JPH0323229B2 - - Google Patents

Info

Publication number
JPH0323229B2
JPH0323229B2 JP60255650A JP25565085A JPH0323229B2 JP H0323229 B2 JPH0323229 B2 JP H0323229B2 JP 60255650 A JP60255650 A JP 60255650A JP 25565085 A JP25565085 A JP 25565085A JP H0323229 B2 JPH0323229 B2 JP H0323229B2
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive coating
forming
film
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60255650A
Other languages
Japanese (ja)
Other versions
JPS62114686A (en
Inventor
Shoji Yoshida
Nobumitsu Okazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HONEY KASEI KK
Original Assignee
HONEY KASEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HONEY KASEI KK filed Critical HONEY KASEI KK
Priority to JP60255650A priority Critical patent/JPS62114686A/en
Publication of JPS62114686A publication Critical patent/JPS62114686A/en
Publication of JPH0323229B2 publication Critical patent/JPH0323229B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の利用分野) 本発明は、透明導電性塗膜の形成方法に関す
る。 (従来の技術) 近年、半導体の生産量の増加に伴い、半導体ウ
エハーの運搬容器や保存容器、クリーンルームや
バイオクリーンルームにおける床材、壁材、カー
テン等に導電性塗料を塗布して帯電防止機能を付
与し、半導体の静電気による破壊の防止や、床、
壁、カーテン等クリーンルーム内への塵埃の付着
の防止等が行われている。 これらの目的のため、従来は、カーボン粉末や
金属微粉末を合成樹脂フイルムに練り込んだり、
又はこれらの導電性物質を混入して導電性を持た
せた塗料を塗布し導電性塗膜を形成して、不導体
の帯電を防止することが広く実施されている。 しかしながら、カーボンブラツクや金属微粉末
を合成樹脂に練り込んで得られるフイルムは、透
明性が悪く包装した後にその内容物を見ることが
できない、容器内の半導体ウエハーの個数を光セ
ンサーでカウントしようとしても不可能であつた
り、あるいはクリーンルーム内のカーテン越しに
向う側の様子を見ようとしても出来ない等の問題
があつた。 一方、導電性物質を混入してなる導電性塗料を
塗布する方法は、塗膜の色調が灰色または黒色が
かるため、被塗物の色調を損うことになり好まし
くなかつた。 このようなフイルムの透明性を改良する導電性
塗料に関しては、例えば、0.2μm以下の粒径を持
つた導電性微粉末を、塗膜主要素たる樹脂との割
合で5〜50重量%含有させる塗料(特開昭57−
85866号公報参照)、0.4μm以下の粒径を持つた導
電性微粉末を50〜90重量%、塗料主要素たる樹脂
95〜10重量%の割合で含有させる塗料(特開昭58
−91777号公報参照)、1分子中に1個以上のヒド
ロキシ基を有する、主鎮が実質的に飽和した炭化
水素線状重合体もしくはその変性物を塗膜樹脂と
し、この塗膜樹脂に金属酸化物の微粉末を30〜60
重量%配合してなる塗料(特開昭59−12256号公
報参照)等が知られているが、透明性改良効果は
まだ十分とは言えないものであつた。 そこで、透明性改良又は保護のため導電塗料塗
布後に導電物質を含まない塗料をかさね塗りする
ことが提案されている。(特開昭59−136167号公
報、特開昭5−198607号公報参照)しかし、この
ような方法では、塗膜の透明性や強度は改善され
るが、塗膜の導電性が大巾に低下するという欠点
があつた。 (本発明が解決しようとする問題点) 本発明の目的、透明導電性被覆層にかさね塗り
しても表面抵抗の変化が少なくかつ透明性に優れ
る透明導電性塗膜の形成方法を提供することにあ
る。 (問題を解決するための手段) 本発明を概説すると、透明基材の表面に、導電
物質及び合成樹脂バインダーよりなる透明導電被
覆層を形成し、ついでこの上にイオン架橋結合を
有する高分子重合体(以下、アイオノマーとい
う)の水性分散液を塗布し乾燥する表面処理を施
すことを特徴とする透明導電性塗膜の形成方法に
関する。 本発明をより詳細に説明すると、透明基材上に
形成する透明導電性被覆層は、合成樹脂バインダ
ー中に導電性物質である金属酸化物の微粉末を分
散してえられる透明導電性被覆組成物を塗布する
ことにより得られる。 本発明で使用しうる合成樹脂バインダーとして
は、ポリエステル、ポリウレタン、アクリル系樹
脂、ビニル系樹脂、エポキシ樹脂、ポリオレフイ
ン系樹脂等が挙げられる。 一方、導電性物質として使用する金属酸化物と
しては、酸化錫、酸化アンモチン及び酸化インジ
ウムから選ばれた少なくとも一種の微粉末を使用
する。なお、微粉末の粒径は小さいほど被覆層の
透明性が良好となり好ましい。 この透明導電性被覆組成物は、合成樹脂バイン
ダー15〜35重量部に対し金属酸化物の微粉末85〜
65重量部の割合で配合し、これを塗膜形成成分と
するものである。 この配合量は、透明導電性被覆層の表面固有抵
抗を106Ω/ロ〜108Ω/ロの範囲に保つために必
要であり、金属酸化物が65重量部より少ない場合
は、表面抵抗が増大し十分な帯電防止機能が発揮
されず、一方、85重量部を越えると被覆層の透明
性が悪くなり、又基材との密着性や強度等が劣る
ため好ましくない。 透明導電性被覆組成物は、適当な樹脂固形分濃
度、通常10〜30重量%に調整した有機溶剤溶液の
形態で使用する。 透明基材への被覆手段としては、グラビアプリ
ンター、ロールコーター、リバーウロールコータ
ー、ドクターナイフコーター、バーコーダー、ス
プレー、ハケ塗り等が使用でき、基材表面に乾燥
膜厚が0.5〜2.0μmになるよう塗布する。 塗布後は、室温〜60℃の温度条件下で塗膜を乾
燥させる。 本発明は、このように形成された導電性被覆層
の上に、更に次に示すアイオノマーの水性分散液
をコーテイングし表面処理する点に特徴を有す
る。この表面処理に使用するアイオノマーとして
は、ポリエチレン共重合体系アイオノマー、ポイ
ウレタン系アイオノマー、アクリル系アイオノマ
ー、ポリエステル系アイオノマー等が挙げられ
る。 例えば、ポリエチレン共重合体系アイオノマー
としては、エチレンにα,β−エチレン性不飽和
カルボン酸または/および他の共重合体単量体を
重号させ、共重合体のカルボキシル基の一部をア
ルカリ金属水酸化物で中和し水に分散させたもの
である。このようなエチレン共重合体の水分散液
としては商品名“サーリン”米国デユポン社製、
商品名“コーポレンラテツクス”旭ダウ社製など
が市販されている。 この他、アクリル系アイオノマーとしては、商
品名“ネオクリル”米国ポリバイニル社製、ウレ
タン系アイオノマーとしては商品名“ハイドラ
ン”大日本インキ社製、ポリエステル系アイオノ
マーとしては商品名“フアインテツクス”大日本
インキ社製などが市販されている。 本発明では、前記乾燥した導電性被覆層の上に
該アイオノマーの水性分散液をコーテイングする
が、アイオノマーは、樹脂固形分10〜30重量%に
調整したものを使用し、前記の塗布方法から適当
な手段を選択しコーテイングを行う。 ついで、これを50〜80℃で0.5〜1.0分間加熱乾
燥して表面処理を終了するものである。 (実施例) 以下、本発明を具体的に説明するため実施例を
示が、本発明は、これによりなんら限定されるも
のではない。なお、部数は特にことわりのない限
り重量部を示す。 実施例 1 ポリウレタン(商品名ハニトツプ固形分20重量
%ハニー化成社製)125部及び酸化錫(商品名T
−I三菱金属社製)75部を塗膜形成成分とする透
明導電性被覆組成物(商品名EX−7220固形分30
重量%ハニー化成社製)をトルエンにより固形分
20重量%に調整した。これをポリエチレンテレフ
タレートフイル(厚さ200μm)にバーコーダー
(No.6)で塗布し、60℃で5分間乾燥した。乾燥
膜厚は1μmであり、この被覆層の表面固有抵抗
値は1.5×106Ω/ロ、ヘーズは38%の値であつた。 さらに、この表面にアクリル系アイオノマー
(商品名ネオクリルA602米国ポリバイニル社製)
の水分散液(固形分15重量%)をバーコーター
(No.6)で乾燥膜厚1.0μmとなるよう塗布し50℃
で10分乾燥した。 表面処理を施した透明導電性フイルムを室温で
24時間静置した後の表面固有抵抗は、3.0×
106Ω/ロ、ヘーズは8%の値であつた。 実施例2〜3及び比較例1〜3 実施例1の方法において、アクリル系アイオノ
マーにかえて第1表に示す高分子重合体を使用す
る以外は、すべて同じ方法を実施し透明導電性塗
膜を形成した。 各透明導電性塗膜の表面固有抵抗値、ヘーズ値
及び他の性能は第2表に示す通りであつた。 ただし、 (1) 表面抵抗は、商品名デジタルマルチメータ−
(タケダ理研社製)により測定した。 (2) ヘーズとは曇価を表わし、 ヘーズ=拡散透過率/全光線透過率×100 (拡散透過率=全光線透過率−平行線透過率) で算出されるものである なおヘーズの値はヘーズメーター(日本電色
工業社製)により測定した。
(Field of Application of the Invention) The present invention relates to a method for forming a transparent conductive coating. (Conventional technology) In recent years, with the increase in semiconductor production, conductive paint has been applied to containers for transporting and storing semiconductor wafers, as well as flooring, wall materials, curtains, etc. in clean rooms and bio-clean rooms to provide antistatic properties. It can be applied to prevent semiconductors from being destroyed by static electricity, floors,
Measures are being taken to prevent dust from adhering to walls, curtains, etc. inside the clean room. For these purposes, conventionally carbon powder or fine metal powder was kneaded into synthetic resin film,
Alternatively, it is widely practiced to prevent non-conductors from being charged by applying a paint that has been made conductive by mixing these conductive substances to form a conductive coating. However, the film obtained by kneading carbon black and fine metal powder into synthetic resin has poor transparency, making it impossible to see the contents after packaging. There were problems such as it being impossible to view the situation on the other side through the curtains inside the clean room. On the other hand, the method of applying a conductive paint containing a conductive substance is not preferable because the color tone of the coating film becomes gray or blackish, which impairs the color tone of the object to be coated. Regarding conductive paints that improve the transparency of such films, for example, conductive fine powder with a particle size of 0.2 μm or less may be contained in an amount of 5 to 50% by weight relative to the resin, which is the main component of the coating film. Paint (Unexamined Japanese Patent Publication 1987-
85866), 50 to 90% by weight of conductive fine powder with a particle size of 0.4 μm or less, resin as the main component of the paint.
Paint containing 95 to 10% by weight (Japanese Patent Application Laid-open No. 1983
-91777 publication), a hydrocarbon linear polymer with one or more hydroxy groups in one molecule and a substantially saturated main chain, or a modified product thereof, is used as a coating resin, and this coating resin is coated with metal. 30~60 oxide fine powder
Paints containing % by weight (see JP-A-59-12256) are known, but the effect of improving transparency has not been sufficient. Therefore, it has been proposed to overcoat a paint that does not contain a conductive substance after applying a conductive paint in order to improve transparency or protect it. (Refer to JP-A-59-136167 and JP-A-5-198607.) However, although this method improves the transparency and strength of the coating film, it greatly reduces the conductivity of the coating film. The disadvantage was that it decreased. (Problems to be Solved by the Present Invention) An object of the present invention is to provide a method for forming a transparent conductive coating film that exhibits little change in surface resistance and excellent transparency even when coated over a transparent conductive coating layer. It is in. (Means for Solving the Problems) To summarize the present invention, a transparent conductive coating layer made of a conductive substance and a synthetic resin binder is formed on the surface of a transparent substrate, and then a polymeric layer having ionic crosslinking is applied on the transparent conductive coating layer. The present invention relates to a method for forming a transparent conductive coating film, which is characterized in that a surface treatment is performed by applying and drying an aqueous dispersion of a polymer (hereinafter referred to as an ionomer). To explain the present invention in more detail, the transparent conductive coating layer formed on the transparent substrate is a transparent conductive coating composition obtained by dispersing fine powder of a metal oxide, which is a conductive substance, in a synthetic resin binder. Obtained by applying a substance. Examples of the synthetic resin binder that can be used in the present invention include polyester, polyurethane, acrylic resin, vinyl resin, epoxy resin, polyolefin resin, and the like. On the other hand, as the metal oxide used as the conductive substance, at least one fine powder selected from tin oxide, ammothine oxide, and indium oxide is used. Note that the smaller the particle size of the fine powder, the better the transparency of the coating layer, which is preferable. This transparent conductive coating composition consists of 15 to 35 parts by weight of a synthetic resin binder and 85 to 85 parts by weight of fine metal oxide powder.
It is blended in a proportion of 65 parts by weight and is used as a coating film forming component. This amount is necessary to maintain the surface resistivity of the transparent conductive coating layer in the range of 10 6 Ω/R to 10 8 Ω/R, and if the metal oxide is less than 65 parts by weight, the surface resistance On the other hand, if the amount exceeds 85 parts by weight, the transparency of the coating layer will deteriorate and the adhesion to the substrate and strength will deteriorate, which is not preferable. The transparent conductive coating composition is used in the form of an organic solvent solution adjusted to a suitable resin solid content concentration, usually 10 to 30% by weight. A gravure printer, roll coater, reversible roll coater, doctor knife coater, barcoder, spray, brush coating, etc. can be used to coat the transparent substrate, and a dry film thickness of 0.5 to 2.0 μm can be used on the surface of the substrate. Apply it so that it looks like this. After application, the coating film is dried at a temperature of room temperature to 60°C. The present invention is characterized in that the conductive coating layer thus formed is further coated with the following aqueous dispersion of an ionomer for surface treatment. Ionomers used for this surface treatment include polyethylene copolymer ionomers, polyurethane ionomers, acrylic ionomers, polyester ionomers, and the like. For example, as a polyethylene copolymer ionomer, ethylene is superimposed with α,β-ethylenically unsaturated carboxylic acid or/and other copolymer monomers, and some of the carboxyl groups of the copolymer are replaced with alkali metals. It is neutralized with hydroxide and dispersed in water. Examples of such an aqueous dispersion of ethylene copolymer include "Surlyn" manufactured by DuPont in the United States;
Products such as "Corpolene Latex" manufactured by Asahi Dow Co., Ltd. are commercially available. In addition, acrylic ionomers are available under the trade name "Neocryl" manufactured by Polyvinyl Corporation of the United States, urethane ionomers under the trade name "Hydran" manufactured by Dainippon Ink Co., Ltd., and polyester ionomers under the trade name "Faintex" manufactured by Dainippon Ink Co., Ltd. etc. are commercially available. In the present invention, the dried conductive coating layer is coated with an aqueous dispersion of the ionomer. Select a suitable method and perform coating. This is then heated and dried at 50 to 80°C for 0.5 to 1.0 minutes to complete the surface treatment. (Examples) Examples are shown below to specifically explain the present invention, but the present invention is not limited thereto. In addition, unless otherwise specified, the number of parts indicates parts by weight. Example 1 125 parts of polyurethane (product name: Honeytop, solid content 20% by weight, manufactured by Honey Kasei Co., Ltd.) and tin oxide (product name: T
Transparent conductive coating composition (trade name: EX-7220, solid content: 30
(wt% manufactured by Honey Kasei Co., Ltd.) was reduced to solid content with toluene.
It was adjusted to 20% by weight. This was applied to a polyethylene terephthalate film (thickness: 200 μm) using a barcoder (No. 6) and dried at 60° C. for 5 minutes. The dry film thickness was 1 μm, the surface resistivity of this coating layer was 1.5×10 6 Ω/2, and the haze was 38%. Furthermore, this surface is coated with an acrylic ionomer (product name: Neocryl A602, manufactured by Polyvinyl Corporation in the United States).
An aqueous dispersion (solid content: 15% by weight) was coated with a bar coater (No. 6) to a dry film thickness of 1.0 μm and heated at 50°C.
and dried for 10 minutes. Surface-treated transparent conductive film at room temperature
The surface resistivity after standing for 24 hours is 3.0×
The haze was 10 6 Ω/b and 8%. Examples 2 to 3 and Comparative Examples 1 to 3 The same method as in Example 1 was carried out except that the polymer shown in Table 1 was used instead of the acrylic ionomer, and a transparent conductive coating film was obtained. was formed. The surface resistivity value, haze value, and other properties of each transparent conductive coating film were as shown in Table 2. However, (1) Surface resistance is measured using the product name Digital Multimeter.
(manufactured by Takeda Riken). (2) Haze refers to the haze value, and is calculated as haze = diffuse transmittance / total light transmittance x 100 (diffuse transmittance = total light transmittance - parallel light transmittance).The value of haze is It was measured using a haze meter (manufactured by Nippon Denshoku Kogyo Co., Ltd.).

【表】【table】

【表】 (発明の効果) 以上の説明から明らかなように、本発明の方法
によれば、透明性に優れ、かつ表面処理によつて
も表面固有抵抗の変化が少ない透明導電性塗膜が
形成されるのである。
[Table] (Effects of the invention) As is clear from the above explanation, the method of the present invention produces a transparent conductive coating film that has excellent transparency and shows little change in surface resistivity even after surface treatment. It is formed.

Claims (1)

【特許請求の範囲】 1 透明基材の表面に、導電性物質及び合成樹脂
バインダーによりなる透明導電被覆層を形成し、
ついでこの上にイオン架橋結合を有する高分子重
合体の水性分散液を塗布し乾燥する表面処理を施
すことを特徴とする透明導電性塗膜の形成方法。 2 透明導電被覆層は、導電性物質65〜85重量部
及び合成樹脂バインダー35〜15重量部を塗膜形成
成分として含有する導電性被覆組成物を塗布して
形成するものである特許請求の範囲第1項に記載
の透明導電性塗膜の形成方法。 3 導電性物質が、酸化錫、酸化アンチモン及び
酸化インジウムより選ばれた少なくとも一種の金
属酸化物の微粉末である特許請求の範囲第1項な
いし第2項に記載の透明導電性塗膜の形成方法。 4 合成樹脂バインダーが、ポリエステル、ポリ
ウレタン、アクリル系樹脂、ビニル系樹脂、エポ
キシ樹脂、ポリオレフイン等よりなる群から選ば
れた少なくとも一種である特許請求の範囲第1項
ないし第2項に記載の透明導電性塗膜の形成方
法。 5 イオン架橋結合を有する高分子重合体が、ポ
リエテレン共重合体系アイオノマー、ポリウレタ
ン系アイオノマー及びポリエステル系アイオノマ
ーよりなる群から選ばれた少なくとも一種のアイ
オノマーである特許請求の範囲第1項に記載の透
明導電性塗膜の形成方法。
[Claims] 1. A transparent conductive coating layer made of a conductive substance and a synthetic resin binder is formed on the surface of a transparent base material,
A method for forming a transparent conductive coating film, which comprises then applying a surface treatment by applying an aqueous dispersion of a high molecular weight polymer having ionic crosslinking bonds thereon and drying it. 2. The transparent conductive coating layer is formed by applying a conductive coating composition containing 65 to 85 parts by weight of a conductive substance and 35 to 15 parts by weight of a synthetic resin binder as film-forming components. The method for forming a transparent conductive coating according to item 1. 3. Formation of a transparent conductive coating film according to claims 1 to 2, wherein the conductive substance is a fine powder of at least one metal oxide selected from tin oxide, antimony oxide, and indium oxide. Method. 4. The transparent conductive material according to claim 1 or 2, wherein the synthetic resin binder is at least one selected from the group consisting of polyester, polyurethane, acrylic resin, vinyl resin, epoxy resin, polyolefin, etc. Method of forming a paint film. 5. The transparent conductive material according to claim 1, wherein the polymer having ionic crosslinking is at least one ionomer selected from the group consisting of polyethylene copolymer ionomers, polyurethane ionomers, and polyester ionomers. Method of forming a paint film.
JP60255650A 1985-11-13 1985-11-13 Method for forming transparent conductive film Granted JPS62114686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60255650A JPS62114686A (en) 1985-11-13 1985-11-13 Method for forming transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60255650A JPS62114686A (en) 1985-11-13 1985-11-13 Method for forming transparent conductive film

Publications (2)

Publication Number Publication Date
JPS62114686A JPS62114686A (en) 1987-05-26
JPH0323229B2 true JPH0323229B2 (en) 1991-03-28

Family

ID=17281697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60255650A Granted JPS62114686A (en) 1985-11-13 1985-11-13 Method for forming transparent conductive film

Country Status (1)

Country Link
JP (1) JPS62114686A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2573105B2 (en) * 1991-04-22 1997-01-22 ミリオンペイント株式会社 Conductive paint layer
JP3309851B2 (en) * 1998-05-15 2002-07-29 東洋紡績株式会社 Transparent conductive film and touch panel
DE60204904T2 (en) * 2001-11-01 2006-05-18 Ionphase Oy ELECTRICALLY CONDUCTIVE CEILING MATERIAL

Also Published As

Publication number Publication date
JPS62114686A (en) 1987-05-26

Similar Documents

Publication Publication Date Title
US6084040A (en) Scratch-resistant conductive coatings
KR910004820B1 (en) Conducting agent for electrostatic coating of plastic and electrostatically coated plastic molding
JPH0323229B2 (en)
US3252826A (en) Coated thermoplastic transparent article
EP1543948B1 (en) Antistatic molded article and antistatic paint
JPH07196957A (en) Electrically conductive coating composition
JP2003276105A (en) Antistatic paint and antistatic molded object
JPH01153769A (en) Composition for forming transparent electrically conductive film of zinc oxide
JPH0549713B2 (en)
Aegerter∗ et al. Transparent conducting coatings made by chemical nanotechnology processes
JP3045565B2 (en) Film with excellent transparency and slip properties
JPH0473809A (en) Transparent conductiv film
JP2519528B2 (en) Plasticized soft synthetic resin product having transparent conductive layer and transfer member for forming transparent conductive layer
JP5052158B2 (en) Antistatic coating agent and laminate
JP4143874B2 (en) Conductive laminated film with gas barrier properties
JPS6354311B2 (en)
JPH05117841A (en) Vapor deposited for polyester film
JPS6294548A (en) Bag made of thermoplastic resin
JPH02127478A (en) Antistatic coating
JPH0471099B2 (en)
JP4388768B2 (en) Antistatic molded body
JPS6366267A (en) Transparent electrically conductive coating agent for plasticized flexible polyvinyl chloride
JPH0465112B2 (en)
JPH04345632A (en) Carrier tape, conductive coating material, and production of carrier tape
JPS61148702A (en) Conductive material