JP2004185914A - Transparent conductive film, compound sheet for transparent conductive film formation and transparent plastic member having transparent conductive film on its surface - Google Patents

Transparent conductive film, compound sheet for transparent conductive film formation and transparent plastic member having transparent conductive film on its surface Download PDF

Info

Publication number
JP2004185914A
JP2004185914A JP2002350171A JP2002350171A JP2004185914A JP 2004185914 A JP2004185914 A JP 2004185914A JP 2002350171 A JP2002350171 A JP 2002350171A JP 2002350171 A JP2002350171 A JP 2002350171A JP 2004185914 A JP2004185914 A JP 2004185914A
Authority
JP
Japan
Prior art keywords
fine particles
transparent conductive
transparent
conductive
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002350171A
Other languages
Japanese (ja)
Inventor
Toshihiko Oguchi
壽彦 小口
Shiyouzou Murata
省蔵 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morimura Chemicals Ltd
Original Assignee
Morimura Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morimura Chemicals Ltd filed Critical Morimura Chemicals Ltd
Priority to JP2002350171A priority Critical patent/JP2004185914A/en
Publication of JP2004185914A publication Critical patent/JP2004185914A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent conductive film endowed with transparency, conductivity and elasticity necessary for an embossed carrier tape, capable of realizing a low surface resistance in a use in which an embossing is not necessary, and with the surface resistance hardly changing with time due to influence of friction, moisture, or the like, as well as a compound sheet for the transparent conductive film formation, and a transparent plastic member. <P>SOLUTION: The film comprises a transparent conductive film including conductive fine particles consisting of a mixture of fine conductive fine particles and coarse conductive fine particles and a transparent coating layer formed on the transparent conductive layer, and at least a part of the coarse conductive fine particles constituting the transparent conductive film is exposed to the surface penetrating the transparent coating layer. The transparent conductive film has a surface resistance value necessary for electrostatic prevention while maintaining transparency, and further, is endowed with an enough anti-reflection performance and an anti-dazzling property at a visible light region and a near-infrared region, so that it can be used as a front face plate of a transparent display device, for the electrostatic prevention of an electronic component or the like. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、透明で可撓性に優れた透明導電膜、この透明導電膜を形成することのできる透明導電膜形成用複合シート及び表面に透明導電膜を有する透明プラスチック部材に関する。
【0002】
【従来の技術】
近年、ICをはじめとするトランジスター、ダイオード、コンデンサー、圧電素子レジスターなどの小型電子部品は、これらを熱可塑性樹脂テープにエンボス加工で形成したポケットに収容しその上をカバーテープで被覆したキャリアテープやトレーで保管、輸送、装着等が行われている。
【0003】
キャリアテープは、振動や摩擦により静電気が発生して帯電し、カバーテープを剥がすときに帯電した静電気が放電して収容した電子部品を静電破壊するため帯電防止の方策が講じられている。電子部品収納トレーも同様な帯電防止策が講じられている。また、キャリアテープのポケットに電子部品等が収納されているか否かの確認を、キャリアテープを透過した光を読取りセンサーで読取るため、キャリアテープは全光線透過率が50%以上の透明性をもつことが要望されている。電子部品収納トレーについても目視による電子部品の確認が出来る為、透明性が要望されている。
【0004】
キャリアテープやトレーの帯電防止の方法としては、これら原料の熱可塑性樹脂に炭素粉末、金属粉末等の導電性微粒子を練り込む方法、キャリアテープやトレーの表面にスパッタリング等により金属層を形成する方法等が知られているが、前者の方法では、キャリアテープやトレーが不透明となってポケット内の電子部品の確認ができないという問題があり、後者の方法では、製作コストが高くなるという問題があった。
【0005】
さらに、近時、熱可塑性樹脂フィルム上にITOやATOを含有する透明導電塗料を塗布して塗膜の透明性を保持しようとする提案もなされているが、このようにして導電性を付与した熱可塑性樹脂フィルムから形成されたキャリアテープやトレーは、平坦な状態では所定の導電性を保持してもエンボス加工をするとフィルムが大きく伸長されるため必要な導電性が得られなくなるという問題があった。また、導電性を高くするため導電性微粒子を多量に配合すると必要な透明性が得られないことや、導電粒子の欠落がし易くなるという問題もあった。
【0006】
一般に、透明導電塗料の塗布により、エンボス加工キャリアテープに帯電防止機能を付与するためには、透明導電塗料の乾燥塗布膜の厚さ2〜10μmで全光線透過率は50%以上、エンボス加工後の表面抵抗値は5×10〜9×1010Ω/□、塗膜の伸び率(基材に密着した状態)60%以上が必要とされるが、従来の透明導電塗料でこのような条件を満たすものは知られていない。
【0007】
すなわち、透明性と低表面抵抗を満足させるためには、塗布厚を薄くして全光線透過率を高くするとともにバインダー成分を少なくして抵抗値を低くする必要があるが、このような透明導電膜はフィルムへの密着性が悪い上に導電性微粒子どうしの結着力が低いため、エンボス加工によって表面抵抗が著しく上昇してしまうという問題があった。
【0008】
また、エンボス加工をしない用途においても、透明導電膜には、高い透明性と低い表面抵抗値が要求されるが、これらの特性を満足させるためには、導電性微粒子を結着するバインダー成分の量を少なくしなければならず、このため摩擦や水分等の影響により導電性微粒子相互の接触状態が変化して表面抵抗が経時的に上昇するという問題があった。
【0009】
さらに、従来の透明導電膜の形成方法は、透明導電膜の形成や塗膜の乾燥等にいずれも大掛かりな装置を必要とするため、小規模な生産や個人的、家庭的な用途には対応できないという問題があった。
【0010】
【発明が解決しようとする課題】
上述したように、従来の帯電防止機能を付与したキャリアテープやトレーのうち、これら原料の熱可塑性樹脂に炭素粉末、金属粉末等の導電性微粒子を練り込んだものでは、不透明となってポケット内の電子部品の確認ができないという問題があった。また、キャリアテープやトレーの表面にスパッタリング等により金属層を形成したものでは、製作コストが高くなるという問題がある。表面に透明導電塗料による塗膜を形成したものでは、エンボス加工をするとフィルムが大きく伸長されるため必要な導電性が得られなくなるという問題があり、導電性を高くしようとすると必要な透明性が得られなくなり、かつ導電粒子の欠落という問題があった。
【0011】
また、エンボス加工をしない用途においても、従来の透明導電膜には、摩擦や水分等の影響により導電性微粒子相互の接触状態が変化して表面抵抗が経時的に上昇するという問題があった。
【0012】
さらに、従来の透明導電膜の形成方法は、透明導電膜の形成や塗膜の乾燥等にいずれも大掛かりな装置を必要とするため、小規模な生産や個人的、家庭的な用途には対応できないという問題があった。
【0013】
本発明は、かかる従来の問題を解消すべくなされたもので、エンボス加工キャリアテープに必要な透明性、導電性及び伸びを備え、かつエンボス加工をしない用途においても低い表面抵抗を実現することができ、かつ摩擦や水分等の影響により表面抵抗が経時的に変化しにくい透明導電膜、かかる透明導電膜を簡便に形成することのできる透明導電膜形成用複合シート及びかかる透明導電膜を有する透明プラスチック部材を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明の透明導電膜は、(A)(a1)平均粒径5nm以上、0.4μm未満の微細導電性微粒子と(a2)平均粒径0.4μm以上、30μm未満の粗大導電性微粒子との混合物からなる導電性微粒子を含む透明導電層と、(B)前記透明導電層上に形成された、好ましくは粗大導電粒子(a2)以下の膜厚の透明被覆層とからなり、前記透明導電層を構成する粗大導電性微粒子の少なくとも一部が前記透明被覆層を貫通して表面に露出していることを特徴としている。
【0015】
本発明における導電性微粒子の粒径は、針状又は扁平状の導電性微粒子の場合には長軸方向の粒径を意味する。
【0016】
本発明に用いられる(a1)の微細導電性微粒子としては、▲1▼Sb,Sn,In,Ti,Si及びZnから選ばれた1種以上の金属を含む酸化物微粒子と、▲2▼Ag,Pd,Cu,Ni,Ru,Rh,Fe,Pt,Cr,Co,Al,Ta,Pb,Os及びIrから選ばれた1種以上の金属コロイド微粒子とを含むことが好ましい。具体的には、酸化スズ、酸化インジウムを主成分とする粉体の単独又は2種以上混合した導電性微粒子や、酸化スズ、酸化インジウムにSb、Sn、Mg、Ga、Ti、P、Zn、等の異種金属をドープさせた導電性微粒子が挙げられる。これらの導電性微粒子に、酸素欠陥を助長する処理、窒素雰囲気中で熱処理して窒化物とする処理、水素等の還元性雰囲気中で表面を還元させる処理等を施したものも好適に使用される。導電性微粒子の好ましい具体例としては、例えば、銀含有コロイド液、酸化スズ微粒子、酸化インジウム微粒子、酸化スズや酸化インジウムの微粒子に、Sb、Sn、Mg、Ga、Ti、P、Zn等の異種金属をドープさせた微粒子、ATO微粒子(例えば、SN−100P[石原産業(株)製、商品名](二酸化スズ/五酸化アンチモン=88/12(重量%)、平均一次粒子:0.02μmの球状粒子)、針状のATO微粒子FS−10P [石原産業(株)製、商品名]:(二酸化スズ/五酸化アンチモン=88/12、平均一次粒子の短軸平均粒径0.01μm、長軸平均一次粒子径2μm:アスペクト比200)、ITO微粒子(例えば、F−ITO[同和鉱業(株)製、商品名](酸化スズ/酸化インジウム=5/95(重量%)、平均一次粒子:0.08μm))等が例示される。
【0017】
本発明の(A)(a1)の導電性微粒子は、平均粒径5nm以上、0.4μm未満であるが、望ましくは平均粒径0.01〜0.1μmがよい。
導電性微粒子の平均粒径が、5nm未満では十分な導電率が得られなくなり、0.4μm以上になると必要な導電性が得られる量を配合すると透明性が低いものとなる。
【0018】
(a2)の粗大導電性微粒子は、特に針状又は扁平状の非円形の導電性微粒子(アスペクト比3〜600、好ましくは5〜300)が好しく、針状又は扁平状の非円形の導電性微粒子の平均粒径は、0.4μm以上、30μm未満で、好ましくは0.4μm以上、20μm未満である。
(a2)の粗大導電性微粒子としては、Sb,Sn,In,Ti,Si及びZnら選ばれた1種以上の金属を含む窒化物、酸化物、金属ドープ酸化物若しくは導電性カーボン又はこれらの組合わせからなるものが好ましい。
(a2)の粗大導電性微粒子の具体例としては、例えば、TiN/TiO/Cの複合導電性微粒子、例えばデントールNT−100[大塚化学(株)製、商品名]・(TiN/TiO/C系板状粉末、平均粒径15μm、アスペクト比5〜10)、デントールNT−200[同前](粒径:15μm・針状結晶)や酸化スズ系の複合粒子、例えばデントールWK−200B[大塚化学 ・(株)製、商品名](K0・6TiO/SnO、平均粒径15μm、アスペクト比30〜60);デントールWK−500[同前](TiO/SnO系粉末、平均粒径10μm、アスペクト比20〜50)、デントールWK−600[同前](TiO/SnO系粉末、平均粒径5μm、アスペクト比10〜30)や、板状結晶SiO/C系の導電性微粒子例えばデントールTM−200(平均粒径15μmアスペクト比30〜100)や板状ケイ酸塩/C系のデントールBK−400M(平均粒径6μm、アスペクト比20〜30[大塚化学(株)社製、商品名])や導電性カーボンブラック例えば#3050[三菱化成(株)製、商品名](粒度:40nm−次粒子、2次凝集体1μm以上で使用)、#3150[同前](粒度:25nm−次粒子、2次凝集体1μm以上で使用)、#3750[同前](粒度:28nm−次粒子、2次凝集体1μm以上で使用)等が例示される。
【0019】
(a2)の粗大導電性微粒子の平均粒径が0.4μm未満であると、すなわち(a1)微細導電性微粒子だけであると形成される透明導電膜は導電率の低いものとなる。
【0020】
(a1)の微細導電性微粒子と(a2)の粗大導電性微粒子の配合割合は、重量比で(a1):(a2)=10:0.05〜1.0、好ましくは10:0.07〜0.5の範囲とする。(a2)の粗大導電性微粒子が、重量比で0.05未満だと透明導電塗膜の導電率が不十分となり、逆に1.0を越えると透明導電塗膜の光透過率が不十分になるのでいずれも好ましくない。
【0021】
(a1)の微細導電性微粒子及び(a2)の粗大導電性微粒子以外の平均粒径の導電性微粒子が混在していてもよいが、微細導電性微粒子及び粗大導電性微粒子が全体の90重量%以上占めることが望ましく、特に平均粒径30μm以上の平均粒径の導電性微粒子は実質的に含まれていないことが望ましい。
【0022】
(a2)の粗大導電性微粒子の平均粒径は、(a1)の微細導電性微粒子の平均粒径の10倍以上であることが望ましい。
【0023】
本発明の透明導電膜の透明導電層には、(a)導電性微粒子とともに(b)有機導電材を併用することができる。(a)導電性微粒子と(b)有機導電材の割合は、重量比で(a);(b)=10:0.02〜5.0であることが望ましい。
【0024】
本発明の(A)(b)の有機導電材としては、(イ)ジオキシチオフェンポリスチレン系導電性樹脂液、(ロ)ポリピロール系導電性樹脂液、(ハ)電化移動型錯体、(ニ)ラジカル型導電性化合物、(ホ)キレート型導電性化合物等が挙げられる。
【0025】
(イ)のジオキシチオフェンポリスチレン系樹脂液としては、PEDT/PSS(Polyethylene Dioxythiophene polystylene sulphonate)[バイエル社商品名]が例示される。この樹脂は、単独の塗膜の表面抵抗が条件によっては150Ω/□にまで達する高い導電性を有している。(ロ)のポリピロール系導電性樹脂液としては、BasotronicPYR[バスフ社商品名]が挙げられる。この樹脂は、適切なドーパントを用いることにより10−3Ω/□の高い導電性を示す。(ハ)の電化移動型錯体としては、TCNQ(Tetra cyano quino dimethane) 錯体がよく知られており、(ニ)のラジカル型導電性化合物としては、例えば次のようなジフェニルヒドラジルが知られており、(ホ)のキレート型導電性化合物としては、例えば次のような銅フタロシアニン塩が知られている。
【0026】
これらの有機導電材のうち、高分子導電材が特に好適している。
(a)の導電性微粒子と(b)の有機導電材との割合は、重量比で(a):(b)=10:0.02〜5.0、好ましくは(a):(b)=10:0.05〜5.0とすることが望ましい。
本発明においては、透明導電層の導電性微粒子を透明導電層として固定するためにバインダー成分が用いられる。
【0027】
本発明に用いるバインダー成分としては、熱可塑性アクリル樹脂、セルロース系樹指、ポリアミド樹脂、塩化ビニル樹脂、変性アルキッド樹脂、ポリエチレン、ポリフェノール、ポリアミノ酸、ポリスチレン、酢酸ビニル樹脂、エチレン−酢酸ビニル共重合体、ポリスチレン系樹脂のような熱可塑性樹脂;ポリウレタン系樹脂、エポキシ系樹脂、アミノアルキッド系樹脂のような熱硬化性樹脂;硝化綿、UV(紫外線)硬化樹脂等が例示される。UV硬化樹脂の具体例としては、例えば、ステアリルアクリレート、イソデシルメタクリレート、n−ビニル−2−ピロリドンのような単官能アクリレートモノマー、ポリエチレングリコールジアクリレート、ポリプロピレンググリコ一ルジアクリレートのような2官能アクリレートモノマー、トリメチロ−ルプロパントリアクリレートのような3官能アクリレートモノマー、ペンタエリスリトールテトラアクリレートのような4官能以上の多官能アクリレートモノマー、エポキシ系アクリレート、ポリウレタン系アクリレートのようなアクリレートオリゴマー等が例示される。これらのUV硬化樹脂の光重合開始剤としては、チオキサントン系光重合開始剤、ベンゾフェノン系光重合開始剤、アントラキノン系光重合開始剤等が例示される。さらに、これらのUV硬化樹脂の光重合開始剤と併用される光重合促進剤としては、p−ジメチルアミノ安息香酸イソアミルエステル、p−ジメチルアミノ安息香酸エチルエステル等が例示される。バインダー成分は、基材との密着性を左右する因子であるので、できるだけ基材と密着性がよく、しかも伸びの大きい合成樹脂を選択することが望ましい。
【0028】
上記バインダー成分を溶解又は分散させるとともに、導電性微粒子を分散させる溶剤(分散剤)としては基材を侵さないものであれば特に制限はなく、水系、アルコール系、エーテルアルコール系、エーテル系、エステル系、エーテルエステル系、ケトン系及びこれらの混合系のいずれも使用可能である。これらの溶剤(分散剤)の具体例としては、水、メタノール、エタノール、プロパノール、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、エチレングリコール、ヘキシレングリコールなどのアルコール類;酢酸メチルエステル、酢酸エチルエステルなどのエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテルなどのエーテル類;アセトン、メチルエチルケトン、アセチルアセトン、アセト酢酸エステルなどのケトン類等が例示される。
【0029】
本発明において透明導電層上の透明被覆層の成膜成分としては、バインダー成分に用いられる合成樹脂を用いることができる。透明被覆層を形成する材料として具体的には、熱可塑性アクリル樹脂、セルロース系樹指、ポリアミド樹脂、塩化ビニル樹脂、変性アルキッド樹脂、ポリエチレン、ポリフェノール、ポリアミノ酸、ポリスチレン、酢酸ビニル樹脂、エチレン−酢酸ビニル共重合体、ポリスチレン系樹脂のような熱可塑性樹脂;ポリウレタン系樹脂、エポキシ系樹脂、アミノアルキッド系樹脂のような熱硬化性樹脂;硝化綿、UV(紫外線)硬化樹脂等が例示される。また、透明導電層と透明被覆層のバインダーの組合せは品質劣化を起こさない組合せであれば自由に選択できる。さらに、透明被覆層自体は絶縁体でも帯電防止性能があるバインダーでもかまわない。殆どの合成樹脂が絶縁体に俗している。帯電防止性能を付与した合成樹脂としては前途した有機導電材を混合せたものや、ポリアマイドに第4 級アンモニウム塩を付加させたものなどある。しかし、この樹脂中へ導電性微粒子を添加することは導電性微粒子の欠落改良の目的からは逸脱する。
【0030】
なお、透明導電膜形成用塗料中には、遊離のイオンは可及的に少ないことが望ましく、特にハロゲンイオンやアルカリ金属イオンは電子機器の金属電極端子を腐食させるので、その含有量は極小にすることが望ましい。より望ましくは、ハロゲンイオンの含有量は10ppm以下とし、アルカリ金属イオンの含有量は1ppm以下とする。
【0031】
本発明における(A)の導電材とバインダー成分との割合は、導電材の100重量部に対して、バインダー成分が20〜300重量部の範囲とすることが望ましい。バインダー成分が300重量部を越えると塗膜の導電率が不十分になり、逆に20重量部未満では塗膜の光透過率や機械的特性が不十分になるので好ましくない。
【0032】
本発明の透明導電膜形成用の塗料には、以上の成分の他、界面活性剤その他の添加剤を配合することもできる。上記の界面活性剤としては、ノニオン及びカチオン系界面活性剤、アニオン界面活性剤、両性界面活性剤等が例示される。
【0033】
本発明の透明導電膜は、上記の配合の透明導電層と透明被覆層の膜形成用塗料を基材に塗布乾燥させることにより形成される。
また、この透明被覆層には、前述した様に有機導電材を含有させることもできる。
【0034】
透明導電層の下面に形成される(C)のプライマー層としては、基本的に基材と密着性が良く、かつ上塗りの透明被覆層との密着の良いものでかつ、透明性を損なわないものであれば良い。例えば、アクリル系、塩素化オレフィン系、ウレタン系、エポキシ系プライマー等が例示される。
【0035】
本発明の透明導電膜は、基材上に直接又はプライマー層や接着剤層を介して、透明導電塗料を塗布し乾燥させて透明導電層を形成し、この透明導電層上に透明被覆塗料を塗布し乾燥させて形成される。
【0036】
透明導電層及び透明被覆層は、ディッピング法、スピナー法、スプレー法、ロールコーター法、フレキソ印刷法、スプレー法などによりそれぞれの塗料を塗布したのち、常温〜約80℃の範囲の温度で乾燥することにより形成される。
【0037】
これらの塗料が紫外線硬化型樹脂を含む場合には、例えばポリエステルフィルム上にバーコーターにて塗布後、50±5℃にて1〜2分程度乾燥した後、紫外線照射機にて紫外線を照射して硬化させることにより得られる。紫外線照射機としては、例えばシステムECS−151U[アイグラフィック(株)製、商品名](メタルハライドランプM015−L312コールドミラー集光、コンベアスピード2m/min、積算光量:667mJ/cm)を用いることができる。
【0038】
本発明の第1の実施例形態では、図1に示すように、合成樹脂フィルムや成型品等の部材1上に、直接透明導電層2を形成し、その上に透明被覆層3を形成して透明導電膜が形成される。このとき、透明導電層2を構成する粗大導電性微粒子2aの少なくとも一部が、透明被覆層3を貫通して表面に露出するように、透明被覆層3の平均厚さを粗大導電性微粒子2aの平均粒径よりも薄く形成する。
【0039】
第1の実施形態は、部材1が透明導電層2と接着し易い表面を有する場合に用いられる。
【0040】
本発明の第2の実施例形態では、図2に示すように、合成樹脂フィルムや成型品等の部材1上に、予めプライマー層4が形成され、その上に透明導電層2、透明被覆層3が順に塗布・乾燥を繰返して形成される。第2の実施形態においても、透明導電層2を構成する粗大導電性微粒子2aの少なくとも一部が、透明被覆層3を貫通して表面に露出するように、透明被覆層3の平均厚さを粗大導電性微粒子2aの平均粒径よりも薄く形成する。
【0041】
第2の実施形態は、部材1がポリプロピレンやポリエチレンのように透明導電層と接着し難い表面を有する場合に用いられる。
【0042】
第3の実施形態は、図3に示すように、部材1に代えて離型性のシート5を用いて、この離型性のシート5上に、プライマー層4、透明導電層2、透明被覆層3を順に形成することにより、転写可能な透明導電膜とすることができる。プライマー層4は、公知の透明接着剤層に代えてもよい。さらに、離型性のシート5上に、透明被覆層3、透明導電層2、プライマー層4、を順に形成するようにしてもよい。
【0043】
この複合シートは、離型性のシート5を剥離し、露出したプライマー層4又は透明接着剤層を、部材の表面に貼着することにより容易に部材表面に透明導電膜を形成することができる。
【0044】
本発明の透明導電膜の全体の厚さは、3〜40μmの範囲が好ましく、このうち、透明導電層の厚さは2〜30μm、透明絶縁膜の厚さは1〜30μmの範囲であることが好ましい。また、透明導電膜を構成する各層の厚さの比率は、透明導電層:透明被覆層=1:0.05〜5であることが望ましい。
【0045】
本発明においては、表面に帯電する電荷は、透明被覆層表面に露出する粗大導電性微粒子を介して透明導電層に移行し適当な接地手段によって除去される。
【0046】
一般に、透明導電塗膜は、帯電防止を目的とする場合にはエンボス加工後の延伸部の表面抵抗が5×10〜9×1010Ω/□程度あることが必要とされるが、本発明の透明導電塗膜は表面の透明被覆膜が、透明導電層の亀裂発生や剥落を防止するため、このような表面抵抗を備えながら、70%以上の光透過率を備えている。さらに、透明絶縁層、透明導電層の材料、厚さを選択することにより、70%以上の光透過率を保持しながら、10×10−2Ω/□程度の低い表面抵抗を実現することが可能である。
【0047】
したがって、本発明に係る透明導電膜は、透明性を維持したまま帯電防止に必要な表面抵抗値を有し、さらに可視光領域および近赤外領域で充分な反射防止性能と防眩性を有するので透明表示装置の前面板、電子部品の帯電防止等として効果的に利用することができる。
【0048】
また、本発明に係る透明導電膜形成用複合シートは、離型性シートを剥離して透明導電膜を必要な個所に貼着するだけで任意の部材の任意の表面に透明導電膜を形成することができるので、小規模な生産や個人的、家庭的な用途にも対応することができる。
【0049】
【実施例1】
ATO微粒子(商品名:SN−100P:平均一次粒子径0.02μm)19重量部と平均粒径10μmの粗大導電粒子のTiO/SnO微粒子(商品名:WK−500[大塚化学(株)社製])2重量部とポリウレタン樹脂溶液(商品名:ニッポラン5120:固形分30%〔日本ポリウレタン工業(株)社製〕)30重量部、レオドールSP−030[花王(株)社製、商品名](非イオン界面活性剤)2重量部、酢酸エチル20重量部、メチルエチルケトン17重量部、エチレングリコールモノブチルエーテル10重量部を混合しビーズミルにて分散させて透明導電膜形成塗料を得た。分散終了点はグラインドゲージ値の最大値で10μm以下とした。
【0050】
この透明導電膜形成塗料をバーコーターにて厚さ400μmのポリスチレンフィルム上に乾燥膜厚が3〜5μmとなるように塗布し、50±5℃のオーブンを通過させて乾燥させた後、ポリウレタン樹脂溶液(商品名:ニッポラン5120:固形分30%〔日本ポリウレタン工業(株)社製〕)を乾燥膜厚1〜2μmとなるように上塗りする。再度、50±5℃のオーブンを通過させ乾燥し透明被覆層を形成させた。次に、このポリスチレンフィルムにプレス成形によりエンボス加工してポケットを形成した(最大延伸率200%)。尚、成形温度は200℃、成形時間は1ポット20秒である。
【0051】
【実施例2】
実施例1に於いて平均粒径10μmの粗大導電粒子のTiO/SnO微粒子(商品名:WK−500[大塚化学(株)社製])を1重量部とし、さらに有機導電材のジオキシチオフェンポリスチレン樹脂液(商品名:バイトロンP〔バイエル社製〕:PEDT=0.5%、PSS=0.8%)1重量部加えた他は実施例1と同様に透明導電膜形成塗料及び透明被覆膜を形成させ、エンボス加工しポケットを形成した。
【0052】
【実施例3】
実施例2に於いて粗大導電粒子のWK−500の1重量部をデントールNT−100[大塚化学(株)製、商品名](TiN/TiO/C系板状粉末、平均粒径15μm、アスペクト比5〜10)1重量部に置き換え、かつ基材のポリスチレンフィルムをコロナ処理ポリプロピレンフィルムとし、プライマ−として変性ポリオレフィン(商品名:ユニストールP−401A〔三井化学(株)社製〕固形分11%)を乾燥膜厚1〜2μmとなるようにバーコーターにて塗布し常温で乾燥させた後は実施例2と同様に透明導電膜形成塗料及び透明被覆膜を形成させ、エンボス加工しポケットを形成した。
【0053】
【実施例4】
実施例2に於いて透明被覆層の乾燥膜厚を3〜5μmとした他は実施例2と同様に透明導電膜形成塗料及び透明被覆膜を形成させ、エンボス加工しポケットを形成した。
【0054】
【実施例5】
実施例1に於いて平均粒径0.02μmのATO微粒子(商品名:SN−100P:平均一次粒子径0.02μm)を15重量部とし、20重量%銀コロイド溶液(平均粒径0.01μm)4重量部を加えた他は実施例1と同様に透明導電膜形成塗料及び透明被覆膜を形成させ、エンボス加工しポケットを形成した。
【0055】
【実施例6】
実施例2に於いて微細導電性微粒子を針状ATO微粒子FS−10P[石原産業(株)製、商品名](平均一次粒子の短軸平均粒径0.01μm、長軸平均一次粒子径2μm:アスペクト比200]15重量部とITO微粒子(商品名:F−ITO:平均一次粒子径0.08μm)4重量部の混合系に置き換え、かつポリウレタン樹脂に替えて熱可塑性アクリル樹脂溶液(商品名:サーモラックF−1:不揮発分30%〔綜研化学(株)社製〕)とし、かつメチルエチルケトン17重量部をイソプロピルアルコール17重量部に置き換えた他は実施例2と同様に透明導電膜形成塗料及び透明被覆膜を形成させエンボス加工しポケットを形成した。
【0056】
【実施例7】
離型性シートポリエステルシート上へシリコーン離型剤([信越シリコーン (株)社製、商品名KF410]をコーターで塗布し含浸させたシートへ接着材層として特殊シリコーン変性エポキシ樹脂系弾性接着剤[セメダイン(株)社製、PM−210]をコーターで塗布の後、実施例1の透明導電塗料をバーコーターにて乾燥膜厚が15μmとなるように塗布し、50±5℃のオーブンを通過させて乾燥させた後、ポリウレタン樹脂溶液(商品名:ニッポラン5120:固形分30%〔日本ポリウレタン工業(株)社製〕)を乾燥膜厚10〜12μmとなるように上塗りする。再度、50±5℃のオーブンを通過させ乾燥し透明被覆層を形成させ透明導電形成用複合シートを作成した。このシートをポリスチレンフィルムに貼着させる。このポリスチレンフィルムを実施例1と同様にエンボス加工しポケットを形成した。
【0057】
【比較例1】
実施例1に於いて平均粒径5nm以上、30μm未満の導電性微粒子であるATO微粒子(商品名:SN−100P:平均一次粒子径0.02μm)を21重量部とし、粗大導電粒子を全く加えない他は実施例1と全く同様にして塗料及び塗膜を作製し、透明導電膜を得た。
【0058】
【比較例2】
実施例2に於いてポリウレタン樹脂溶液の上塗りをしない他は実施例2と全く同様にして塗料及び塗膜を作製し、透明導電膜を得た。
【0059】
【比較例3】
実施例6に於いて透明被覆層の乾燥膜厚を40〜50μmとした他は実施例6と同様に透明導電膜形成塗料及び透明被覆膜を形成させ、エンボス加工しポケットを形成した。
【0060】
上記実施例及び比較例で得られた各透明導電膜サンプルについて塗膜中の導電粒子量と表面抵抗値〔エンボス加工前及びエンボス加工後延伸部〕、全光透過率、導電材のコスレ落ちと総合評価を表1に示す。
【0061】
【表1】

Figure 2004185914

【図面の簡単な説明】
【図1】本発明の第1の実施形態を模式的に示す断面図。
【図2】本発明の第2の実施例形態を模式的に示す断面図。
【図3】本発明の第3の実施形態を模式的に示す断面図。
【符号の説明】
1……部材、2……透明導電層、2a……粗大導電性微粒子、3……透明被覆層、4……プライマー層、5……離型性のシート。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a transparent conductive film having excellent transparency and flexibility, a composite sheet for forming a transparent conductive film capable of forming the transparent conductive film, and a transparent plastic member having a transparent conductive film on the surface.
[0002]
[Prior art]
In recent years, ICs and other small electronic components such as transistors, diodes, capacitors, and piezo-electric resistors have been housed in pockets formed by embossing a thermoplastic resin tape and covered with a cover tape. They are stored, transported and mounted in trays.
[0003]
The carrier tape is charged by the generation of static electricity due to vibration and friction, and when the cover tape is peeled off, the charged static electricity is discharged to electrostatically destroy the housed electronic components. Similar antistatic measures are taken for electronic component storage trays. In addition, since whether or not electronic components or the like are stored in the pocket of the carrier tape is read by a sensor that reads light transmitted through the carrier tape, the carrier tape has a total light transmittance of 50% or more. It is desired. Transparency is also required for electronic component storage trays because electronic components can be visually checked.
[0004]
As a method for preventing electrostatic charge of a carrier tape or a tray, a method of kneading conductive fine particles such as a carbon powder and a metal powder into a thermoplastic resin of these materials, a method of forming a metal layer on the surface of a carrier tape or a tray by sputtering or the like. However, the former method has a problem that the carrier tape and the tray become opaque and the electronic components in the pocket cannot be confirmed, and the latter method has a problem that the production cost increases. Was.
[0005]
Further, recently, it has been proposed that a transparent conductive paint containing ITO or ATO be applied on a thermoplastic resin film to maintain the transparency of the coating film. Carrier tapes and trays formed from a thermoplastic resin film have a problem in that when they are embossed, even if they maintain a predetermined conductivity in a flat state, the film is greatly stretched and the required conductivity cannot be obtained. Was. In addition, if a large amount of conductive fine particles are blended in order to increase the conductivity, the required transparency cannot be obtained, and the conductive particles are likely to be missing.
[0006]
Generally, in order to impart an antistatic function to an embossed carrier tape by applying a transparent conductive paint, the total light transmittance is 50% or more at a dry applied film thickness of the transparent conductive paint of 2 to 10 μm and after embossing. Has a surface resistance of 5 × 10 6 ~ 9 × 10 10 Ω / □, elongation of the coating film (in close contact with the base material) of 60% or more is required. However, there is no known transparent conductive paint which satisfies such conditions.
[0007]
In other words, in order to satisfy transparency and low surface resistance, it is necessary to reduce the resistance value by reducing the thickness of the coating to increase the total light transmittance and to reduce the binder component. Since the film has poor adhesion to the film and low binding force between the conductive fine particles, there has been a problem that the surface resistance is significantly increased by embossing.
[0008]
Also, in applications where embossing is not performed, the transparent conductive film is required to have high transparency and a low surface resistance value.To satisfy these characteristics, a binder component that binds the conductive fine particles is required. The amount must be reduced, so that there is a problem that the contact state between the conductive fine particles changes due to the influence of friction, moisture and the like, and the surface resistance increases with time.
[0009]
Furthermore, since the conventional method for forming a transparent conductive film requires a large-scale apparatus for forming the transparent conductive film and drying the coating film, it is suitable for small-scale production and personal and home use. There was a problem that could not be done.
[0010]
[Problems to be solved by the invention]
As described above, among the conventional carrier tapes and trays provided with an antistatic function, those obtained by kneading conductive fine particles such as carbon powder and metal powder into the thermoplastic resin of these raw materials become opaque and become in the pocket. There was a problem that the electronic components could not be confirmed. Further, in the case where a metal layer is formed on the surface of a carrier tape or a tray by sputtering or the like, there is a problem that the manufacturing cost is increased. If the surface is coated with a transparent conductive paint, the film will be stretched too much when embossed, causing the problem that the required conductivity will not be obtained. There is a problem that the conductive particles cannot be obtained and the conductive particles are missing.
[0011]
Further, even in applications where embossing is not performed, the conventional transparent conductive film has a problem that the contact state between the conductive fine particles changes due to the influence of friction, moisture, and the like, and the surface resistance increases with time.
[0012]
Furthermore, since the conventional method for forming a transparent conductive film requires a large-scale apparatus for forming the transparent conductive film and drying the coating film, it is suitable for small-scale production and personal and home use. There was a problem that could not be done.
[0013]
The present invention has been made to solve such a conventional problem, and has transparency, conductivity and elongation necessary for an embossed carrier tape, and can realize a low surface resistance even in an application not embossed. A transparent conductive film that can be formed and whose surface resistance is unlikely to change with time due to the influence of friction, moisture, etc., a composite sheet for forming a transparent conductive film capable of easily forming such a transparent conductive film, and a transparent sheet having such a transparent conductive film An object is to provide a plastic member.
[0014]
[Means for Solving the Problems]
The transparent conductive film of the present invention comprises (A) (a1) fine conductive fine particles having an average particle size of 5 nm or more and less than 0.4 μm and (a2) coarse conductive fine particles having an average particle size of 0.4 μm or more and less than 30 μm. A transparent conductive layer containing conductive fine particles comprising a mixture, and (B) a transparent coating layer formed on the transparent conductive layer, preferably having a thickness equal to or less than the coarse conductive particles (a2). Is characterized in that at least a part of the coarse conductive fine particles constituting the above penetrates the transparent coating layer and is exposed on the surface.
[0015]
The particle diameter of the conductive fine particles in the present invention means the particle diameter in the major axis direction in the case of needle-like or flat conductive fine particles.
[0016]
The fine conductive fine particles (a1) used in the present invention include (1) oxide fine particles containing at least one metal selected from Sb, Sn, In, Ti, Si and Zn; and (2) Ag. , Pd, Cu, Ni, Ru, Rh, Fe, Pt, Cr, Co, Al, Ta, Pb, Os and Ir. Specifically, tin oxide, conductive fine particles in which powder containing indium oxide as a main component alone or a mixture of two or more thereof, tin oxide, indium oxide, Sb, Sn, Mg, Ga, Ti, P, Zn, And conductive fine particles doped with a dissimilar metal. Those obtained by subjecting these conductive fine particles to a treatment for promoting oxygen defects, a treatment for heat treatment in a nitrogen atmosphere to form a nitride, a treatment for reducing the surface in a reducing atmosphere such as hydrogen, etc. are also preferably used. You. Preferred specific examples of the conductive fine particles include, for example, silver-containing colloid solution, tin oxide fine particles, indium oxide fine particles, fine particles of tin oxide and indium oxide, and different kinds of fine particles such as Sb, Sn, Mg, Ga, Ti, P, and Zn. Metal-doped fine particles, ATO fine particles (for example, SN-100P [trade name, manufactured by Ishihara Sangyo Co., Ltd.] (tin dioxide / antimony pentoxide = 88/12 (% by weight), average primary particles: 0.02 μm) Spherical particles), needle-like ATO fine particles FS-10P [trade name, manufactured by Ishihara Sangyo Co., Ltd.]: (tin dioxide / antimony pentoxide = 88/12, average primary particle minor axis average particle diameter 0.01 μm, long) Axial average primary particle diameter 2 μm: aspect ratio 200), ITO fine particles (for example, F-ITO [trade name, manufactured by Dowa Mining Co., Ltd.]) (tin oxide / indium oxide = 5/95 (% by weight), Average primary particles: 0.08 μm)).
[0017]
The conductive fine particles (A) and (a1) of the present invention have an average particle diameter of 5 nm or more and less than 0.4 μm, and preferably have an average particle diameter of 0.01 to 0.1 μm.
When the average particle size of the conductive fine particles is less than 5 nm, sufficient conductivity cannot be obtained, and when the average particle size is 0.4 μm or more, the transparency becomes low when the amount of the required conductivity is added.
[0018]
As the coarse conductive fine particles (a2), needle-like or flat non-circular conductive fine particles (aspect ratio 3 to 600, preferably 5 to 300) are particularly preferable, and needle-like or flat non-circular conductive fine particles are preferable. The average particle size of the conductive fine particles is 0.4 μm or more and less than 30 μm, and preferably 0.4 μm or more and less than 20 μm.
As the coarse conductive fine particles (a2), nitrides, oxides, metal-doped oxides or conductive carbons containing one or more metals selected from Sb, Sn, In, Ti, Si and Zn, or conductive carbons thereof Those consisting of combinations are preferred.
Specific examples of the coarse conductive fine particles (a2) include, for example, TiN / TiO. 2 / C composite conductive fine particles, for example, Dentol NT-100 [trade name, manufactured by Otsuka Chemical Co., Ltd.] 2 / C-based plate-like powder, average particle size 15 μm, aspect ratio 5-10), Dentol NT-200 (same as above) (particle size: 15 μm, acicular crystals) and tin oxide-based composite particles, for example, Dentol WK-200B [Otsuka Chemical Co., Ltd., product name] (K 2 0.6TiO 2 / SnO 2 Dentol WK-500 [same as above] (TiO 2, average particle size 15 μm, aspect ratio 30 to 60) 2 / SnO 2 System powder, average particle diameter 10 μm, aspect ratio 20-50), Dentol WK-600 [Same as before] (TiO 2 / SnO 2 System powder, average particle size 5 μm, aspect ratio 10 to 30), plate-like crystal SiO 2 / C-based conductive fine particles such as Dentol TM-200 (average particle diameter 15 μm, aspect ratio 30 to 100) and plate-like silicate / C-based dentol BK-400M (average particle diameter 6 μm, aspect ratio 20 to 30 [Otsuka # 3050 [manufactured by Mitsubishi Kasei Co., Ltd., trade name] (particle size: 40 nm-secondary particles, used for secondary aggregates of 1 μm or more), # 3150 [Before] (grain size: 25 nm-used for secondary particles, 1 μm or more), # 3750 [before] (grain size: 28 nm-used for secondary particles, 1 μm or more), etc. .
[0019]
When the average particle size of the coarse conductive fine particles of (a2) is less than 0.4 μm, that is, (a1) only the fine conductive fine particles, the transparent conductive film formed has low conductivity.
[0020]
The mixing ratio of the fine conductive fine particles (a1) and the coarse conductive fine particles (a2) is (a1) :( a2) = 10: 0.05 to 1.0, preferably 10: 0.07 by weight ratio. To 0.5. If the weight ratio of the coarse conductive fine particles (a2) is less than 0.05, the conductivity of the transparent conductive coating film is insufficient, and if it exceeds 1.0, the light transmittance of the transparent conductive coating film is insufficient. Are not preferred.
[0021]
The conductive fine particles having an average particle size other than the fine conductive fine particles (a1) and the coarse conductive fine particles (a2) may be mixed, but the fine conductive fine particles and the coarse conductive fine particles account for 90% by weight of the whole. More preferably, the conductive fine particles having an average particle diameter of 30 μm or more are not substantially contained.
[0022]
The average particle diameter of the coarse conductive fine particles (a2) is desirably 10 times or more the average particle diameter of the fine conductive fine particles (a1).
[0023]
In the transparent conductive layer of the transparent conductive film of the present invention, (b) an organic conductive material can be used together with (a) the conductive fine particles. The weight ratio of (a) the conductive fine particles to (b) the organic conductive material is preferably (a); (b) = 10: 0.02 to 5.0.
[0024]
Examples of the organic conductive material of (A) and (b) of the present invention include (a) a dioxythiophene polystyrene-based conductive resin solution, (b) a polypyrrole-based conductive resin solution, (c) an electrified transfer complex, and (d) Radical-type conductive compounds, (e) chelate-type conductive compounds, and the like.
[0025]
Examples of the dioxythiophene polystyrene resin liquid (a) include PEDT / PSS (Polyethylene Dioxythiophene polystyrene sulphonate) (trade name of Bayer AG). This resin has high conductivity in which the surface resistance of a single coating film reaches 150 Ω / □ depending on conditions. Examples of the polypyrrole-based conductive resin liquid (b) include Basotronic PYR [trade name of BASF Corporation]. This resin shows high conductivity of 10-3 Ω / □ by using an appropriate dopant. As the charge transfer complex of (c), a tetracyano quino dimethane (TCNQ) complex is well known, and as the radical conductive compound of (d), for example, the following diphenylhydrazyl is known. As the chelate-type conductive compound (e), for example, the following copper phthalocyanine salts are known.
[0026]
Among these organic conductive materials, a polymer conductive material is particularly suitable.
The ratio of the conductive fine particles of (a) to the organic conductive material of (b) is (a) :( b) = 10: 0.02 to 5.0 by weight ratio, preferably (a) :( b). = 10: 0.05 to 5.0 is desirable.
In the present invention, a binder component is used to fix the conductive fine particles of the transparent conductive layer as the transparent conductive layer.
[0027]
As the binder component used in the present invention, thermoplastic acrylic resin, cellulose resin, polyamide resin, vinyl chloride resin, modified alkyd resin, polyethylene, polyphenol, polyamino acid, polystyrene, vinyl acetate resin, ethylene-vinyl acetate copolymer And a thermoplastic resin such as a polystyrene resin; a thermosetting resin such as a polyurethane resin, an epoxy resin, and an amino alkyd resin; a nitrified cotton, and a UV (ultraviolet) curable resin. Specific examples of the UV curable resin include, for example, monofunctional acrylate monomers such as stearyl acrylate, isodecyl methacrylate, and n-vinyl-2-pyrrolidone, and bifunctional acrylates such as polyethylene glycol diacrylate and polypropylene glycol diacrylate. Examples include monomers, trifunctional acrylate monomers such as trimethylolpropane triacrylate, tetrafunctional or higher polyfunctional acrylate monomers such as pentaerythritol tetraacrylate, and acrylate oligomers such as epoxy acrylate and polyurethane acrylate. Examples of the photopolymerization initiator of these UV curable resins include a thioxanthone-based photopolymerization initiator, a benzophenone-based photopolymerization initiator, and an anthraquinone-based photopolymerization initiator. Furthermore, examples of the photopolymerization accelerator used in combination with the photopolymerization initiator of these UV curable resins include p-dimethylaminobenzoic acid isoamyl ester and p-dimethylaminobenzoic acid ethyl ester. Since the binder component is a factor that affects the adhesion to the substrate, it is desirable to select a synthetic resin having good adhesion to the substrate as much as possible and having a large elongation.
[0028]
The solvent (dispersant) for dissolving or dispersing the binder component and dispersing the conductive fine particles is not particularly limited as long as it does not attack the base material, and may be aqueous, alcohol, ether alcohol, ether, or ester. Any of a system, an ether ester system, a ketone system and a mixture thereof can be used. Specific examples of these solvents (dispersants) include water, methanol, ethanol, propanol, butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, alcohols such as ethylene glycol and hexylene glycol; methyl acetate; , Ethyl acetate, etc .; ethers such as diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether; acetone, methyl ethyl ketone, acetylacetone, acetoacetate And the like.
[0029]
In the present invention, as a film-forming component of the transparent coating layer on the transparent conductive layer, a synthetic resin used for a binder component can be used. Specific examples of the material forming the transparent coating layer include thermoplastic acrylic resin, cellulose resin, polyamide resin, vinyl chloride resin, modified alkyd resin, polyethylene, polyphenol, polyamino acid, polystyrene, vinyl acetate resin, ethylene-acetic acid. Thermoplastic resins such as vinyl copolymers and polystyrene resins; thermosetting resins such as polyurethane resins, epoxy resins and aminoalkyd resins; nitrified cotton, and UV (ultraviolet) curable resins. The combination of the binder for the transparent conductive layer and the binder for the transparent coating layer can be freely selected as long as the combination does not cause quality deterioration. Further, the transparent coating layer itself may be an insulator or a binder having antistatic performance. Most synthetic resins are popular with insulators. Examples of the synthetic resin having antistatic performance include a resin obtained by mixing an organic conductive material in advance, and a resin obtained by adding a quaternary ammonium salt to polyamide. However, adding the conductive fine particles to the resin deviates from the purpose of improving the missing of the conductive fine particles.
[0030]
In the coating for forming a transparent conductive film, it is desirable that free ions be as small as possible. Particularly, since halogen ions and alkali metal ions corrode metal electrode terminals of electronic devices, the content is extremely small. It is desirable to do. More preferably, the content of halogen ions is 10 ppm or less, and the content of alkali metal ions is 1 ppm or less.
[0031]
In the present invention, the ratio of the conductive material to the binder component in (A) is preferably in the range of 20 to 300 parts by weight based on 100 parts by weight of the conductive material. When the amount of the binder component exceeds 300 parts by weight, the conductivity of the coating film becomes insufficient. On the contrary, when the amount is less than 20 parts by weight, the light transmittance and mechanical properties of the coating film become insufficient, which is not preferable.
[0032]
The paint for forming a transparent conductive film of the present invention may contain a surfactant and other additives in addition to the above components. Examples of the surfactant include nonionic and cationic surfactants, anionic surfactants, and amphoteric surfactants.
[0033]
The transparent conductive film of the present invention is formed by applying a coating material for forming a transparent conductive layer and a transparent coating layer having the above-mentioned composition to a substrate and drying the coating.
Further, this transparent coating layer may contain an organic conductive material as described above.
[0034]
The primer layer (C) formed on the lower surface of the transparent conductive layer has basically good adhesion to the base material, good adhesion to the overcoating transparent coating layer, and does not impair transparency. Is fine. For example, acrylic, chlorinated olefin, urethane and epoxy primers are exemplified.
[0035]
The transparent conductive film of the present invention is to apply a transparent conductive paint directly on a substrate or via a primer layer or an adhesive layer, and to form a transparent conductive layer by drying, and apply a transparent coating paint on the transparent conductive layer. It is formed by coating and drying.
[0036]
The transparent conductive layer and the transparent coating layer are applied with respective paints by a dipping method, a spinner method, a spray method, a roll coater method, a flexographic printing method, a spray method, etc., and then dried at a temperature in a range from room temperature to about 80 ° C. It is formed by this.
[0037]
When these paints contain an ultraviolet-curable resin, for example, after applying on a polyester film with a bar coater, drying at 50 ± 5 ° C. for about 1 to 2 minutes, and then irradiating with ultraviolet rays with an ultraviolet irradiator. And cured. Examples of the UV irradiator include System ECS-151U (trade name, manufactured by Eye Graphic Co., Ltd.) (Metal halide lamp M015-L312 cold mirror condensing, conveyor speed 2 m / min, integrated light amount: 667 mJ / cm) 2 ) Can be used.
[0038]
In the first embodiment of the present invention, as shown in FIG. 1, a transparent conductive layer 2 is directly formed on a member 1 such as a synthetic resin film or a molded product, and a transparent coating layer 3 is formed thereon. Thus, a transparent conductive film is formed. At this time, the average thickness of the transparent coating layer 3 is adjusted such that at least a part of the coarse conductive fine particles 2a constituting the transparent conductive layer 2 penetrates the transparent coating layer 3 and is exposed on the surface. Is formed thinner than the average particle size.
[0039]
The first embodiment is used when the member 1 has a surface that easily adheres to the transparent conductive layer 2.
[0040]
In the second embodiment of the present invention, as shown in FIG. 2, a primer layer 4 is previously formed on a member 1 such as a synthetic resin film or a molded product, and a transparent conductive layer 2 and a transparent coating layer are formed thereon. 3 is formed by sequentially repeating application and drying. Also in the second embodiment, the average thickness of the transparent coating layer 3 is set such that at least a part of the coarse conductive fine particles 2 a constituting the transparent conductive layer 2 penetrates the transparent coating layer 3 and is exposed on the surface. It is formed thinner than the average particle size of the coarse conductive fine particles 2a.
[0041]
The second embodiment is used when the member 1 has a surface that is difficult to adhere to a transparent conductive layer, such as polypropylene or polyethylene.
[0042]
In the third embodiment, as shown in FIG. 3, a releasable sheet 5 is used in place of the member 1 and the primer layer 4, the transparent conductive layer 2, the transparent coating By forming the layers 3 in order, a transferable transparent conductive film can be obtained. The primer layer 4 may be replaced with a known transparent adhesive layer. Further, the transparent coating layer 3, the transparent conductive layer 2, and the primer layer 4 may be formed on the release sheet 5 in this order.
[0043]
In this composite sheet, a transparent conductive film can be easily formed on the member surface by peeling the release sheet 5 and attaching the exposed primer layer 4 or transparent adhesive layer to the surface of the member. .
[0044]
The total thickness of the transparent conductive film of the present invention is preferably in the range of 3 to 40 μm, of which the thickness of the transparent conductive layer is in the range of 2 to 30 μm, and the thickness of the transparent insulating film is in the range of 1 to 30 μm. Is preferred. Further, the ratio of the thickness of each layer constituting the transparent conductive film is desirably transparent conductive layer: transparent coating layer = 1: 0.05 to 5.
[0045]
In the present invention, the electric charge on the surface is transferred to the transparent conductive layer via the coarse conductive fine particles exposed on the surface of the transparent coating layer, and is removed by an appropriate grounding means.
[0046]
Generally, the transparent conductive coating film has a surface resistance of 5 × 10 10 6 ~ 9 × 10 10 Although it is required that the transparent conductive film of the present invention has a surface resistance of about Ω / □, the transparent conductive film of the present invention is provided with such a surface resistance so that the transparent coating film on the surface prevents cracking and peeling of the transparent conductive layer. , 70% or more. Further, by selecting the material and thickness of the transparent insulating layer and the transparent conductive layer, it is possible to maintain a light transmittance of 70% or more while maintaining a light transmittance of 10% or more. 2 × 10 -2 It is possible to realize a low surface resistance of about Ω / □.
[0047]
Therefore, the transparent conductive film according to the present invention has a surface resistance required for antistatic while maintaining transparency, and further has sufficient antireflection performance and antiglare property in a visible light region and a near infrared region. Therefore, it can be effectively used as a front plate of a transparent display device and an antistatic device for electronic components.
[0048]
Further, the transparent conductive film forming composite sheet according to the present invention forms a transparent conductive film on any surface of any member by simply peeling off the release sheet and attaching the transparent conductive film to a necessary portion. It can be used for small-scale production, personal and home use.
[0049]
Embodiment 1
19 parts by weight of ATO fine particles (trade name: SN-100P: average primary particle diameter 0.02 μm) and TiO of coarse conductive particles having an average particle diameter of 10 μm 2 / SnO 2 2 parts by weight of fine particles (trade name: WK-500 [manufactured by Otsuka Chemical Co., Ltd.]) and 30 parts by weight of polyurethane resin solution (trade name: Nipporan 5120: solid content 30% [manufactured by Nippon Polyurethane Industry Co., Ltd.]) And 2 parts by weight of REODOL SP-030 [trade name, manufactured by Kao Corporation] (nonionic surfactant), 20 parts by weight of ethyl acetate, 17 parts by weight of methyl ethyl ketone, and 10 parts by weight of ethylene glycol monobutyl ether were mixed and mixed in a bead mill. And dispersed to obtain a transparent conductive film forming paint. The dispersion end point was set to 10 μm or less as the maximum value of the grinding gauge value.
[0050]
This transparent conductive film forming paint is applied on a polystyrene film having a thickness of 400 μm with a bar coater so as to have a dry film thickness of 3 to 5 μm, and is dried by passing through an oven at 50 ± 5 ° C. A solution (trade name: Nipporan 5120: solid content 30% [manufactured by Nippon Polyurethane Industry Co., Ltd.]) is overcoated so as to have a dry film thickness of 1 to 2 μm. Again, it was passed through an oven at 50 ± 5 ° C. and dried to form a transparent coating layer. Next, the polystyrene film was embossed by press molding to form pockets (maximum stretch ratio 200%). The molding temperature was 200 ° C. and the molding time was 20 seconds per pot.
[0051]
Embodiment 2
Example 1 TiO of coarse conductive particles having an average particle diameter of 10 μm 2 / SnO 2 1 part by weight of fine particles (trade name: WK-500 [manufactured by Otsuka Chemical Co., Ltd.]), and a dioxythiophene polystyrene resin solution of an organic conductive material (trade name: Baytron P [manufactured by Bayer Corporation]: PEDT = 0) (0.5%, PSS = 0.8%) A coating material for forming a transparent conductive film and a transparent coating film were formed and embossed to form pockets in the same manner as in Example 1 except that 1 part by weight was added.
[0052]
Embodiment 3
In Example 2, 1 part by weight of the coarse conductive particles WK-500 was replaced with Dentol NT-100 (trade name, manufactured by Otsuka Chemical Co., Ltd.) (TiN / TiO2). 2 / C-based plate-like powder, average particle size 15 μm, aspect ratio 5-10) 1 part by weight, and a polystyrene film as a base material was a corona-treated polypropylene film, and a modified polyolefin (trade name: Unistor P-) was used as a primer. 401A (manufactured by Mitsui Chemicals, Inc., solid content: 11%) was applied with a bar coater so as to have a dry film thickness of 1 to 2 μm, and dried at room temperature. Then, a transparent coating film was formed and embossed to form a pocket.
[0053]
Embodiment 4
A transparent conductive film forming paint and a transparent coating film were formed and embossed in the same manner as in Example 2 except that the dry film thickness of the transparent coating layer was changed to 3 to 5 μm.
[0054]
Embodiment 5
In Example 1, 15 parts by weight of ATO fine particles (trade name: SN-100P: average primary particle diameter 0.02 μm) having an average particle diameter of 0.02 μm were used, and a 20% by weight silver colloid solution (average particle diameter 0.01 μm) was used. A transparent conductive film forming paint and a transparent coating film were formed and embossed to form pockets in the same manner as in Example 1 except that 4 parts by weight were added.
[0055]
Embodiment 6
In Example 2, the fine conductive fine particles were needle-like ATO fine particles FS-10P [trade name, manufactured by Ishihara Sangyo Co., Ltd.] (average primary particle minor axis average particle diameter 0.01 μm, major axis average primary particle diameter 2 μm) : Aspect ratio 200] 15 parts by weight and a mixture of 4 parts by weight of ITO fine particles (trade name: F-ITO: average primary particle diameter 0.08 μm) and a thermoplastic acrylic resin solution (trade name) in place of the polyurethane resin : Thermolac F-1: 30% non-volatile content (manufactured by Soken Chemical Co., Ltd.)) and a transparent conductive film forming paint as in Example 2 except that 17 parts by weight of methyl ethyl ketone was replaced by 17 parts by weight of isopropyl alcohol Then, a transparent coating film was formed and embossed to form a pocket.
[0056]
Embodiment 7
Releasable sheet A special silicone-modified epoxy resin-based elastic adhesive as an adhesive layer is applied to a sheet impregnated with a silicone release agent (trade name: KF410, manufactured by Shin-Etsu Silicone Co., Ltd.) coated on a polyester sheet. Cemedine Co., Ltd., PM-210] was applied with a coater, and then the transparent conductive paint of Example 1 was applied with a bar coater so as to have a dry film thickness of 15 μm, and passed through an oven at 50 ± 5 ° C. After drying and drying, a polyurethane resin solution (trade name: Nipporan 5120: solid content 30% [manufactured by Nippon Polyurethane Industry Co., Ltd.]) is overcoated to a dry film thickness of 10 to 12 μm. The sheet was passed through an oven at 5 ° C. and dried to form a transparent coating layer to prepare a composite sheet for forming a transparent conductive material, which was then adhered to a polystyrene film. Similarly embossed as in Example 1 Li styrene film forming the pocket.
[0057]
[Comparative Example 1]
In Example 1, 21 parts by weight of ATO fine particles (trade name: SN-100P: average primary particle diameter 0.02 μm), which are conductive fine particles having an average particle diameter of 5 nm or more and less than 30 μm, and coarse conductive particles were added at all. Except for the above, a coating material and a coating film were prepared in exactly the same manner as in Example 1 to obtain a transparent conductive film.
[0058]
[Comparative Example 2]
A coating material and a coating film were prepared in the same manner as in Example 2 except that the polyurethane resin solution was not overcoated in Example 2, and a transparent conductive film was obtained.
[0059]
[Comparative Example 3]
A coating material for forming a transparent conductive film and a transparent coating film were formed in the same manner as in Example 6, except that the dry film thickness of the transparent coating layer was changed to 40 to 50 μm, and embossing was performed to form pockets.
[0060]
For each transparent conductive film sample obtained in the above Examples and Comparative Examples, the amount of conductive particles in the coating film and the surface resistance (stretched portion before embossing and after embossing), the total light transmittance, and the loss of the conductive material. Table 1 shows the overall evaluation.
[0061]
[Table 1]
Figure 2004185914

[Brief description of the drawings]
FIG. 1 is a sectional view schematically showing a first embodiment of the present invention.
FIG. 2 is a sectional view schematically showing a second embodiment of the present invention.
FIG. 3 is a cross-sectional view schematically showing a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Member, 2 ... Transparent conductive layer, 2a ... Coarse conductive fine particles, 3 ... Transparent coating layer, 4 ... Primer layer, 5 ... Releasable sheet.

Claims (9)

(A)(a1)平均粒径5nm以上、0.4μm未満の微細導電性微粒子と(a2)平均粒径0.4μm以上、30μm未満の粗大導電性微粒子との混合物からなる導電性微粒子を含む透明導電層と、(B)前記透明導電層上に形成された透明被覆層とからなり、前記透明導電層を構成する粗大導電性微粒子の少なくとも一部が前記透明被覆層を貫通して表面に露出していることを特徴とする透明導電膜。(A) Conductive fine particles comprising a mixture of (a1) fine conductive fine particles having an average particle size of 5 nm or more and less than 0.4 μm and (a2) coarse conductive fine particles having an average particle size of 0.4 μm or more and less than 30 μm. A transparent conductive layer, and (B) a transparent coating layer formed on the transparent conductive layer, wherein at least a portion of the coarse conductive fine particles constituting the transparent conductive layer penetrates the transparent coating layer and forms a surface. A transparent conductive film which is exposed. (A)(a1)平均粒径5nm以上、0.4μm未満の微細導電性微粒子と(a2)平均粒径0.4μm以上、30μm未満の粗大導電性微粒子との混合物からなる導電性微粒子を含む透明導電層と、(B)前記透明導電層上に形成された透明被覆層と、(C)前記透明導電層の下面に形成されたプライマー層とからなり、前記透明導電層を構成する粗大導電性微粒子の少なくとも一部が前記透明被覆層を貫通して表面に露出していることを特徴とする透明導電膜。(A) Conductive fine particles comprising a mixture of (a1) fine conductive fine particles having an average particle size of 5 nm or more and less than 0.4 μm and (a2) coarse conductive fine particles having an average particle size of 0.4 μm or more and less than 30 μm. A coarse conductive layer comprising: a transparent conductive layer; (B) a transparent coating layer formed on the transparent conductive layer; and (C) a primer layer formed on the lower surface of the transparent conductive layer. A transparent conductive film, wherein at least a part of the conductive fine particles penetrates the transparent coating layer and is exposed on the surface. 前記導電性微粒子の微細導電性微粒子と粗大導電性微粒子の混合比が、重量比で(a1):(a2)=10:0.05〜1.0であることを特徴とする請求項1又は2記載の記載の透明導電膜。The mixing ratio of the fine conductive fine particles and the coarse conductive fine particles of the conductive fine particles is (a1) :( a2) = 10: 0.05 to 1.0 in weight ratio, or 2. The transparent conductive film according to item 2. 微細導電性微粒子(a1)が、▲1▼Sb,Sn,In,Ti,Si及びZnから選ばれた1種以上の金属を含む酸化物微粒子と、▲2▼Ag,Pd,Cu,Ni,Ru,Rh,Fe,Pt,Cr,Co,Al,Ta,Pb,Os及びIrから選ばれた1種以上の金属コロイド微粒子とを含むことを特徴とする請求項1乃至3のいずれか1項記載の透明導電膜。The fine conductive fine particles (a1) are: (1) oxide fine particles containing at least one metal selected from Sb, Sn, In, Ti, Si and Zn; and (2) Ag, Pd, Cu, Ni, 4. The method according to claim 1, further comprising at least one kind of metal colloid fine particles selected from the group consisting of Ru, Rh, Fe, Pt, Cr, Co, Al, Ta, Pb, Os and Ir. The transparent conductive film according to the above. 粗大導電性微粒子(a2)が、Sb,Sn,In,Ti,Si及びZnら選ばれた1種以上の金属を含む窒化物、酸化物、金属ドープ酸化物若しくは導電性カーボン又はこれらの組合わせからなることを特徴とする請求項1乃至4のいずれか1項記載の透明導電膜。The coarse conductive fine particles (a2) are made of a nitride, an oxide, a metal-doped oxide, a conductive carbon or a combination thereof containing at least one metal selected from Sb, Sn, In, Ti, Si and Zn. The transparent conductive film according to any one of claims 1 to 4, wherein the transparent conductive film comprises: 前記透明導電層がバインダ成分を含むことを特徴とする請求項1乃至5のいずれか1項記載の透明導電膜。The transparent conductive film according to claim 1, wherein the transparent conductive layer contains a binder component. 前記粗大導電性微粒子の平均粒径が、前記微細導電性微粒子の平均粒径の10倍以上であることを特徴とする請求項1乃至6のいずれか1項記載の透明導電膜。The transparent conductive film according to claim 1, wherein an average particle diameter of the coarse conductive fine particles is 10 times or more an average particle diameter of the fine conductive fine particles. (A)(a1)平均粒径5nm以上、0.4μm未満の微細導電性微粒子と(a2)平均粒径0.4μm以上、30μm未満の粗大導電性微粒子との混合物からなる導電性微粒子を含む透明導電層と、(B)前記透明導電層上に形成された透明被覆層と、(C)前記透明導電層の下面に形成されたプライマー層と、(D)前記プライマー層の露出面に貼着された離型性フィルムとからなり、前記透明導電層を構成する粗大導電性微粒子の少なくとも一部が前記透明被覆層を貫通して表面に露出していることを特徴とする透明導電膜形成用複合シート。(A) Conductive fine particles comprising a mixture of (a1) fine conductive fine particles having an average particle size of 5 nm or more and less than 0.4 μm and (a2) coarse conductive fine particles having an average particle size of 0.4 μm or more and less than 30 μm. A transparent conductive layer, (B) a transparent coating layer formed on the transparent conductive layer, (C) a primer layer formed on the lower surface of the transparent conductive layer, and (D) an adhesive layer on the exposed surface of the primer layer. A transparent conductive layer comprising a release film attached thereto, wherein at least a part of the coarse conductive fine particles constituting the transparent conductive layer penetrates the transparent coating layer and is exposed on the surface. For composite sheet. (A)(a1)平均粒径5nm以上、0.4μm未満の微細導電性微粒子と(a2)平均粒径0.4μm以上、30μm未満の粗大導電性微粒子との混合物からなる導電性微粒子を含む透明導電層と、(B)前記透明導電層上に形成された透明被覆層とからなる透明導電膜を、プライマー層及び/又は接着剤層を介して電気絶縁性部材の表面に形成してなることを特徴とする表面に透明導電膜を有する透明プラスチック部材。(A) Conductive fine particles comprising a mixture of (a1) fine conductive fine particles having an average particle size of 5 nm or more and less than 0.4 μm and (a2) coarse conductive fine particles having an average particle size of 0.4 μm or more and less than 30 μm. A transparent conductive film composed of a transparent conductive layer and (B) a transparent coating layer formed on the transparent conductive layer is formed on the surface of the electrically insulating member via a primer layer and / or an adhesive layer. A transparent plastic member having a transparent conductive film on the surface.
JP2002350171A 2002-12-02 2002-12-02 Transparent conductive film, compound sheet for transparent conductive film formation and transparent plastic member having transparent conductive film on its surface Withdrawn JP2004185914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002350171A JP2004185914A (en) 2002-12-02 2002-12-02 Transparent conductive film, compound sheet for transparent conductive film formation and transparent plastic member having transparent conductive film on its surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002350171A JP2004185914A (en) 2002-12-02 2002-12-02 Transparent conductive film, compound sheet for transparent conductive film formation and transparent plastic member having transparent conductive film on its surface

Publications (1)

Publication Number Publication Date
JP2004185914A true JP2004185914A (en) 2004-07-02

Family

ID=32752479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002350171A Withdrawn JP2004185914A (en) 2002-12-02 2002-12-02 Transparent conductive film, compound sheet for transparent conductive film formation and transparent plastic member having transparent conductive film on its surface

Country Status (1)

Country Link
JP (1) JP2004185914A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100217A (en) * 2004-09-30 2006-04-13 Hitachi Maxell Ltd Transparent conductive sheet
JP2006286418A (en) * 2005-03-31 2006-10-19 Tdk Corp Transparent conductor
JP2007172984A (en) * 2005-12-21 2007-07-05 Fujitsu Ltd Organic conductive film, transparent organic conductive film, and coordinate input device
EP1867797A1 (en) * 2006-06-15 2007-12-19 Orbita-Film GmbH Plastic film, in particular vapor barrier film, for protecting indoor spaces against electromagnetic radiation
JP2010015487A (en) * 2008-07-07 2010-01-21 Citizen Electronics Co Ltd Transparent electrode, method for forming the electrode, and display device using the method
JP4983792B2 (en) * 2006-03-28 2012-07-25 大日本印刷株式会社 Optical laminate
JPWO2015068654A1 (en) * 2013-11-05 2017-03-09 昭和電工株式会社 Conductive pattern forming method, on-cell type touch panel manufacturing method using the same, transfer film and on-cell type touch panel used therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100217A (en) * 2004-09-30 2006-04-13 Hitachi Maxell Ltd Transparent conductive sheet
JP4573266B2 (en) * 2004-09-30 2010-11-04 日立マクセル株式会社 Transparent conductive sheet
JP2006286418A (en) * 2005-03-31 2006-10-19 Tdk Corp Transparent conductor
US7482056B2 (en) 2005-03-31 2009-01-27 Tdk Corporation Transparent conductor
JP2007172984A (en) * 2005-12-21 2007-07-05 Fujitsu Ltd Organic conductive film, transparent organic conductive film, and coordinate input device
JP4983792B2 (en) * 2006-03-28 2012-07-25 大日本印刷株式会社 Optical laminate
US9291745B2 (en) 2006-03-28 2016-03-22 Dai Nippon Printing Co., Ltd. Optical laminated body
EP1867797A1 (en) * 2006-06-15 2007-12-19 Orbita-Film GmbH Plastic film, in particular vapor barrier film, for protecting indoor spaces against electromagnetic radiation
JP2010015487A (en) * 2008-07-07 2010-01-21 Citizen Electronics Co Ltd Transparent electrode, method for forming the electrode, and display device using the method
JPWO2015068654A1 (en) * 2013-11-05 2017-03-09 昭和電工株式会社 Conductive pattern forming method, on-cell type touch panel manufacturing method using the same, transfer film and on-cell type touch panel used therefor

Similar Documents

Publication Publication Date Title
EP2843667B1 (en) Transparent conductive ink, and method for producing transparent conductive pattern
US20140306263A1 (en) Transparent conductive coating with filler material
US20090233086A1 (en) Metal oxide microparticles, transparent conductive film, and dispersion
TWI271879B (en) Surface protective film for transparent conductive substrate, and transparent conductive substrate with surface protective film
CN114395293B (en) Stabilized sparse metal conductive films and solutions for delivery of stabilizing compounds
CN1668462B (en) Functional film for transfer having functional layer, object furnished with functional layer
WO1999060430A1 (en) Infrared absorption filter
TWI421316B (en) Transparent conductive film forming composition, transparent conductive film, and display
JPH10251518A (en) Electrically conductive transparent composition, transparent conductive film made thereof and its production
JP5405935B2 (en) Transparent conductive sheet
JP2004185914A (en) Transparent conductive film, compound sheet for transparent conductive film formation and transparent plastic member having transparent conductive film on its surface
JP4212860B2 (en) Conductive antireflection film
JP5282991B1 (en) Substrate with transparent conductive layer and method for producing the same
JP5165689B2 (en) Optical filter for display panel and manufacturing method thereof
JPH01249436A (en) Transparent conductive film and its manufacture
JP4418144B2 (en) Conductive antireflection film
JP2003301140A (en) Coating material for forming transparent electroconductive film and emboss processed electronic part carrier tape
JP5156753B2 (en) Optical filter for display panel and manufacturing method thereof
JP2003128959A (en) Transparent electroconductive film and coating for forming transparent electroconductive film
JPH01153769A (en) Composition for forming transparent electrically conductive film of zinc oxide
JP3841608B2 (en) Transparent foil powder and molded body containing the transparent foil powder
JPH0473809A (en) Transparent conductiv film
JP2000025110A (en) Manufacture of antistatic plate
JP7172712B2 (en) Electric conductor and method for manufacturing electric conductor
JP3794167B2 (en) Transparent conductive transfer material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060207