルアセトン
溶液を透明基材の表面に塗布した後、加熱処理すること
によって導電性を持った透明な金属酸化物被膜を形成す
る方法。
(2) A method in which a transparent metal oxide film with conductivity is formed by applying a metal alkoxide such as In or Sn or an acetylacetone solution to the surface of a transparent substrate and then heat-treating it.

■導電性を有する微粉末、たとえば導電性酸化錫微粉末
を、ポリマー溶液などのバインダーに分散させて透明基
板に塗布する方法。
(2) A method in which conductive fine powder, such as conductive tin oxide fine powder, is dispersed in a binder such as a polymer solution and applied to a transparent substrate.

これらの方法は前述の如き透明導電膜としての用途や要
求特性等に応じて適宜使い分けられている。
These methods are appropriately used depending on the use and required characteristics of the transparent conductive film as described above.

本発明は、上記のうち特に■として示した方法に適用さ
れる導電性微粉末分散タイプの透明導電膜形成組成物の
改良に関するものである。これらの方法に適用される導
電性微粉末としてはアンチモン含有酸化錫や錫含有酸化
インジウム等が知られており、これらは微粉末自身の導
電特性を利用して導電性及び帯電防止性を与えるもので
あり、且つ上記のアンチモン含有酸化錫等は粒径が可視
光線の局波長よりも小さいので被膜は透明となる。この
導電膜形成法は、導電性微粉末の分散と塗布・乾燥を組
合せて実施するだけであるから作業性及び生産性が良く
、しかも導電性微粉末の配合量を変えることによって導
電率を自由に調整できるといった様々の特徴を有してす
る。
The present invention relates to the improvement of a transparent conductive film-forming composition of a conductive fine powder dispersion type that is particularly applicable to the method shown in (1) above. Antimony-containing tin oxide and tin-containing indium oxide are known as conductive fine powders that can be applied to these methods, and these provide conductivity and antistatic properties by utilizing the conductive properties of the fine powder itself. Moreover, since the above-mentioned antimony-containing tin oxide and the like have a particle size smaller than the local wavelength of visible light, the coating becomes transparent. This method of forming a conductive film has good workability and productivity because it simply combines dispersion of conductive fine powder, coating, and drying, and the conductivity can be adjusted freely by changing the blending amount of conductive fine powder. It has various features such as being adjustable.

ところで導電性微粉末として現在量も汎用されているの
は、アルミニウム、錫、チタン等により賦活化された導
電性酸化亜鉛であるが、この導電性酸化亜鉛粉末の粒径
は最小のものでも1μm程度であるため、目的との関係
においては微粉体と言えず、被膜に透明性を与えること
がで鮒ない。
By the way, the current widely used conductive fine powder is conductive zinc oxide activated by aluminum, tin, titanium, etc., but the particle size of this conductive zinc oxide powder is at least 1 μm. Since it is only a small amount, it cannot be called a fine powder in relation to its purpose, and it cannot provide transparency to the coating.

そこで透明導電膜形成用の微粉末としては0,1μm程
度以下の微粉末として得ることのできる酸化錫系あるい
は酸化インジウム系の微粉末が用いられている。ところ
がこれらの微粉末は導電性酸化亜鉛粉末に較べると価格
が10〜50倍と非常に高い。しかも酸化錫系の導電性
微粉末では、■高レベルの導電率を得るために大量のア
ンチモン等を配合するが、その影響によって青味がかっ
た色になる、 ■この青色は紫外線によって更に着色が進むことがある
、 ■湿度変化によフて導電率が変わることがあり、殊に電
子機器用の導電材料としての適性を欠く 等の問題が指摘される。
Therefore, as a fine powder for forming a transparent conductive film, a tin oxide-based or indium oxide-based fine powder, which can be obtained as a fine powder of about 0.1 μm or less, is used. However, these fine powders are 10 to 50 times more expensive than conductive zinc oxide powder. Moreover, in tin oxide-based conductive fine powder, a large amount of antimony is added to obtain a high level of conductivity, which gives it a bluish color. ■This blue color is further colored by ultraviolet rays. (2) The electrical conductivity may change due to changes in humidity, and problems such as a lack of suitability as a conductive material for electronic devices have been pointed out.

本出願人はこの様な状況の下で透明導電膜用としての要
求特性を満たす導電性酸化亜鉛微粉末を開発すべくかね
てより研究を行なっているが、かかる研究の一環として
先に特開昭58−161923号公報に記載の方法を開
発した。この方法は、(A)酸化亜鉛を、 (B)賦活剤として作用するアルミニウム塩及び(C)
侵食剤(崩壊剤)として作用する炭酸アンモニウム、重
炭酸アンモニウム、硝酸アンモニウムまたは尿素 と共に水分散系で攪拌処理し、濾過、脱水後乾燥し還元
性雰囲気下に600〜1000℃で焼成して導電性酸化
亜鉛微粉末とするものであり、この方法によれば崩壊剤
の作用で酸化亜鉛を微細化することができるので賦活化
が促進されると共に焼結粉末の微細化も促進される。
Under these circumstances, the present applicant has been conducting research for some time in order to develop conductive zinc oxide fine powder that satisfies the required characteristics for use in transparent conductive films. The method described in Japanese Patent No. 58-161923 was developed. This method consists of (A) zinc oxide, (B) an aluminum salt acting as an activator, and (C)
The mixture is stirred in an aqueous dispersion system with ammonium carbonate, ammonium bicarbonate, ammonium nitrate, or urea, which acts as an erosion agent (disintegrant), filtered, dehydrated, dried, and fired at 600 to 1000°C in a reducing atmosphere to form a conductive oxidizer. According to this method, zinc oxide can be made fine by the action of a disintegrant, so activation is promoted and the fineness of the sintered powder is also promoted.

[発明が解決しようとする問題点コ □しかしながら上記公開公報に記載された方法にしても
、導電性酸化亜鉛の粒径は比表面積径(13ET法によ
り求められる値:以下同じ)で0.2μm程度が限度で
あり透明導電膜としての要求特性を完全に満たすものと
は言えない。
[Problems to be solved by the invention] However, even with the method described in the above publication, the particle size of conductive zinc oxide is 0.2 μm in terms of specific surface area diameter (value determined by the 13ET method; the same applies hereinafter). The extent of this change is limited, and it cannot be said that it completely satisfies the required characteristics as a transparent conductive film.

即ち顔料充填系で透明な被膜を得る為の手段としては、
顔料の粒子径を可視光線の%波長よりも小さくするか、
あるいは塗料等ではビヒクル成分である樹脂との屈折率
をできるだけ小さくすることが有効とされており、顔料
自体の性状からすれば粒子径を0.1μm以下とするこ
とにより透明性付与の目的は達成されるが、現在のとこ
ろその様な微細粒度構成の導電性酸化亜鉛微粉末は得ら
れていない。
In other words, as a means to obtain a transparent film with a pigment-filled system,
Make the particle size of the pigment smaller than the % wavelength of visible light, or
Alternatively, in paints, etc., it is considered effective to reduce the refractive index of the vehicle component resin as much as possible, and considering the properties of the pigment itself, the purpose of imparting transparency can be achieved by reducing the particle size to 0.1 μm or less. However, at present, conductive zinc oxide fine powder with such a fine particle size structure has not been obtained.

本発明はこの様な事情に着目してなされたものであって
、その目的は、工業的に安価に人手し得る酸化亜鉛を主
原料とし、微細且つ安定で導電性に優れしかも被膜に透
明性を与えることのできる様な導電性酸化亜鉛微粉末を
開発し、かかる酸化亜鉛微粉末を使用することにより安
価で優れた性能をもった透明導電膜形成組成物を提供し
ようとするものである。
The present invention was made in view of these circumstances, and its purpose is to use zinc oxide as the main raw material, which can be industrially produced manually at low cost, to form a fine, stable, and highly conductive film with a transparent coating. The purpose of the present invention is to develop a conductive zinc oxide fine powder that can provide the following properties, and to provide a transparent conductive film-forming composition that is inexpensive and has excellent performance by using such a fine zinc oxide powder.

[問題点を解決するための手段] 上記の目的を達成することのできた本発明に係る透明導
電膜形成組成物とは、導電性付与成分である導電性酸化
亜鉛微粉末のBET法により測定される比表面積径を0
.1μm以下で且つ100kg/cm2の加圧状態で測
定される体積抵抗率を10’Ωcm以下と定め、該導電
性酸化亜鉛微粉末を被膜形成組成物中に乾燥被膜の固形
物換算で20〜70重量%となる様に配合したものであ
るところに要旨を有するものである。
[Means for Solving the Problems] The transparent conductive film-forming composition according to the present invention that can achieve the above-mentioned object is a transparent conductive film-forming composition that can be measured by the BET method of conductive zinc oxide fine powder, which is a conductivity imparting component. The specific surface area diameter is 0
.. The volume resistivity measured under a pressure of 1 μm or less and 100 kg/cm2 is determined to be 10'Ωcm or less, and the electrically conductive zinc oxide fine powder is added to the film-forming composition in an amount of 20 to 70% in terms of the solid content of the dry film. The gist of this is that it is blended in such a manner that the weight percentage is as follows.

[作用コ 本発明に係る被膜形成組成物は、上記の様に比表面積径
が0.1μm以下であり、体積抵抗率(100kg/c
m”の加圧状態で測定される値:以下同じ)が104Ω
cm以下である導電性酸化亜鉛微粉末を導電性付与成分
として配合したものである。
[Function] As mentioned above, the film-forming composition according to the present invention has a specific surface area diameter of 0.1 μm or less and a volume resistivity (100 kg/c
The value measured under pressure of 104Ω (same below) is 104Ω.
This product contains conductive zinc oxide fine powder having a size of less than cm as a conductivity-imparting component.

比表面積径が0.1μmを超える導電性酸化亜鉛粉末で
は、塗膜成分として配合したときに可視光線の散乱が著
しくなり、優れた導電性を与えようとして十分な量の当
該粉末を配合すると導電膜が不透明となる。また該酸化
亜鉛微粉末の体積抵抗率が104Ωcmを超えるもので
は、被膜成分中に十分量の酸化亜鉛微粉末を配合した場
合でも満足のいく導電性を与えることができない。これ
に対し比表面積径が0.1μm以下で且つ体積抵抗率が
104Ωcm以下である導電性酸化亜鉛微粉末を、乾燥
被膜の固形分換算で20〜70重量%となる様に配合し
ておくと、乾燥被膜は透明で優れた導電性(及び帯電防
止性)を示すものとなる。ここで導電性酸化亜鉛微粉末
の含有量が20重量%未満である場合は、乾燥被膜中に
占める導電性付与成分の絶対量が不足気味となるへ十分
な導電性が得られず、逆に70重量%を超えるときはバ
インダーあるいは造膜成分の量が不足することとなって
被膜特性が悪化するほか、基材との密着性も悪くなって
剥離し易くなり、更には被膜の透明性も低下してくる。
Conductive zinc oxide powder with a specific surface area diameter exceeding 0.1 μm causes significant scattering of visible light when blended as a coating component, and if a sufficient amount of the powder is blended in an attempt to provide excellent conductivity, the conductivity will decrease. The film becomes opaque. Further, if the volume resistivity of the zinc oxide fine powder exceeds 104 Ωcm, satisfactory conductivity cannot be provided even if a sufficient amount of zinc oxide fine powder is blended into the coating component. On the other hand, if conductive zinc oxide fine powder with a specific surface area diameter of 0.1 μm or less and a volume resistivity of 104 Ωcm or less is blended so that the solid content of the dry film is 20 to 70% by weight. The dried film is transparent and exhibits excellent conductivity (and antistatic properties). If the content of the conductive zinc oxide fine powder is less than 20% by weight, the absolute amount of the conductivity-imparting component in the dry film will be insufficient, and sufficient conductivity will not be obtained; If it exceeds 70% by weight, the amount of binder or film-forming component will be insufficient, resulting in poor film properties, poor adhesion to the substrate, and easy peeling, and furthermore, the transparency of the film will deteriorate. It's going to decline.

ところで公知の導電性酸化亜鉛粉末が導電性のSnO2
系微粉末やInks系微粉末に比べて粗粒であり、透明
導電膜用としての適性を欠くものであることは先に説明
した通りであるが、本発明の目的にかなう微細で導電性
の優れた酸化亜鉛粉末は、たとえば本願発明者らによっ
て開発された下記の様な方法(別途特許出願法:出願番
号未定)によって得ることができる。
By the way, the known conductive zinc oxide powder is conductive SnO2.
As explained above, the particles are coarser than the Inks-based fine powder and the Inks-based fine powder, and are not suitable for use in transparent conductive films. Excellent zinc oxide powder can be obtained, for example, by the following method developed by the present inventors (separate patent application method: application number undetermined).

即ちその方法とは、 [I]非導電性酸化亜鉛=100重量部[n ]アアル
ミニラの蟻酸塩、酢酸塩、ハロゲン化物、水酸化物、硫
酸塩、硝酸塩等から選択される賦活剤:酸化アルミニウ
ム換算で0.1〜10重量部、 [m ]炭酸アンモニウム、重炭酸アンモニウム、硝酸
アンモニウム、尿素等から選択される侵食剤(崩壊剤)
;5〜100重量部、 の三成分を、 [TV]比表面積径が0.10μm以下である無機質微
粉末(コロイダルシリカ、アルミナゲル、チタニアゲル
あるいは珪酸塩等) の存在下に水分散系で攪拌処理し、脱水後非酸化性雰囲
気下に200〜600℃程度の温度で加熱処理する方法
である。
That is, the method is as follows: [I] Non-conductive zinc oxide = 100 parts by weight [n] Activator selected from formates, acetates, halides, hydroxides, sulfates, nitrates, etc. of aluminum oxide: aluminum oxide 0.1 to 10 parts by weight in terms of [m] Erosion agent (disintegrant) selected from ammonium carbonate, ammonium bicarbonate, ammonium nitrate, urea, etc.
; 5 to 100 parts by weight of the three components are stirred in an aqueous dispersion system in the presence of [TV] inorganic fine powder (colloidal silica, alumina gel, titania gel, silicate, etc.) with a specific surface area diameter of 0.10 μm or less. After dehydration, heat treatment is performed at a temperature of about 200 to 600° C. in a non-oxidizing atmosphere.

この方法であれば、非導電性酸化亜鉛[Ilが、侵食剤
[IV]との共存下における攪拌処理で0.05μm以
下の微粉末状に崩壊された後、賦活剤[Il、]由来の
水酸化アルミニウム沈殿と均一に混合されて次の加熱処
理工程で導電性が与えられ、更には無機質微粉末[IV
]が酸化亜鉛微粉末同士の間に介在することによって、
乾燥乃至加熱処理時における当該酸化亜鉛微粉末の粒成
長も抑えられ、加熱処理温度を600℃以下に抑えるこ
とによる融着抑制効果とも相まって、比表面積径にして
0,10μm以下といった極めて微細な導電性酸化亜鉛
微粉末を容易に得ることができる。またこの微粉末は、
攪拌処理工程で微細に崩壊された酸化亜鉛と、賦活剤か
ら生じた水酸化アルミニウムが万遍なく均一に混合され
た後、非酸化性雰囲気での加熱により賦活化されたもの
であり、体積抵抗率は104Ωcm以下であって優れた
導電性を示すものとなる。
With this method, after the non-conductive zinc oxide [Il is disintegrated into a fine powder of 0.05 μm or less by stirring treatment in the coexistence with the corrosive agent [IV], the It is uniformly mixed with the aluminum hydroxide precipitate to give conductivity in the next heat treatment process, and furthermore, inorganic fine powder [IV
] is present between the zinc oxide fine powders,
The particle growth of the fine zinc oxide powder during drying or heat treatment is also suppressed, and combined with the effect of suppressing fusion by keeping the heat treatment temperature below 600°C, extremely fine conductive particles with a specific surface area diameter of 0.10 μm or less can be achieved. Zinc oxide fine powder can be easily obtained. In addition, this fine powder is
Zinc oxide, which has been finely broken down during the stirring process, and aluminum hydroxide produced from the activator are mixed evenly and uniformly, and then activated by heating in a non-oxidizing atmosphere, resulting in a volume resistivity. The ratio is 104 Ωcm or less, which indicates excellent conductivity.

本発明の目的にかなう導電性酸化亜鉛微粉末はたとえば
上記の様な方法によって製造されるが、本発明は導電性
酸化亜鉛微粉末の製法自体に特徴を有するものではなく
、あくまでも比表面積径が0.10μm以下で且つ体積
抵抗率が104ΩcI11以下という要求特性を備えた
導電性酸化亜鉛微粉末を透明導電膜構成4分の1つとし
て配合したところに特徴を有するものであるから、こう
した特性を満たすものであれば他の方法により製造した
導電性酸化亜鉛微粉末を使用することも勿論可能であり
、更に賦活剤としてSnやTi含有化合物等を用いた導
電性酸化亜鉛微粉末を使用することもできる。
The conductive zinc oxide fine powder that meets the purpose of the present invention is produced, for example, by the method described above, but the present invention is not characterized by the manufacturing method itself of the conductive zinc oxide fine powder, but is limited to the specific surface area and diameter. It is characterized by containing conductive zinc oxide fine powder, which has the required characteristics of 0.10 μm or less and a volume resistivity of 104 ΩcI11 or less, as one quarter of the transparent conductive film composition. It is of course possible to use conductive zinc oxide fine powder produced by other methods as long as it satisfies the above requirements, and it is also possible to use conductive zinc oxide fine powder using a compound containing Sn or Ti as an activator. You can also do it.

次に上記導電性酸化亜鉛微粉末のバインダーあるいは造
膜成分として作用するビヒクル成分としては、アクリル
系、ビニル系、カーボネート系、ポリエステル系、ウレ
タン系、エポキシ系、ポリプロピレン系、シリコン系、
弗素系、スチレン系、セルロース系等、透明被膜を形成
し得る様々の重合体、或はそれらの各種変性物を使用す
ることができる。ビヒクル成分のうち水溶性のものとし
てはポリビニルアルコール、メチルセルロース、カルボ
キシメチルセルロース、殿粉、アラビアゴム、スチレン
−マレイン酸共重合体等が、またエマルジョンもしくは
ラテックスとしては酢酸ビニル−アクリルエマルジョン
、アクリルエステル系エマルジョン、スチレン−ブタジ
ェンラテックス等が例示される。これらのビヒクル成分
は、コスト、安全性(火災、健康傷害等を含めて)、塗
装作業性等を総合的に考えて水系分散媒を用いるのが最
も一般的であるが、必要によっては脂肪族、脂環族ある
いは芳香族の炭化水素系、アルコール系、エステル系、
ケント系等の有機溶剤もしくはこれらの混合溶剤を使用
することも勿論可能である。
Next, vehicle components that act as binders or film-forming components for the conductive zinc oxide fine powder include acrylic, vinyl, carbonate, polyester, urethane, epoxy, polypropylene, silicone,
Various polymers capable of forming a transparent film, such as fluorine-based, styrene-based, and cellulose-based polymers, or various modified products thereof can be used. Water-soluble vehicle components include polyvinyl alcohol, methylcellulose, carboxymethylcellulose, starch, gum arabic, styrene-maleic acid copolymer, etc. Emulsions or latexes include vinyl acetate-acrylic emulsion and acrylic ester emulsion. , styrene-butadiene latex, etc. For these vehicle components, it is most common to use an aqueous dispersion medium in consideration of cost, safety (including fires, health injuries, etc.), painting workability, etc., but if necessary, aliphatic dispersion media may be used. , alicyclic or aromatic hydrocarbon, alcohol, ester,
Of course, it is also possible to use organic solvents such as Kent-based solvents or mixed solvents thereof.

本発明に係る導電膜形成組成物の必須成分は以上の通り
であるが、このほか塗装性や被膜性能を高める為の補助
剤として分散剤、界面活性剤、沈降防止剤、湿潤剤、た
れ止め剤、レベリング剤、消泡剤、カップリング剤、酸
化防止剤等の1種もしくは2種以上を必要に応じて適量
配合することもでき、また用途によフては黒鉛、カーボ
ンブラック、金属粉、金属繊維、金属フレーク、酸化亜
鉛系以外の導電性金属酸化物微粉末、イオン導電剤等を
併用して導電性を更に高めることも可能であり、更には
被膜の透明性及び導電性を阻害しない範囲で体質顔料、
着色顔料、染料等を添加することも有効である。
The essential components of the conductive film-forming composition according to the present invention are as described above, but in addition, auxiliary agents for improving paintability and film performance include dispersants, surfactants, anti-settling agents, wetting agents, and anti-sagging agents. Depending on the application, one or more of one or more of agents, leveling agents, antifoaming agents, coupling agents, antioxidants, etc. can be added in appropriate amounts, and graphite, carbon black, metal powder, etc. , metal fibers, metal flakes, conductive metal oxide fine powder other than zinc oxide, ion conductive agents, etc. can be used in combination to further increase the conductivity, and furthermore, the transparency and conductivity of the film can be inhibited. Extender pigments within the range not
It is also effective to add color pigments, dyes, etc.

本発明組成物を用いた導電膜の形成には格別特殊な技術
が要求される訳ではなく、含浸塗布、刷毛塗り、ロール
コート、スプレー塗装等によフて基材表面に塗布し乾燥
する方法等を採用すればよく、あるいは離形処理を施し
た基材表面に塗布し乾燥した後基材から剥離し、フィル
ム状あるいはシート状の透明導電膜とすることもできる
。また本発明組成物においては前述の如く導電性酸化亜
鉛が非常に微細なものであることから、1コート法でも
十分な透明性を得ることができるが、2コート法採用し
、たとえば本発明組成物よりなる塗布面にクリアラッカ
ー等を上塗りすると、本発明組成物表面の酸化亜鉛微粉
末に起因する微細な凹凸がクリアラッカー等により埋め
られて乱反射が更に抑制され、後記実施例にも示す如く
1コートで透過率50%程度の半透明であったものが透
過率70%程度の透明なものとなる。該クリアラッカー
塗布による表面抵抗の上昇はせいぜい1桁程度であって
、導電膜あるいは帯電防止膜としての性能にはそれほど
悪影響を及ぼすことはないので、2コート法は非常に有
利な製膜法として推奨される。
Formation of a conductive film using the composition of the present invention does not require any particularly special technique, but can be applied to the surface of a substrate by impregnation coating, brush coating, roll coating, spray coating, etc., and then dried. Alternatively, it may be applied to the surface of a base material that has been subjected to mold release treatment, dried, and then peeled off from the base material to form a transparent conductive film in the form of a film or sheet. In addition, in the composition of the present invention, since the conductive zinc oxide is extremely fine as described above, sufficient transparency can be obtained even with a one-coat method, but if a two-coat method is adopted, for example, When a clear lacquer or the like is overcoated on the coated surface of the material, the fine irregularities caused by the fine zinc oxide powder on the surface of the composition of the present invention are filled with the clear lacquer, etc., and diffused reflection is further suppressed, as shown in the examples below. With one coat, what used to be semi-transparent with a transmittance of about 50% becomes transparent with a transmittance of about 70%. The increase in surface resistance due to the application of the clear lacquer is about one digit at most, and it does not have much of an adverse effect on the performance as a conductive film or antistatic film, so the two-coat method is a very advantageous film forming method. Recommended.

尚公知の透明導電膜に関しては、(A)高分子電解質を
混入したポリエチレンフィルム(米国、リッチモンド社
製)で透過率80〜85%、表面抵抗108〜1010
Ωcm、 (B)金またはバラジウムを蒸着したポリエ
ステルフィルム(米国、シーラシン社製)で透過率80
〜90%、表面抵抗10’〜103Ωcm、 (C)酸
化インジウムを蒸着したポリエステルフィルム(国内、
音大、東し社製)で透過率80〜90%、表面抵抗10
2〜105Ωcm、等、使用法や用途に応じて様々のも
のが知られているが、透過率は70%程度以上、表面抵
抗は102〜10I0Ωcm程度(ブラウン管等の静電
防止被膜では1o10〜1o12ΩcI11程度)であ
れば十分であると考えられており、本発明に係る透明導
電膜は以下の実施例にも示す如くこうした要求特性を一
応満足し、且つ非常に安価に得ることができる。
Regarding the known transparent conductive film, (A) a polyethylene film mixed with a polymer electrolyte (manufactured by Richmond, USA) with a transmittance of 80 to 85% and a surface resistance of 108 to 1010.
Ωcm, (B) Polyester film coated with gold or palladium (manufactured by Sealasin, USA) with transmittance of 80
~90%, surface resistance 10'~103Ωcm, (C) Polyester film with indium oxide vapor deposited (domestic,
Transmittance 80-90%, surface resistance 10
Various types are known depending on the usage and purpose, such as 2 to 105 Ωcm, but the transmittance is about 70% or more, and the surface resistance is about 102 to 10 I0 Ωcm (for antistatic coatings on cathode ray tubes, etc., it is 10 to 10 I0 ΩcI11). It is considered that the transparent conductive film according to the present invention satisfies these required characteristics to a certain extent and can be obtained at a very low cost, as shown in the following examples.

[実施例] 参考例(導電性酸化亜鉛微粉末の製造)20〜40gの
侵食剤(炭酸アンモニウムまたは重炭酸アンモニウム)
を500ccの水に溶解する。−力水50ccに、賦活
材(硫酸アルミニウムまたは硝酸アルミニウム)を酸化
アルミニウム換算で5g加えて溶解し、これに上記の侵
食割水溶液を加えて混合する。該混合液を、別途調製し
たフランス法亜鉛華(平均比表面積径0.3μm)10
0gの水200cc分散液に投入し、60〜90℃に昇
温した後、コロイダルシリカ(日本アエロジル社製商品
名「アエロジル200J、比表面積径0.03μm)I
gを加え、同温度に保って1時間攪拌する。その後不溶
物を濾過・水洗して得られるケーキ状物を乾燥し、水素
雰囲気中350〜600℃で60分間加熱処理すること
により導電性酸化亜鉛微粉末を製造する。
[Example] Reference example (manufacture of conductive zinc oxide fine powder) 20 to 40 g of corrosive agent (ammonium carbonate or ammonium bicarbonate)
Dissolve in 500cc of water. - Add and dissolve 5 g of an activating material (aluminum sulfate or aluminum nitrate) in terms of aluminum oxide into 50 cc of power water, and add and mix the above-mentioned erosion-splitting water solution. The mixed solution was mixed with separately prepared French method zinc white (average specific surface area diameter 0.3 μm) 10
After adding 0g of water to 200cc of dispersion and raising the temperature to 60 to 90°C, colloidal silica (trade name "Aerosil 200J, manufactured by Nippon Aerosil Co., Ltd., specific surface area diameter 0.03 μm) I
g and stirred for 1 hour while maintaining the same temperature. Thereafter, insoluble matter is filtered and washed with water, and the resulting cake-like product is dried and heat-treated at 350 to 600° C. for 60 minutes in a hydrogen atmosphere to produce conductive zinc oxide fine powder.

上記方法に準拠し、侵食剤や賦活剤の種類や添加量、攪
拌処理条件、加熱処理条件を色々変えることにより、比
表面積径及び体積抵抗率の異なる数種類の導電性酸化亜
鉛微粉末を製造した。
In accordance with the above method, several types of conductive zinc oxide fine powders with different specific surface area diameters and volume resistivities were produced by variously changing the types and amounts of corrosive agents and activators, stirring treatment conditions, and heat treatment conditions. .

上記で得た各導電性酸化亜鉛微粉末と造膜樹脂(ウレタ
ン樹脂、ポリビニルアルコールまたはアクリル樹脂)及
び所定量の溶剤(ジメチルホルムアミド)を、第1表に
示す含有比率に従って配合してホモジナイザーにより3
0分間混合し、導電膜形成組成物を製造した。
Each of the conductive zinc oxide fine powders obtained above, a film-forming resin (urethane resin, polyvinyl alcohol, or acrylic resin), and a predetermined amount of solvent (dimethylformamide) were blended according to the content ratios shown in Table 1, and then mixed with a homogenizer for 30 minutes.
The mixture was mixed for 0 minutes to produce a conductive film forming composition.

また比較のため、市販の導電性酸化亜鉛粉末(白水化学
工業社製、比表面積径0.20μm、体積抵抗率100
Ωcm)を用いた他は上記と同様にして導電膜形成組成
物を製造した。得られた各組成物を、乾燥膜厚が10〜
15μmとなる様バーコータにてポリエステルフィルム
(東し社製商品名、「ルミラーTJタイプ)に塗布し、
導電性被膜を形成した。
For comparison, commercially available conductive zinc oxide powder (manufactured by Hakusui Kagaku Kogyo Co., Ltd., specific surface area diameter 0.20 μm, volume resistivity 100
A conductive film forming composition was produced in the same manner as above except that Ωcm) was used. Each of the obtained compositions had a dry film thickness of 10 to
Coat it on a polyester film (trade name, "Lumirror TJ type" manufactured by Toshisha Co., Ltd.) using a bar coater so that the film has a thickness of 15 μm.
A conductive film was formed.

得られた各乾燥被膜の表面抵抗及び透明性を第1表に一
括して示す。
Table 1 shows the surface resistance and transparency of each dried film obtained.

尚第1表に示した配合顔料の詳細及び得られた導電膜の
性能試験法等は下記の通りである。
The details of the blended pigments shown in Table 1 and the performance test method of the obtained conductive film are as follows.

(造膜樹脂) ウレタン樹脂:可成商会社製商品名、rEX−4513
−MJ アクリル樹脂:三菱レーヨン社製商品名rLR−472
J  (固形分40%) ポリビニルアルコール:電気化学社製商品名「デンカポ
バールB−20J (部分鹸化物) (体積抵抗率) 各導電製酸化亜鉛微粉末10gを、内面にテフロン加工
を施した内径25mmの円筒内へ装入して100 kg
/cm2に加圧しく充填率20%)、横筒電気製作所製
のr3223型」テスターで体積抵抗率(0cm)を測
定した。
(Film-forming resin) Urethane resin: Manufactured by Kasei Trading Co., Ltd., product name, rEX-4513
-MJ Acrylic resin: Mitsubishi Rayon Co., Ltd., product name rLR-472
J (solid content 40%) Polyvinyl alcohol: Denka Poval B-20J (partially saponified product) (volume resistivity) Polyvinyl alcohol: manufactured by Denki Kagaku Co., Ltd. (partially saponified product) (volume resistivity) 100 kg when charged into a 25 mm cylinder
/cm2 (filling rate: 20%), and the volume resistivity (0 cm) was measured using a "R3223 type" tester manufactured by Yokotsutsu Denki Seisakusho.

(比表面積径) 柴田化学機械社製の迅速表面積測定装置rSA−100
0Jを用いて各導電性酸化亜鉛微粉末の比表面積(S 
g : m2/g)を測定し、該測定装置と試料粉末の
真比重(ρ:ZnOでは5.6)より次式によって比表
面積径(d:μm)を求めた。
(Specific surface area diameter) Rapid surface area measuring device rSA-100 manufactured by Shibata Kagaku Kikai Co., Ltd.
The specific surface area (S
g: m2/g) was measured, and the specific surface area diameter (d: μm) was determined using the measuring device and the true specific gravity of the sample powder (ρ: 5.6 for ZnO) using the following formula.

(表面抵抗) 導電膜の形成された供試面に導電ペーストを塗布して通
電することにより、導電膜の表面抵抗を測定した。
(Surface Resistance) The surface resistance of the conductive film was measured by applying a conductive paste to the test surface on which the conductive film was formed and applying electricity.

(表面電位) 各導電膜に対し、川口電気社製の静電複写紙試験装置r
SP−428Jを用いて、Dynamic 。
(Surface potential) For each conductive film, electrostatic copying paper tester r manufactured by Kawaguchi Electric Co., Ltd.
Dynamic using SP-428J.

−6KVの条件で帯電々位置(volt)を測定した。The charging position (volt) was measured under the condition of -6 KV.

(透明性) 墨汁製作所製の透過率測定装置を使用して500nmの
光の透過率を測定し、各測定値より下記の基準で評価し
た。
(Transparency) The transmittance of 500 nm light was measured using a transmittance measuring device manufactured by Bokuji Seisakusho, and each measured value was evaluated according to the following criteria.

透過率50%以上:透明 )13Q%以上50%未満:半透明 〃 30%未満:不透明 第1表からも明らかである様に、本発明の規定要件を満
たす実施例(No、2〜4.7〜12゜15〜17.2
0〜22.27〜29.32〜37.40〜42.45
〜47.50〜57)によって得られる被膜は、夫々導
電性酸化亜鉛微粉末の配合量に応じて適度の表面抵抗を
有すると共に被膜は透明乃至半透明(半透明のものでも
その上にクリアラッカーを塗布することにより透明にな
ることを確認している)であり、透明導電膜形成組成物
として非常に優れたものである。
Transmittance of 50% or more: Transparent) 13Q% or more and less than 50%: Translucent Less than 30%: Opaque As is clear from Table 1, Examples (No. 2 to 4. 7~12°15~17.2
0-22.27-29.32-37.40-42.45
~47. The coating obtained by 50~57) has an appropriate surface resistance depending on the amount of conductive zinc oxide fine powder, and the coating is transparent to semitransparent (even if it is semitransparent, a clear lacquer may be applied on it). (It has been confirmed that the composition becomes transparent by coating it on the film), making it an excellent composition for forming a transparent conductive film.

これに対し実験No、1.6.14,19゜26.31
,39,44.51は、何れも導電性酸化亜鉛微粉末の
含有率が不足する比較例であり、透明性は良好であるも
のの導電性付与成分が不足するため表面抵抗が非常に大
きく、導電膜としては使用できない。また実験No、5
.13゜18.23,30.3B、43,48.58は
、何れも導電性酸化亜鉛微粉末の含有率が規定範囲を超
える比較例であり、乾燥被膜は何れも不透明であって透
明導電膜を得ることができない。更に実験No、24.
25,49,50,59.60は導電性酸化亜鉛粉末の
比表面積径が0.1μmを超える従来例であり、被膜内
における光の乱反射が著しいため透明被膜を得ることが
できない。
On the other hand, experiment No. 1.6.14, 19°26.31
, 39, and 44.51 are comparative examples in which the content of conductive zinc oxide fine powder is insufficient, and although the transparency is good, the surface resistance is very high due to the lack of conductivity-imparting components, and the conductivity is poor. It cannot be used as a membrane. Also, experiment No. 5
.. 13゜18.23, 30.3B, 43, and 48.58 are all comparative examples in which the content of conductive zinc oxide fine powder exceeds the specified range, and the dried films are all opaque and transparent conductive films. can't get it. Furthermore, experiment No. 24.
Nos. 25, 49, 50, and 59.60 are conventional examples in which the specific surface area diameter of the conductive zinc oxide powder exceeds 0.1 μm, and it is impossible to obtain a transparent film because the diffused reflection of light within the film is significant.

[発明の効果コ 本発明は以上の様に構成されており、安価に製造するこ
とができる導電性酸化亜鉛微粉末を用いて、従来の酸化
錫系あるいは酸化インジウム系導電性微粉末を用いたの
と同等乃至それ以上の透明性をもった導電性被膜を非常
に安価に得ることができ、透明の導電膜もしくは帯電防
止膜形成組成物として、冒頭で掲げた様な様々の用途に
広く活用することができる。
[Effects of the Invention] The present invention is constructed as described above, and uses conductive zinc oxide fine powder that can be produced at low cost, instead of conventional tin oxide-based or indium oxide-based conductive fine powder. It is possible to obtain a conductive film with a transparency equal to or higher than that of 2000 at a very low cost, and it can be widely used as a composition for forming a transparent conductive film or an antistatic film in a variety of applications as listed at the beginning. can do.

1、事件の表示 昭和62年特許願第314779号 2、発明の名称 酸化亜鉛系透明導電膜形成組成物 3、補正をする者 事件との関係  特許出願人 4、代理人 住 所 大阪市北区堂島2丁目3番7号シシコーj1%
ル4075、補正の対象 明、W書の「発明の詳細な説明」の欄 明細書の「図面の簡単な説明」の欄 正     誤     表 実験No、24.25,49,50,59.60は導電
性酸化亜鉛粉末の比表面積径が0,1μmを超える従来
例であり、被膜内における光の乱反射が著しいため透明
被膜を得ることができない。
1. Indication of the case Patent Application No. 314779 filed in 1988 2. Name of the invention Zinc oxide-based transparent conductive film forming composition 3. Person making the amendment Relationship to the case Patent applicant 4. Address of agent Kita-ku, Osaka City Dojima 2-3-7 Shishiko j1%
4075, subject of amendment, ``Detailed Description of the Invention'' column of Book W, ``Brief Explanation of Drawings'' column of the specification, Errors Table Experiment Nos. 24.25, 49, 50, 59.60 are This is a conventional example in which the specific surface area diameter of the conductive zinc oxide powder exceeds 0.1 μm, and it is impossible to obtain a transparent film because the diffused reflection of light within the film is significant.

尚第1図は実験No、9で得た酸化亜鉛微粉末の光透通
草曲線を示したものであり、紫外線領域では酸化亜鉛特
有の吸収が見られる。
FIG. 1 shows the light transmission curve of the fine zinc oxide powder obtained in Experiment No. 9, and absorption peculiar to zinc oxide is observed in the ultraviolet region.

[発明の効果コ 本発明は以上の様に構成されており、安価7に製造する
ことができる導電性酸化亜鉛微粉末を用いて、従来の酸
化錫系あるいは酸化インジウム系導電性微粉末を用いた
のと同等乃至それ以上の透明性をもった導電性被膜を非
常に安価に得ることができ、透明の導電膜もしくは帯電
防止膜形成組成物として、冒頭で掲げた様な様々の用途
に広く活用することができるほか、紫外線遮蔽効果を活
用することにより、ショーウィンド用等のガラスや透明
プラスチック材中に紫外線カツト材として混入したり、
あるいは様々の樹脂成形体の表面被覆剤として使用して
樹脂自体の劣化抑制を図ることも可能である。
[Effects of the Invention] The present invention is constructed as described above, and uses conductive zinc oxide fine powder that can be produced at low cost7, and replaces conventional tin oxide-based or indium oxide-based conductive fine powder. It is possible to obtain a conductive film at a very low cost with transparency equal to or higher than that of a conventional conductive film, and it can be widely used as a composition for forming a transparent conductive film or an antistatic film in a variety of applications as listed at the beginning. In addition, by utilizing its ultraviolet shielding effect, it can be mixed into glass and transparent plastic materials for show windows, etc. as an ultraviolet blocking material,
Alternatively, it can be used as a surface coating agent for various resin moldings to suppress deterioration of the resin itself.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例で得た酸化亜鉛微粉末の光透通草曲線を
示す図である。
FIG. 1 is a diagram showing a light transmission curve of fine zinc oxide powder obtained in an example.

Claims (1)

【特許請求の範囲】[Claims] 導電性付与成分として導電性酸化亜鉛微粉末を含有する
被膜形成組成物において、導電性酸化亜鉛微粉末は、B
ET法により測定される比表面積径が0.1μm以下で
且つ100kg/cm^2の加圧状態で測定される体積
抵抗率が10^4Ωcm以下のものであり、該導電性酸
化亜鉛微粉末を被膜形成組成物中に乾燥被膜の固形物換
算で20〜70重量%となる様に配合したものであるこ
とを特徴とする酸化亜鉛系透明導電膜形成組成物。
In the film-forming composition containing conductive zinc oxide fine powder as a conductivity imparting component, the conductive zinc oxide fine powder is B
The conductive zinc oxide fine powder has a specific surface area diameter of 0.1 μm or less as measured by the ET method and a volume resistivity of 10^4 Ωcm or less as measured under a pressure of 100 kg/cm^2. 1. A zinc oxide-based transparent conductive film-forming composition, characterized in that the zinc oxide-based transparent conductive film-forming composition is blended in an amount of 20 to 70% by weight in terms of dry film solids.
JP62314779A 1987-12-11 1987-12-11 Zinc oxide-based transparent conductive film-forming composition Expired - Lifetime JPH086055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62314779A JPH086055B2 (en) 1987-12-11 1987-12-11 Zinc oxide-based transparent conductive film-forming composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62314779A JPH086055B2 (en) 1987-12-11 1987-12-11 Zinc oxide-based transparent conductive film-forming composition

Publications (2)

Publication Number Publication Date
JPH01153769A true JPH01153769A (en) 1989-06-15
JPH086055B2 JPH086055B2 (en) 1996-01-24

Family

ID=18057491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62314779A Expired - Lifetime JPH086055B2 (en) 1987-12-11 1987-12-11 Zinc oxide-based transparent conductive film-forming composition

Country Status (1)

Country Link
JP (1) JPH086055B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217084A (en) * 1988-02-26 1989-08-30 Mitsubishi Metal Corp Transparent ultraviolet light absorbing coating compound
WO2002047640A1 (en) * 1999-06-16 2002-06-20 Hakusui Tech Co., Ltd. Cosmetic comprising fine zinc oxide powder having electrically conductivity
JP2011501444A (en) * 2007-10-18 2011-01-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ELECTRODE PASTE FOR SOLAR CELL AND SOLAR CELL ELECTRODE USING THE SAME
JP2012211420A (en) * 2011-03-31 2012-11-01 Toray Monofilament Co Ltd Conductive synthetic fiber, and manufacturing method and use thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5230220B2 (en) * 2008-02-08 2013-07-10 アサヒゴム株式会社 Body assembly method
JP5331349B2 (en) * 2008-02-08 2013-10-30 アサヒゴム株式会社 Plastisol sealant composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145262A (en) * 1983-02-07 1984-08-20 Atom Kagaku Toryo Kk Electrically conductive paint compositoin
JPS61211374A (en) * 1985-03-15 1986-09-19 Hakusui Kagaku Kogyo Kk Antistatic fluororesin paint

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145262A (en) * 1983-02-07 1984-08-20 Atom Kagaku Toryo Kk Electrically conductive paint compositoin
JPS61211374A (en) * 1985-03-15 1986-09-19 Hakusui Kagaku Kogyo Kk Antistatic fluororesin paint

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217084A (en) * 1988-02-26 1989-08-30 Mitsubishi Metal Corp Transparent ultraviolet light absorbing coating compound
WO2002047640A1 (en) * 1999-06-16 2002-06-20 Hakusui Tech Co., Ltd. Cosmetic comprising fine zinc oxide powder having electrically conductivity
JP2011501444A (en) * 2007-10-18 2011-01-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ELECTRODE PASTE FOR SOLAR CELL AND SOLAR CELL ELECTRODE USING THE SAME
JP2012211420A (en) * 2011-03-31 2012-11-01 Toray Monofilament Co Ltd Conductive synthetic fiber, and manufacturing method and use thereof

Also Published As

Publication number Publication date
JPH086055B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
US4431764A (en) Antistatic transparent coating composition
TWI421316B (en) Transparent conductive film forming composition, transparent conductive film, and display
JP5405935B2 (en) Transparent conductive sheet
JP2008135417A (en) Method of forming electrode in solar cell, and the solar cell using electrode obtained by the same
JPH01153769A (en) Composition for forming transparent electrically conductive film of zinc oxide
JPH10101375A (en) Solar radiation shielding coating solution and solar radiation shielding film using the same
JP5837292B2 (en) Composition for forming transparent conductive film, transparent conductive film, and antireflection film
JP4793537B2 (en) Visible light transmission type particle-dispersed conductor, conductive particles, visible light transmission type conductive article, and manufacturing method thereof
JP2004185914A (en) Transparent conductive film, compound sheet for transparent conductive film formation and transparent plastic member having transparent conductive film on its surface
JP2003128959A (en) Transparent electroconductive film and coating for forming transparent electroconductive film
JP3309264B2 (en) Antistatic paint and antistatic film and sheet formed with the coating film
JP4373996B2 (en) Conductive anti-glare film forming composition, conductive anti-glare film and display
JPH0473809A (en) Transparent conductiv film
JP2619921B2 (en) Analog type transparent touch panel
JP4958143B2 (en) Composition for forming transparent conductive film, transparent conductive film and display
JPS61151542A (en) Transparent electrostatic recording material
JPH0323229B2 (en)
JP3841608B2 (en) Transparent foil powder and molded body containing the transparent foil powder
JP2530651B2 (en) Membrane type touch panel
JPH056283B2 (en)
JP4373997B2 (en) Composition for forming transparent conductive film, transparent conductive film and display
JPH0250214A (en) Touch panel
JPH0741697A (en) Antistatic paint and antistatic molded article coated with the paint
JPH0465112B2 (en)
JPS61207472A (en) Electrically conductive transparent paint

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term