JP5052158B2 - Antistatic coating agent and laminate - Google Patents

Antistatic coating agent and laminate Download PDF

Info

Publication number
JP5052158B2
JP5052158B2 JP2007047200A JP2007047200A JP5052158B2 JP 5052158 B2 JP5052158 B2 JP 5052158B2 JP 2007047200 A JP2007047200 A JP 2007047200A JP 2007047200 A JP2007047200 A JP 2007047200A JP 5052158 B2 JP5052158 B2 JP 5052158B2
Authority
JP
Japan
Prior art keywords
coating agent
tin oxide
coating
antistatic
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007047200A
Other languages
Japanese (ja)
Other versions
JP2008208241A (en
Inventor
昌文 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2007047200A priority Critical patent/JP5052158B2/en
Publication of JP2008208241A publication Critical patent/JP2008208241A/en
Application granted granted Critical
Publication of JP5052158B2 publication Critical patent/JP5052158B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antistatic coating agent excellent in an adhesion property and a coating property even if a resin component is not substantially used. <P>SOLUTION: The antistatic coating agent contains a tin oxide-based super-fine particle, a hydrophilic organic solvent, and water, and in the coating agent, a concentration of the tin oxide-based super-fine particle is 1 to 8 mass%, a content of the hydrophilic organic solvent is 50 mass% or higher, and a content of the resin component is 1 pt.mass or less based on 100 pts.mass of the tin oxide-based super-fine particle. Further, in the laminate, a coating film obtained by coating/drying the antistatic coating agent is laminated on a substrate. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、樹脂成分を実質的に含まない、帯電防止性、密着性、塗工性に優れた帯電防止コート剤に関する。   The present invention relates to an antistatic coating agent that is substantially free of resin components and excellent in antistatic properties, adhesion, and coating properties.

従来、一般的な工業材料や磁気記録材料として用いられている熱可塑性樹脂フィルムは表面抵抗率が大きいため、摩擦などによって容易に帯電して、フィルム表面にほこり、ごみなどが付着するといった問題が発生する。   Conventionally, thermoplastic resin films used as general industrial materials and magnetic recording materials have a large surface resistivity, so that they are easily charged by friction or the like, and there is a problem that dust, dust, etc. adhere to the film surface. appear.

このような問題を解決する手法として酸化スズ系超微粒子含有帯電防止コート剤を塗工する方法が挙げられる。酸化スズ系超微粒子が水性媒体中に分散しているゾルに関する検討は数多くされているが、これらは帯電防止コート剤の原料として利用されるもので、一般的に酸化スズ系微粒子を含有する帯電防止コート剤にはバインダ成分として樹脂粒子が添加されている(特許文献1、2参照)。樹脂粒子を添加することでぬれ性が良くなり、低溶剤化もできるというメリットがあるが、帯電防止コート剤を調製する際、混合安定性や分散安定性維持に留意して作業をしなければならないという煩わしさに加え、樹脂の種類によっては加水分解などの原因により樹脂が分解することで帯電防止コート剤の安定性が悪くなったり、乾燥した樹脂成分が塗膜や機械に付着して外観不良を起こすなどの問題がある。   As a method for solving such a problem, there is a method of applying an antistatic coating agent containing tin oxide ultrafine particles. There have been many studies on sols in which tin oxide-based ultrafine particles are dispersed in an aqueous medium, but these are used as raw materials for antistatic coating agents and are generally charged with tin oxide-based fine particles. Resin particles are added as a binder component to the prevention coating agent (see Patent Documents 1 and 2). Adding resin particles has the advantage of improving wettability and lowering the solvent, but when preparing an antistatic coating agent, work with care to maintain mixing stability and dispersion stability. Depending on the type of resin, the resin may be decomposed due to hydrolysis, etc., causing the antistatic coating agent to become unstable, or the dried resin component may adhere to the coating film or machine. There are problems such as causing defects.

特開2005−290287号公報JP 2005-290287 A 特開2006−124439号公報JP 2006-124439 A

本発明は、樹脂成分を実質的に含まないにもかかわらず、適度な密着性や塗工性等の物性を有し、優れた帯電防止性を発現する帯電防止コート剤を提供することを目的とする。   An object of the present invention is to provide an antistatic coating agent which has appropriate physical properties such as adhesion and coating property and exhibits excellent antistatic properties despite being substantially free of a resin component. And

本発明者は上記課題を解決するために鋭意検討を重ねた結果、酸化スズ系超微粒子濃度を1質量%以上8質量%以下とし、かつ、50質量%以上の親水性有機溶剤を含有させることで、樹脂成分をほとんど含まなくとも、充分な塗工性を付与することができ、しかも得られた塗膜は適度な密着性を有し、帯電防止性にも優れており、さらにこのような特性は、コロナ放電処理などの物理的表面処理が施されていない基材に対しても発現することを見出し、この知見に基づいて本発明に到達した。   As a result of intensive studies to solve the above problems, the present inventor has a tin oxide ultrafine particle concentration of 1% by mass to 8% by mass and contains 50% by mass or more of a hydrophilic organic solvent. Thus, even if it contains almost no resin component, it is possible to impart sufficient coating properties, and the obtained coating film has appropriate adhesion and is excellent in antistatic properties. It has been found that the characteristics are exhibited even on a base material not subjected to a physical surface treatment such as a corona discharge treatment, and the present invention has been achieved based on this finding.

すなわち本発明の要旨は下記の通りである。
(1)酸化スズ系超微粒子、親水性有機溶剤、水と、アンモニアまたは有機アミン化合物とを含有し、酸化スズ系超微粒子濃度が1質量%以上8質量%以下であり、かつ、親水性有機溶剤の含有量が50質量%以上であって、樹脂成分の含有量が酸化スズ系超微粒子100質量部に対して1質量部以下であり、界面活性剤を含まないことを特徴とする帯電防止コート剤。
(2)樹脂成分を含まないことを特徴とする(1)記載の帯電防止コート剤。
(3)20℃、剪断速度20.40s−1での粘度が50〜500mPa・sであることを特徴とする(1)または(2)記載の帯電防止コート剤。
(4)20℃、剪断速度20.40s−1での粘度が50〜500mPa・sであり、かつ、20℃、剪断速度1.02s−1での粘度が100〜10000mPa・sであることを特徴とする(1)〜(3)いずれかに記載の帯電防止コート剤。
(5)基材上に(1)〜(4)のいずれかに記載の帯電防止コート剤を塗布、乾燥してなる塗膜を積層したことを特徴とする積層
That is, the gist of the present invention is as follows.
(1) and the tin oxide-based ultrafine particles, and a hydrophilic organic solvent, and water, containing ammonia or an organic amine compound, the tin oxide-based ultrafine particle concentration is 8% by mass or less 1 mass% or more, and hydrophilic a the content of sexual organic solvent is more than 50 wt%, der than 1 parts by weight per 100 parts by weight content of tin oxide-based ultrafine particle of the resin component is, and characterized in that it is free of surfactant Antistatic coating agent.
(2) a resin component, characterized in that that does not contain (1) an antistatic coating agent as claimed.
(3) The antistatic coating agent according to (1) or (2), wherein the viscosity at 20 ° C. and a shear rate of 20.40 s −1 is 50 to 500 mPa · s.
(4) The viscosity at 20 ° C. and a shear rate of 20.40 s −1 is 50 to 500 mPa · s, and the viscosity at 20 ° C. and a shear rate of 1.02 s −1 is 100 to 10,000 mPa · s. wherein (1) to the antistatic coating agent according to any one of (3).
(5) A laminate in which a coating film obtained by applying and drying the antistatic coating agent according to any one of (1) to (4) is laminated on a substrate .

本発明の帯電防止コート剤は塗工性が良好であり、樹脂成分が極めて低減されているために樹脂成分が原因の各種問題発生を抑制することができ、しかも適度な密着性を有する、帯電防止性能に優れた塗膜を得ることができる。   The antistatic coating agent of the present invention has good coating properties, and since the resin component is extremely reduced, it can suppress various problems caused by the resin component, and has an appropriate adhesion. A coating film having excellent prevention performance can be obtained.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の帯電防止コート剤の必須成分である酸化スズ系超微粒子とは、酸化スズ系化合物、あるいはその溶媒和物や配位化合物の超微粒子のことをいい、一般にその平均粒径は200nm以下でシャープな粒径分布を持つものである。酸化スズ系超微粒子の具体例としては、酸化スズ、アンチモンドープ酸化スズ、インジウムドープ酸化スズ、酸化スズドープインジウム、アルミニウムドープ酸化スズ、タングステンドープ酸化スズ、酸化チタン−酸化セリウム−酸化スズの複合体、酸化チタン−酸化スズの複合体などが挙げられ、それらの溶媒和物や配位化合物の超微粒子も用いることができる。塗膜の透明性や価格の点から酸化スズ超微粒子が特に好ましい。   The tin oxide-based ultrafine particles, which are essential components of the antistatic coating agent of the present invention, mean tin oxide-based compounds, or solvates and coordination compounds thereof, and generally have an average particle size of 200 nm or less. It has a sharp particle size distribution. Specific examples of the tin oxide-based ultrafine particles include tin oxide, antimony-doped tin oxide, indium-doped tin oxide, tin oxide-doped indium, aluminum-doped tin oxide, tungsten-doped tin oxide, titanium oxide-cerium oxide-tin oxide composite. And a composite of titanium oxide and tin oxide, and solvates thereof and ultrafine particles of coordination compounds can also be used. Tin oxide ultrafine particles are particularly preferred from the viewpoint of transparency and cost of the coating film.

上記の酸化スズ系超微粒子の製造方法は特に限定されないが、例えば、金属スズやスズ化合物を加水分解または熱加水分解する方法、スズイオンを含む酸性溶液をアルカリ加水分解する方法、スズイオンを含む溶液をイオン交換膜やイオン交換樹脂によりイオン交換する方法など何れの方法も用いることができる。   The method for producing the above tin oxide ultrafine particles is not particularly limited. For example, a method of hydrolyzing or thermally hydrolyzing metal tin or a tin compound, a method of alkaline hydrolysis of an acidic solution containing tin ions, and a solution containing tin ions. Any method such as ion exchange using an ion exchange membrane or an ion exchange resin can be used.

本発明の帯電防止コート剤において使用される酸化スズ系超微粒子は、あらかじめ水中もしくは水を主成分とする溶媒中に分散したゾルとして使用される。   The tin oxide ultrafine particles used in the antistatic coating agent of the present invention are used as a sol dispersed in advance in water or a solvent containing water as a main component.

なお、ここでいうゾルとは、1〜100nm程度の大きさを持つ固体分散質が液体分散媒中に分散した流動性のある系で、固体分散質が活発なブラウン運動をしており、速やかに濾紙を通過する程度まで分散しているものまたはその状態を指す。酸化スズ系超微粒子ゾルの製造方法は特に限定されないが、一般的に塩基性化合物によって分散安定化されているものが多く、取り扱いやすさからもそのようなものが好ましい。   The sol here is a fluid system in which a solid dispersoid having a size of about 1 to 100 nm is dispersed in a liquid dispersion medium, and the solid dispersoid has an active Brownian motion. It is dispersed to the extent that it passes through the filter paper or its state. The method for producing the tin oxide-based ultrafine particle sol is not particularly limited, but is generally dispersed and stabilized with a basic compound, and such a method is preferable from the viewpoint of ease of handling.

ゾル中における酸化スズ系超微粒子の数平均粒子径は、50nm以下が好ましく、より好ましくは30nm以下、さらに好ましくは20nm以下のものが好ましい。体積平均粒子径は200nm以下であるものが好ましく、50nm以下であるものがより好ましく、20nm以下であるものがさらに好ましい。酸化スズ系化合物の数平均粒子径が50nmを超えたり、体積平均粒子径が200nmを超えると、薄い塗膜を均一に形成することが困難になるばかりでなく、塗膜の透明性が低下や基材との密着性が低下することがある。   The number average particle diameter of the tin oxide ultrafine particles in the sol is preferably 50 nm or less, more preferably 30 nm or less, and still more preferably 20 nm or less. The volume average particle diameter is preferably 200 nm or less, more preferably 50 nm or less, and even more preferably 20 nm or less. When the number average particle diameter of the tin oxide compound exceeds 50 nm or the volume average particle diameter exceeds 200 nm, not only is it difficult to form a thin coating film uniformly, but the transparency of the coating film is reduced. Adhesion with the substrate may be reduced.

酸化スズ系超微粒子のゾルは市販のものを使用することもできる。例えば、酸化スズ水分散体としては、山中化学工業社製EPS−6、アンチモンドープ酸化スズ系水分散体としては、石原産業社製SN100Dなどがある。   A commercially available sol of tin oxide-based ultrafine particles can also be used. For example, as the tin oxide aqueous dispersion, there is EPS-6 manufactured by Yamanaka Chemical Industry Co., Ltd., and as the antimony-doped tin oxide aqueous dispersion, there is SN100D manufactured by Ishihara Sangyo Co., Ltd.

ゾルに含まれる塩基性化合物としては、塗膜形成時に揮発するアンモニアまたは有機アミン化合物が塗膜の強度の面から必要であり、中でも沸点が30〜250℃の有機アミン化合物が好ましく、さらに好ましくは50〜200℃の有機アミン化合物である。沸点が30℃未満の場合は、取り扱いが困難になる。沸点が250℃を超えると塗膜から乾燥によって有機アミン化合物を飛散させることが困難になり、塗膜の強度が低下する場合がある。 As the basic compound contained in the sol, ammonia or an organic amine compound that volatilizes during the formation of the coating film is necessary from the viewpoint of the strength of the coating film. Among them , an organic amine compound having a boiling point of 30 to 250 ° C. is preferable, and more preferable. It is an organic amine compound at 50 to 200 ° C. When the boiling point is less than 30 ° C., handling becomes difficult. When the boiling point exceeds 250 ° C., it is difficult to disperse the organic amine compound from the coating film by drying, and the strength of the coating film may decrease.

有機アミン化合物の具体例としては、トリエチルアミン、N,N−ジメチルエタノールアミン、アミノエタノールアミン、N−メチル−N,N−ジエタノールアミン、イソプロピルアミン、イミノビスプロピルアミン、エチルアミン、ジエチルアミン、3−エトキシプロピルアミン、3−ジエチルアミノプロピルアミン、sec−ブチルアミン、プロピルアミン、メチルアミノプロピルアミン、3−メトキシプロピルアミン、モノエタノールアミン、モルホリン、N−メチルモルホリン、N−エチルモルホリン等を挙げることができる。   Specific examples of the organic amine compound include triethylamine, N, N-dimethylethanolamine, aminoethanolamine, N-methyl-N, N-diethanolamine, isopropylamine, iminobispropylamine, ethylamine, diethylamine, and 3-ethoxypropylamine. , 3-diethylaminopropylamine, sec-butylamine, propylamine, methylaminopropylamine, 3-methoxypropylamine, monoethanolamine, morpholine, N-methylmorpholine, N-ethylmorpholine and the like.

本発明の帯電防止コート剤には親水性有機溶剤が含まれていることが必須である。親水性有機溶剤としては、20℃における水に対する溶解性が50g/L以上のものが好ましく、その具体例としては、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、メチルエチルケトン、シクロヘキサノン、テトラヒドロフラン、ジオキサン、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテルが挙げられ、液の安定性や価格の点からメタノール、エタノール、n−プロパノール、イソプロパノールが特に好ましい。   It is essential that the antistatic coating agent of the present invention contains a hydrophilic organic solvent. As the hydrophilic organic solvent, those having a solubility in water at 20 ° C. of 50 g / L or more are preferable, and specific examples thereof include methanol, ethanol, n-propanol, isopropanol, n-butanol, methyl ethyl ketone, cyclohexanone, tetrahydrofuran, Examples thereof include dioxane, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, and ethylene glycol monobutyl ether, and methanol, ethanol, n-propanol, and isopropanol are particularly preferable from the viewpoint of liquid stability and price.

親水性有機溶剤は、帯電防止コート剤中に50質量%以上含まれていることが必要である。固形分濃度によりその添加量は変化するが、50〜80質量%が好ましく、60〜70質量%がより好ましい。親水性有機溶剤の量が50質量%未満では、コート剤がチキソ性を有さず、したがって十分な塗工性が発現しない場合があり、80質量%を超えると酸化スズ系超微粒子が凝集する場合がある。   The hydrophilic organic solvent needs to be contained in an amount of 50% by mass or more in the antistatic coating agent. Although the addition amount changes with solid content concentration, 50-80 mass% is preferable and 60-70 mass% is more preferable. When the amount of the hydrophilic organic solvent is less than 50% by mass, the coating agent does not have thixotropy, and thus sufficient coating properties may not be exhibited. When the amount exceeds 80% by mass, the tin oxide ultrafine particles aggregate. There is a case.

また、本発明の帯電防止コート剤における酸化スズ系超微粒子濃度は1質量%以上8質量%以下であることが安定性と帯電防止性能を両立するために必要である。酸化スズ系超微粒子濃度は2〜6質量%が好ましい。固形分濃度が1質量%以下では、基材に塗布した際に十分な厚さの塗膜が形成されず帯電防止性能が発現しない場合があるうえ、適度な粘度にコントロールすることが困難になり、塗工そのものが困難になる場合もある。一方8質量%を越えると凝集する場合がある。   Further, the tin oxide ultrafine particle concentration in the antistatic coating agent of the present invention is required to be 1% by mass or more and 8% by mass or less in order to achieve both stability and antistatic performance. The tin oxide ultrafine particle concentration is preferably 2 to 6% by mass. When the solid content concentration is 1% by mass or less, a coating film having a sufficient thickness may not be formed when applied to a substrate, and antistatic performance may not be exhibited, and it is difficult to control the viscosity to an appropriate level. The coating itself may be difficult. On the other hand, when it exceeds 8 mass%, it may aggregate.

本発明における帯電防止コート剤の粘度は仕上り外観性だけでなく、その他の塗膜性能及び作業性能等にも関係する。このため、帯電防止コート剤の粘度(見掛け粘度)は、高剪断速度(20.40s-1)下では20℃において、50〜500mPa・sであることが好ましく、より好ましくは100〜400mPa・sであり、150〜300mPa・sが最も好ましい。粘度が500mPa・sより高いと、塗膜に凸凹が生じて仕上り外観性が低下する傾向となる。一方、高剪断速度下での粘度が低いことは好ましいことではあるが、あまりに低く、50mPa・sより低いと、過度にぬれ広がり適度な塗工厚みを得るのが困難になる。 The viscosity of the antistatic coating agent in the present invention is related not only to the finished appearance but also to other coating film performance and work performance. Therefore, the viscosity (apparent viscosity) of the antistatic coating agent is preferably 50 to 500 mPa · s, more preferably 100 to 400 mPa · s at 20 ° C. under a high shear rate (20.40 s −1 ). 150 to 300 mPa · s is most preferable. When the viscosity is higher than 500 mPa · s, the coating film becomes uneven, and the finished appearance tends to deteriorate. On the other hand, it is preferable that the viscosity at a high shear rate is low, but if it is too low and lower than 50 mPa · s, it is difficult to obtain an appropriate coating thickness due to excessive wetting and spreading.

本発明における帯電防止コート剤の粘度は、上述の高剪断速度における粘度に加えて、低剪断速度(1.02s-1)下において、100〜10000mPa・sの粘度を有していることが好ましく、1000〜7000mPa・sであることがさらに好ましい。上記した低剪断速度下における好ましい粘度範囲および高剪断速度下における好ましい粘度範囲をともに満たす帯電防止コート剤はチキソ性(チキソトロピー)を有している。帯電防止コート剤にチキソ性を与えることにより、低剪断速度下(静止時)での粘度を増大させて過度のぬれ広がりを抑制する一方、高剪断速度下での粘度を低く維持できる。これにより、コロナ放電処理などの物理的表面処理が施されていない基材に対しても、密着性を低下させることなく、充分な塗工性を付与できると共に良好な仕上がり外観を得ることができる。低剪断速度下での粘度については、10000mPa・sより高いと、取り扱いが困難になり作業性が低下する。一方、100mPa・sより低いと、耐ぬれ広がり性が低下し、例えば、厚膜の塗膜を得るのが困難になる。粘度の調整は主に親水性有機溶剤の含有量によって行われ、さらには総固形分濃度を適宜調節することによって行うことができる。親水性有機溶剤の含有量が少ない場合または固形分濃度が低い場合には粘度は低くなり、親水性有機溶剤の含有量が多い場合または固形分濃度が高い場合には粘度は高くなる傾向にある。 The antistatic coating agent according to the present invention preferably has a viscosity of 100 to 10,000 mPa · s under a low shear rate (1.02 s −1 ) in addition to the viscosity at the high shear rate described above. More preferably, it is 1000 to 7000 mPa · s. The antistatic coating agent that satisfies both the preferred viscosity range under the low shear rate and the preferred viscosity range under the high shear rate has thixotropy (thixotropy). By imparting thixotropy to the antistatic coating agent, it is possible to increase the viscosity at a low shear rate (at rest) to suppress excessive wetting and spread, while maintaining a low viscosity at a high shear rate. Thereby, it is possible to impart sufficient coatability and obtain a good finished appearance without lowering the adhesion even to a base material that has not been subjected to physical surface treatment such as corona discharge treatment. . When the viscosity at a low shear rate is higher than 10,000 mPa · s, handling becomes difficult and workability is lowered. On the other hand, when it is lower than 100 mPa · s, the wetting spread resistance is lowered, and for example, it is difficult to obtain a thick film. The adjustment of the viscosity is performed mainly by the content of the hydrophilic organic solvent, and can be further performed by appropriately adjusting the total solid content concentration. The viscosity tends to be low when the content of the hydrophilic organic solvent is low or the solid content concentration is low, and the viscosity tends to be high when the content of the hydrophilic organic solvent is high or the solid content concentration is high. .

本発明の帯電防止コート剤は、例えば、酸化スズ系超微粒子の水性分散体と親水性有機溶剤とを混合することによって調製される。   The antistatic coating agent of the present invention is prepared, for example, by mixing an aqueous dispersion of tin oxide ultrafine particles and a hydrophilic organic solvent.

上記帯電防止コート剤を調製する際に、酸化スズ系超微粒子の水性分散体と親水性有機溶剤とを混合する装置は特に限定されず、公知の攪拌装置を使用することが可能である。上記のような混合液の分散性は一般に良好であり、混合操作は極めて短時間かつ簡便である。   In preparing the antistatic coating agent, the apparatus for mixing the aqueous dispersion of tin oxide ultrafine particles and the hydrophilic organic solvent is not particularly limited, and a known stirring apparatus can be used. The dispersibility of the liquid mixture as described above is generally good, and the mixing operation is very short and simple.

本発明の帯電防止コート剤は、樹脂成分として、酸化スズ系超微粒子100質量部に対して1質量部以下である。好ましくは0.1質量部以下であり、より好ましくは樹脂成分を使用しないことである。本発明はこのように樹脂成分を極めて低減しているにもかかわらず、適度な密着性と塗工性を発現するのである。   The antistatic coating agent of this invention is 1 mass part or less with respect to 100 mass parts of tin oxide type ultrafine particles as a resin component. Preferably it is 0.1 mass part or less, More preferably, it is not using a resin component. In the present invention, although the resin component is extremely reduced as described above, appropriate adhesion and coating properties are exhibited.

本発明でいう樹脂成分としては、一般的にコート剤や接着剤のバインダとして用いられているような、例えば、ポリエステル樹脂やポリオレフィン樹脂、アクリル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリスチレン樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリアリレート樹脂などが挙げられる。   As the resin component referred to in the present invention, generally used as a binder for a coating agent or an adhesive, for example, a polyester resin, a polyolefin resin, an acrylic resin, a polyurethane resin, a polyamide resin, a polystyrene resin, a polyimide resin, Examples thereof include polycarbonate resin and polyarylate resin.

本発明の帯電防止コート剤には、本発明の効果が損なわれない範囲で、滑剤、顔料あるいは染料、紫外線吸収剤、レベリング剤、消泡剤、ワキ防止剤、分散剤などを添加することができる。   To the antistatic coating agent of the present invention, a lubricant, pigment or dye, ultraviolet absorber, leveling agent, antifoaming agent, anti-waxing agent, dispersant, etc. may be added as long as the effects of the present invention are not impaired. it can.

塗膜の密着性の点から、帯電防止コート剤中界面活性剤(カチオン性乳化剤、アニオン性乳化剤、ノニオン性乳化剤、あるいは両性乳化剤)を添加しないことが必要である。また帯電防止コート剤中の保護コロイド化合物などの不揮発性化合物の含有量は酸化スズ系超微粒子100質量部あたり5質量部以下であることが好ましく、3質量部以下がより好ましく、1質量部以下がさらに好ましく、添加しないことが最も好ましい。このような化合物は乾燥後も塗膜中に残存し、経時的に塗膜性能を低下させてしまう恐れがあるからである。
From the viewpoint of adhesion of the coating film, surfactant in the antistatic coating agent is required not (cationic emulsifiers, anionic emulsifiers, nonionic emulsifiers, or amphoteric emulsifiers) was added. The content of the non-volatile compound such as a protective colloid compound in the antistatic coating agent is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and more preferably 1 part by mass or less per 100 parts by mass of the tin oxide ultrafine particles. Is more preferred, and most preferably not added. This is because such a compound remains in the coating film even after drying, and may degrade the coating film performance over time.

塗工方法としては、例えば、グラビアロールコーティング、リバースロールコーティング、ワイヤーバーコーティング、リップコーティング、エアナイフコーティング、カーテンフローコーティング、スプレーコーティング、浸漬コーティング、はけ塗り法等により各種基材の表面に均一にコーティングし、必要に応じて室温付近でセッティングした後、乾燥処理に供することにより、均一な樹脂塗膜を各種基材の表面に密着させて形成することができる。このときの加熱装置としては、通常の熱風循環型のオーブンや赤外線ヒーター等を使用すればよい。また、加熱温度や加熱時間としては、被コーティング物である基材の特性により適宜選択されるものであるが、樹脂基材のように融点を有する場合には、経済性を考慮して加熱温度を10℃〜基材の融点とすることが好ましく、20℃〜基材の融点がより好ましく、30℃〜基材の融点が特に好ましく、加熱時間としては、1秒〜20分が好ましく、5秒〜15分がより好ましく、10秒〜10分が特に好ましい。   As coating methods, for example, gravure roll coating, reverse roll coating, wire bar coating, lip coating, air knife coating, curtain flow coating, spray coating, dip coating, brush coating, etc., uniformly on the surface of various substrates. After coating and setting near room temperature as necessary, a uniform resin coating can be formed in close contact with the surface of various substrates by subjecting it to a drying treatment. As a heating device at this time, a normal hot air circulation type oven, an infrared heater, or the like may be used. In addition, the heating temperature and the heating time are appropriately selected depending on the characteristics of the base material to be coated. However, when the resin base material has a melting point, the heating temperature is considered in view of economy. Is preferably 10 ° C. to the melting point of the substrate, more preferably 20 ° C. to the melting point of the substrate, particularly preferably 30 ° C. to the melting point of the substrate, and the heating time is preferably 1 second to 20 minutes. Second to 15 minutes are more preferable, and 10 seconds to 10 minutes are particularly preferable.

本発明において、塗膜の塗工量は0.1〜1g/mであることが好ましく、0.2〜0.8g/mがより好ましく、0.3〜0.5g/mがさらに好ましい。塗工量が1g/mを超えると塗膜の透明性、基材密着性が低下する。塗工量が0.1g/m未満では帯電防止性能が悪化する。帯電防止性能は表面固有抵抗値で評価することができ、塵やほこり等の付着を抑える点から、この値が1010Ω/□未満であれば実用上好ましい。 In the present invention, the coating amount of the coating film is preferably from 0.1 to 1 g / m 2, more preferably 0.2~0.8g / m 2, 0.3~0.5g / m 2 is Further preferred. When the coating amount exceeds 1 g / m 2 , the transparency of the coating film and the base material adhesion deteriorate. When the coating amount is less than 0.1 g / m 2 , the antistatic performance deteriorates. The antistatic performance can be evaluated by a surface specific resistance value, and from the viewpoint of suppressing adhesion of dust, dust and the like, it is practically preferable if this value is less than 10 10 Ω / □.

本発明に用いる基材としては、特に限定されることはなく、例えば、樹脂からなる成形体、フィルム、シート、合成紙、ガラスなどが挙げられる。樹脂としては熱可塑性樹脂が好ましい。塗膜性能を十分に発揮させる点から、基材のヘイズは10%以下、より好ましくは5%以下の樹脂フィルムまたはシート(以下、フィルム等)を用いることが好ましい。樹脂としては、ポリエチレン、ポリプロピレン、アイオノマー、エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体などのポリオレフィン樹脂や環状ポリオレフィン樹脂、ナイロン6、ナイロン66、ナイロン46等のポリアミド樹脂、ポリエチレンテレフタレート(以下、PET)、A−PET、ポリエチレンナフタレート、ポリトリメチレンテレフタレート、ポリトリメチレンナフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート、ポリ乳酸等のポリエステル樹脂、ポリスチレン樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂またはそれらの混合物が挙げられる。フィルム等として前記樹脂からなるフィルム等単体またはフィルム等の積層体が挙げられる。本発明の帯電防止コート剤はぬれ性に優れているので、基材に物理的表面処理が施されている必要はないが、施されていてもよい。ここで、物理的表面処理を施す方法としては、光、電子線、イオンビーム、プラズマを用いた処理方法が挙げられる。   The substrate used in the present invention is not particularly limited, and examples thereof include a molded body made of a resin, a film, a sheet, synthetic paper, and glass. As the resin, a thermoplastic resin is preferable. From the viewpoint of sufficiently exerting the coating film performance, it is preferable to use a resin film or sheet (hereinafter referred to as a film) having a haze of 10% or less, more preferably 5% or less. Examples of the resin include polyolefin resins such as polyethylene, polypropylene, ionomer, ethylene-vinyl acetate copolymer, and ethylene-vinyl alcohol copolymer, cyclic polyolefin resins, polyamide resins such as nylon 6, nylon 66, and nylon 46, polyethylene terephthalate ( Hereinafter, PET), A-PET, polyethylene naphthalate, polytrimethylene terephthalate, polytrimethylene naphthalate, polybutylene terephthalate, polybutylene naphthalate, polyester resin such as polylactic acid, polystyrene resin, polyimide resin, polycarbonate resin, poly Examples include arylate resin, epoxy resin, phenol resin, melamine resin, urea resin, and mixtures thereof. Examples of the film include a single body such as a film made of the resin or a laminate such as a film. Since the antistatic coating agent of the present invention is excellent in wettability, the substrate need not be subjected to physical surface treatment, but may be applied. Here, examples of the method for performing the physical surface treatment include a treatment method using light, an electron beam, an ion beam, and plasma.

以下、実施例によって本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、基材としては、PPシート(厚み300μm、出光ユニテック社製スーパーピュアレイ)(以下、SP)、A−PETシート(三菱化学社製、厚み200μm)(以下、AP)、延伸ポリプロピレンフィルム(東セロ社製、OP U−1、厚み20μm)(以下、PP)または2軸延伸ポリエチレンテレフタレートフィルム(ユニチカ社製エンブレットPET12、厚み12μm)を用いた。なお、各種評価は塗工フィルムを温度23℃、湿度65%雰囲気下で1日放置後に実施した。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, as a base material, PP sheet (300 micrometers in thickness, Super Pure Array by Idemitsu Unitech Co., Ltd.) (henceforth, SP), A-PET sheet (Mitsubishi Chemical Corporation, thickness 200 micrometers) (henceforth AP), stretched polypropylene film ( Tosero Co., Ltd., OP U-1, thickness 20 μm) (hereinafter, PP) or biaxially stretched polyethylene terephthalate film (Unitika's Emblet PET12, thickness 12 μm) was used. Various evaluations were performed after the coated film was left for 1 day in an atmosphere of a temperature of 23 ° C. and a humidity of 65%.

(1)帯電防止特性
JIS−K6911に基づいて、株式会社アドバンテスト製デジタル超高抵抗/微少電流計、R8340を用いて、塗工フィルム(積層体)の塗膜の表面固有抵抗値を、温度23℃、湿度65%雰囲気下で測定した。
(1) Antistatic property Based on JIS-K6911, the surface resistivity value of the coating film of the coating film (laminated body) was measured at a temperature of 23 using a digital ultrahigh resistance / microammeter R83340 manufactured by Advantest Co., Ltd. The measurement was performed in an atmosphere of 65 ° C. and a humidity of 65%.

(2)粘度および剪断速度
BROOKFIELD ENGINEERING LABORATORIES,INC.製B型粘時計SYNCHRO-LECTRIC VISCOMETER Model LVT(Spindle 31)を用い、温度20℃にて測定した。剪断速度は、ロータ回転数(3rpmおよび60rpm)に0.34をかけて換算した。なお、5mPa・s未満の場合には、測定精度が低下して数値を決定できないため、測定結果は「5mPa・s未満」とした。
(2) Viscosity and shear rate
It measured at 20 degreeC using BROOKFIELD ENGINEERING LABORATORIES, INC. B-type viscous clock SYNCHRO-LECTRIC VISCOMETER Model LVT (Spindle 31). The shear rate was converted by multiplying the rotor speed (3 rpm and 60 rpm) by 0.34. In addition, in the case of less than 5 mPa · s, since the measurement accuracy is lowered and the numerical value cannot be determined, the measurement result is “less than 5 mPa · s”.

(3)水性分散体の固形分濃度
帯電防止コート剤を適量秤量し、これを150℃で残存物(固形分)の質量が恒量に達するまで加熱し、固形分濃度を求めた。
(3) Solid Content Concentration of Aqueous Dispersion An appropriate amount of the antistatic coating agent was weighed and heated at 150 ° C. until the mass of the residue (solid content) reached a constant weight to determine the solid content concentration.

(4)塗膜量(塗工量)
あらかじめ面積と質量を計測した基材に本発明の塗工液を所定量、塗工し、60℃で30秒間、乾燥した。得られた積層体の質量を測定し、塗工前の基材の質量を差し引くことで塗膜量を求めた。塗工量と塗工面積から単位面積当りの塗膜量(g/m)を計算した。
(4) Amount of coating film (amount of coating)
A predetermined amount of the coating liquid of the present invention was applied to a substrate whose area and mass were measured in advance, and dried at 60 ° C. for 30 seconds. The mass of the obtained laminate was measured, and the coating amount was determined by subtracting the mass of the base material before coating. The coating amount per unit area (g / m 2 ) was calculated from the coating amount and the coating area.

(5)塗工性
基材に帯電防止コート剤を塗工した際の様子を目視で判定した。
○:均一に塗工できている、△:一部にハジキが確認される、×:コート剤が著しくはじかれている
(5) Coating property The state when the antistatic coating agent was applied to the substrate was visually determined.
○: Uniform coating is possible, △: Partial repelling is confirmed, ×: Coating agent is repelled remarkably

(6)ヘイズ
JIS−K7361−1に基づいて、濁度計(日本電色工業株式会社製、NDH2000)を用いて、塗工フィルム(積層体)のヘイズ測定を行った。ただし、この評価値は、各実施例で用いた基材フィルムの濁度(SP:3.1%、AP:0.7%、PP:2.4%、PET:2.8%)を含んでいる。
(6) Haze Based on JIS-K7361-1, the haze measurement of the coating film (laminated body) was performed using the turbidimeter (Nippon Denshoku Industries Co., Ltd. make, NDH2000). However, this evaluation value includes the turbidity (SP: 3.1%, AP: 0.7%, PP: 2.4%, PET: 2.8%) of the base film used in each example. It is out.

(7)密着性
コートフィルムの塗膜面に粘着テープ(ニチバン社製TF−12)を貼り付けた後、勢いよくテープを剥離した。塗膜面の状態を目視で観察して、以下のように評価した。
○:全く剥がれがなかった。
△:一部に剥がれが生じた。
×:全て剥がれた。
(7) Adhesiveness After affixing an adhesive tape (TF-12 manufactured by Nichiban Co., Ltd.) to the coating film surface of the coat film, the tape was peeled off vigorously. The state of the coating film surface was visually observed and evaluated as follows.
○: No peeling at all.
Δ: Some peeling occurred.
X: All peeled off.

(8)粒子径
酸化スズ系超微粒子の数平均粒子径、体積平均粒子径はそれぞれ日機装社製マイクロトラック粒度分布計UPA150(Model No.9340)を用いて、動的光散乱法によって測定した。
(8) Particle size The number average particle size and volume average particle size of the tin oxide ultrafine particles were measured by a dynamic light scattering method using a Microtrac particle size distribution analyzer UPA150 (Model No. 9340) manufactured by Nikkiso Co., Ltd.

《酸化スズ系ゾルの調製》 << Preparation of tin oxide sol >>

(酸化スズゾルの調製)
塩化第二スズ五水和物35g(0.1モル)を200mlの水に溶解して0.5Mの水溶液とし、撹拌しながら28%のアンモニア水を添加することでpH1.5の白色酸化スズ超微粒子含有スラリーを得た。得られた酸化スズ超微粒子含有スラリーを70℃まで加熱した後、50℃前後まで自然冷却したうえで純水を加え1Lの酸化スズ超微粒子含有スラリーとし、遠心分離器を用いて固液分離を行った。この含水固形分に800mlの純水を加えて、ホモジナイザーにより撹拌・分散を行った後、遠心分離器を用いて固液分離を行うことで洗浄を行った。洗浄後の含水固形分に純水を75ml加えて酸化スズ超微粒子含有スラリーを調製した。
(Preparation of tin oxide sol)
Dissolve 35 g (0.1 mol) of stannic chloride pentahydrate in 200 ml of water to make a 0.5 M aqueous solution, and add 28% aqueous ammonia with stirring to add white tin oxide with a pH of 1.5 An ultrafine particle-containing slurry was obtained. The obtained tin oxide ultrafine particle-containing slurry is heated to 70 ° C. and then naturally cooled to around 50 ° C., and then pure water is added to obtain a 1 L tin oxide ultrafine particle-containing slurry, and solid-liquid separation is performed using a centrifuge. went. After adding 800 ml of pure water to this water-containing solid content, stirring and dispersing with a homogenizer, washing was performed by solid-liquid separation using a centrifuge. 75 ml of pure water was added to the water-containing solid content after washing to prepare a tin oxide ultrafine particle-containing slurry.

得られた酸化スズ超微粒子含有スラリーにトリエチルアミン3.0mlを加え撹拌し、透明感が出てきたところで70℃まで昇温した後、加温をやめ自然冷却することで固形分濃度11.5質量%の有機アミンを分散安定剤とする酸化スズゾルZ−1を得た。数平均粒子径、体積平均粒子径はそれぞれ8.5nm、9.8nmであった。   To the obtained tin oxide ultrafine particle-containing slurry, 3.0 ml of triethylamine was added and stirred, and when the transparency appeared, the temperature was raised to 70 ° C., then the heating was stopped and the solid content was cooled to 11.5 mass. Tin oxide sol Z-1 containing 1% of organic amine as a dispersion stabilizer was obtained. The number average particle diameter and the volume average particle diameter were 8.5 nm and 9.8 nm, respectively.

実施例1
酸化スズゾルZ−1(8.7g)に水(4.6g)を加えた後、n−プロパノールを20.0g(帯電防止コート剤に含まれる溶剤総量が60質量%になる量)加えることで、固形分濃度3.0重量%の帯電防止コート剤を得た。粘度を測定したところ、剪断速度20.40s−1での粘度が148mPa・sであり、剪断速度1.02s−1での粘度が1400mPa・sであり、チキソ性を有していた。PETのコロナ処理面に調製した帯電防止コート剤を乾燥後の塗膜量(塗工量)が0.2g/mになるように塗工後、60℃で30秒間乾燥して塗工フィルムを得た。
Example 1
After adding water (4.6 g) to tin oxide sol Z-1 (8.7 g), 20.0 g of n-propanol (amount in which the total amount of solvent contained in the antistatic coating agent is 60% by mass) is added. An antistatic coating agent having a solid content concentration of 3.0% by weight was obtained. When the viscosity was measured, the viscosity at a shear rate of 20.40 s −1 was 148 mPa · s, the viscosity at a shear rate of 1.02 s −1 was 1400 mPa · s, and it was thixotropic. After coating the antistatic coating agent prepared on the corona-treated surface of PET so that the coating amount (coating amount) after drying is 0.2 g / m 2 , the coating film is dried at 60 ° C. for 30 seconds. Got.

実施例2〜6
酸化スズゾルZ−1(8.7g)に、n−プロパノールを13.0g(帯電防止コート剤に含まれる溶剤総量が60質量%になる量)加えることで、固形分濃度4.6重量%の帯電防止コート剤を得た。粘度を測定したところ、剪断速度20.40s−1での粘度が408mPa・sであり、剪断速度1.02s−1での粘度が6900mPa・sであり、チキソ性を有していた。各種基材に調製した帯電防止コート剤を乾燥後の塗膜量(塗工量)が0.2g/mになるように塗工後、60℃で30秒間乾燥して塗工フィルムを得た。
Examples 2-6
By adding 13.0 g of n-propanol (total amount of the solvent contained in the antistatic coating agent is 60% by mass) to tin oxide sol Z-1 (8.7 g), the solid content concentration is 4.6% by weight. An antistatic coating agent was obtained. When the viscosity was measured, the viscosity at a shear rate of 20.40 s −1 was 408 mPa · s, the viscosity at a shear rate of 1.02 s −1 was 6900 mPa · s, and it was thixotropic. After coating the antistatic coating agent prepared on various substrates so that the coating amount (coating amount) after drying is 0.2 g / m 2 , it is dried at 60 ° C. for 30 seconds to obtain a coated film. It was.

実施例7
酸化スズゾルZ−1(8.7g)に水(11.3g)を加えた後、n−プロパノールを30.0g(帯電防止コート剤に含まれる溶剤総量が60質量%になる量)加えることで、固形分濃度2.0重量%の帯電防止コート剤を得た。粘度を測定したところ、剪断速度20.40s−1での粘度が58mPa・sであり、剪断速度1.02s−1での粘度が100mPa・sであり、チキソ性を有していた。PETのコロナ処理面に調製した帯電防止コート剤を乾燥後の塗膜量(塗工量)が0.2g/mになるように塗工後、60℃で30秒間乾燥して塗工フィルムを得た。
Example 7
After adding water (11.3 g) to tin oxide sol Z-1 (8.7 g), 30.0 g of n-propanol (amount in which the total amount of the solvent contained in the antistatic coating agent is 60% by mass) is added. An antistatic coating agent having a solid content concentration of 2.0% by weight was obtained. When the viscosity was measured, the viscosity at a shear rate of 20.40 s −1 was 58 mPa · s, the viscosity at a shear rate of 1.02 s −1 was 100 mPa · s, and it was thixotropic. After coating the antistatic coating agent prepared on the corona-treated surface of PET so that the coating amount (coating amount) after drying is 0.2 g / m 2 , the coating film is dried at 60 ° C. for 30 seconds. Got.

実施例8
酸化スズゾルZ−1(8.7g)に、n−プロパノールを20.3g(帯電防止コート剤に含まれる溶剤総量が70質量%になる量)加えることで、固形分濃度3.4重量%の帯電防止コート剤を得た。粘度を測定したところ、剪断速度20.40s−1での粘度が75mPa・sであり、剪断速度1.02s−1での粘度が900mPa・sであり、チキソ性を有していた。PETのコロナ処理面に調製した帯電防止コート剤を乾燥後の塗膜量(塗工量)が0.2g/mになるように塗工後、60℃で30秒間乾燥して塗工フィルムを得た。
Example 8
By adding 20.3 g of n-propanol (total amount of the solvent contained in the antistatic coating agent is 70% by mass) to tin oxide sol Z-1 (8.7 g), the solid content concentration is 3.4% by weight. An antistatic coating agent was obtained. When the viscosity was measured, the viscosity at a shear rate of 20.40 s −1 was 75 mPa · s, the viscosity at a shear rate of 1.02 s −1 was 900 mPa · s, and it was thixotropic. After coating the antistatic coating agent prepared on the corona-treated surface of PET so that the coating amount (coating amount) after drying is 0.2 g / m 2 , the coating film is dried at 60 ° C. for 30 seconds. Got.

比較例1
酸化スズゾルZ−1(8.7g)に水(11.3g)を加えた後、n−プロパノールを13.3g(帯電防止コート剤に含まれる溶剤総量が40質量%になる量)加えることで、固形分濃度3.0重量%の帯電防止コート剤を得た。粘度を測定したところ、剪断速度20.40s−1での粘度が5mPa・s未満であり、剪断速度1.02s−1での粘度が5mPa・s未満であった。チキソ性は見られなかった。PETのコロナ処理面に調製した帯電防止コート剤を乾燥後の塗膜量(塗工量)が0.2g/mになるように塗工しようとしたが顕著なハジキが発生し、塗工できなかった。
Comparative Example 1
After adding water (11.3 g) to tin oxide sol Z-1 (8.7 g), 13.3 g of n-propanol (amount in which the total amount of the solvent contained in the antistatic coating agent is 40% by mass) is added. An antistatic coating agent having a solid content concentration of 3.0% by weight was obtained. When the viscosity was measured, the viscosity at a shear rate of 20.40 s −1 was less than 5 mPa · s, and the viscosity at a shear rate of 1.02 s −1 was less than 5 mPa · s. Thixogenicity was not seen. An attempt was made to apply an antistatic coating agent prepared on the corona-treated surface of PET so that the coating amount (coating amount) after drying would be 0.2 g / m 2. could not.

比較例2
酸化スズゾルZ−1(8.7g)に水(35.7g)を加えた後、n−プロパノールを66.7g(帯電防止コート剤に含まれる溶剤総量が60質量%になる量)加えることで、固形分濃度0.9重量%の帯電防止コート剤を得た。粘度を測定したところ、剪断速度20.40s−1での粘度が5mPa・s未満であり、剪断速度1.02s−1での粘度が5mPa・s未満であった。チキソ性は見られなかった。PETのコロナ処理面に調製した帯電防止コート剤を乾燥後の塗膜量(塗工量)が0.2g/mになるように塗工しようとしたが顕著なハジキが発生し、塗工できなかった。
Comparative Example 2
After adding water (35.7 g) to tin oxide sol Z-1 (8.7 g), 66.7 g of n-propanol (amount that the total amount of the solvent contained in the antistatic coating agent is 60% by mass) is added. An antistatic coating agent having a solid content concentration of 0.9% by weight was obtained. When the viscosity was measured, the viscosity at a shear rate of 20.40 s −1 was less than 5 mPa · s, and the viscosity at a shear rate of 1.02 s −1 was less than 5 mPa · s. Thixogenicity was not seen. An attempt was made to apply an antistatic coating agent prepared on the corona-treated surface of PET so that the coating amount (coating amount) after drying would be 0.2 g / m 2. could not.

実施例1〜8、比較例1〜2の結果をまとめて表1に示す。   The results of Examples 1-8 and Comparative Examples 1-2 are summarized in Table 1.

実施例1〜8に示すように、本発明の帯電防止コート剤は、帯電防止性、透明性に優れていた。さらに、樹脂成分を含まなくとも適度な密着性を有することも分かった。その性能は基材および表面処理の有無によらないことも確認できた(実施例2〜6)。一方、親水性有機溶剤含有量が本発明の範囲を外れると、粘度が大きく低下し、安定した塗工性が得られず帯電防止性が悪化した(比較例1)。また、酸化スズ系超微粒子濃度が本発明の範囲を外れると、粘度が大きく低下し、安定した塗工性が得られず、さらには十分な帯電防止層が形成できなかった(比較例2)。
As shown in Examples 1 to 8, the antistatic coating agent of the present invention was excellent in antistatic properties and transparency. Furthermore, it has been found that even if it does not contain a resin component, it has appropriate adhesion. It was also confirmed that the performance did not depend on the presence or absence of the substrate and the surface treatment (Examples 2 to 6). On the other hand, when the content of the hydrophilic organic solvent is outside the range of the present invention, the viscosity is greatly reduced, and stable coating properties cannot be obtained and the antistatic property is deteriorated (Comparative Example 1). Further, when the tin oxide ultrafine particle concentration is out of the range of the present invention, the viscosity is greatly reduced, a stable coating property cannot be obtained, and a sufficient antistatic layer cannot be formed (Comparative Example 2). .

Claims (5)

酸化スズ系超微粒子、親水性有機溶剤、水と、アンモニアまたは有機アミン化合物とを含有し、酸化スズ系超微粒子濃度が1質量%以上8質量%以下であり、かつ、親水性有機溶剤の含有量が50質量%以上であって、樹脂成分の含有量が酸化スズ系超微粒子100質量部に対して1質量部以下であり、界面活性剤を含まないことを特徴とする帯電防止コート剤。 A tin-based oxide ultrafine particles, and a hydrophilic organic solvent, and water, containing ammonia or an organic amine compound, the tin oxide-based ultrafine particle concentration is 8% by mass or less 1 mass% or more, and hydrophilic organic solvent a the content of at least 50% by weight state, and are less than 1 part by weight content with respect to tin oxide-based ultrafine particle 100 parts by weight of the resin component, the antistatic, wherein the surfactant-free Coating agent. 樹脂成分を含まないことを特徴とする請求項1記載の帯電防止コート剤。 Antistatic coating agent according to claim 1, wherein the that does not contain a resin component. 20℃、剪断速度20.40s−1での粘度が50〜500mPa・sであることを特徴とする請求項1または2記載の帯電防止コート剤。 The antistatic coating agent according to claim 1 , wherein the viscosity at 20 ° C. and a shear rate of 20.40 s −1 is 50 to 500 mPa · s. 20℃、剪断速度20.40s−1での粘度が50〜500mPa・sであり、かつ、20℃、剪断速度1.02s−1での粘度が100〜10000mPa・sであることを特徴とする請求項1〜3いずれかに記載の帯電防止コート剤。 The viscosity at 20 ° C. and a shear rate of 20.40 s −1 is 50 to 500 mPa · s, and the viscosity at 20 ° C. and a shear rate of 1.02 s −1 is 100 to 10,000 mPa · s. antistatic coating agent according to any one of claims 1 to 3. 基材上に請求項1〜4のいずれかに記載の帯電防止コート剤を塗布、乾燥してなる塗膜を積層したことを特徴とする積層体。   The laminated body characterized by laminating | stacking the coating film formed by apply | coating and drying the antistatic coating agent in any one of Claims 1-4 on a base material.
JP2007047200A 2007-02-27 2007-02-27 Antistatic coating agent and laminate Active JP5052158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007047200A JP5052158B2 (en) 2007-02-27 2007-02-27 Antistatic coating agent and laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007047200A JP5052158B2 (en) 2007-02-27 2007-02-27 Antistatic coating agent and laminate

Publications (2)

Publication Number Publication Date
JP2008208241A JP2008208241A (en) 2008-09-11
JP5052158B2 true JP5052158B2 (en) 2012-10-17

Family

ID=39784837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007047200A Active JP5052158B2 (en) 2007-02-27 2007-02-27 Antistatic coating agent and laminate

Country Status (1)

Country Link
JP (1) JP5052158B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5273752B1 (en) * 2012-03-26 2013-08-28 大日本塗料株式会社 Water-based epoxy resin coating composition and anticorrosion coating method using the same
MY179883A (en) * 2012-03-23 2020-11-18 Dainippon Toryo Kk Water-soluble anticorrosive paint composition and corrosion protection method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0619074B2 (en) * 1986-08-12 1994-03-16 触媒化成工業株式会社 Conductive paint
JP3002327B2 (en) * 1992-04-10 2000-01-24 住友大阪セメント株式会社 Paint for forming conductive / high refractive index film and transparent material laminate with conductive / high refractive index film
JP2859783B2 (en) * 1992-08-31 1999-02-24 住友大阪セメント株式会社 Paint for forming antistatic / high refractive index film, transparent material laminate with antistatic / antireflective film and display device
JP3323563B2 (en) * 1992-12-25 2002-09-09 住友大阪セメント株式会社 Transparent material laminate with conductive and low reflectance coating film
JP2003089523A (en) * 2001-09-12 2003-03-28 Yamanaka Kagaku Kogyo Kk Amorphous tin oxide colloidal solution and method for manufacturing the same
JP3848285B2 (en) * 2003-04-08 2006-11-22 キヤノン株式会社 Manufacturing method of charging roller
JP2005290287A (en) * 2004-04-02 2005-10-20 Nitto Denko Corp Antistatic coating agent and antistatic film
JP2006030740A (en) * 2004-07-20 2006-02-02 Fuji Photo Film Co Ltd Anti-reflection film, polarizer using it and image display apparatus using them, and method for manufacturing the same
JP2006124439A (en) * 2004-10-27 2006-05-18 Unitika Ltd Biodegradable aqueous dispersion and biodegradable laminated film
JP5014690B2 (en) * 2006-06-16 2012-08-29 ユニチカ株式会社 Tin oxide based ultrafine particle coating agent

Also Published As

Publication number Publication date
JP2008208241A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
KR101077822B1 (en) Anti-static polyester film improved coating defect and manufacturing method thereof
CN101486591B (en) Water soluble photo-curable antistatic composition and conductive hard tile flooring material coated with the same
KR101151474B1 (en) Antistatic coating agent and antistatic film
JP2016084423A (en) Active energy ray curable antistatic composition and coating for static elimination containing the same
WO2014166391A1 (en) Scratch-resistant matte laminating film and manufacturing method therefor
JP4005392B2 (en) Aqueous dispersion and laminated film
JP2009051981A (en) Aqueous dispersion and processed article using the same
JP5052158B2 (en) Antistatic coating agent and laminate
KR20200013587A (en) Coating-type antifogging agent for films for agricultural use, and film for agricultural use
KR20120086225A (en) Metal oxide containing anti-static coating composition and anti-static coating film using the same and manufacturing method thereof
KR101209195B1 (en) Anti-static polyester film to protect the polarizer plate and manufacturing method thereof
JP5014690B2 (en) Tin oxide based ultrafine particle coating agent
WO2015152193A1 (en) Anti-static polyester film and method for producing same
JP5784457B2 (en) Coating film
JP2016186072A (en) Antistatic polyester film, and production method thereof
KR20120063142A (en) Composition for anti-static coating, anti-static polyester film using the same and manufacturing method thereof
JP2006143893A (en) Aqueous dispersion and laminated film
JP2007106936A (en) Composition for use in antistatic film formation
JPWO2019004007A1 (en) Coating type anti-fog agent for agricultural film and agricultural film
JP2003147128A (en) Water based dispersion composition and laminated film
JP2015086248A (en) Aqueous adhesive agent and coated film obtained from the same
CN114974666B (en) Light-transmitting conductive film, laminated structure, preparation method and display device
TW200800598A (en) Surface protection film for polarizer film
JP2010132926A (en) Aqueous anti-clouding coating agent and material improved in anti-clouding property
JP2006124439A (en) Biodegradable aqueous dispersion and biodegradable laminated film

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120724

R150 Certificate of patent or registration of utility model

Ref document number: 5052158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3