JPH01151162A - Pressure difference suppressing method for fuel cell plant - Google Patents

Pressure difference suppressing method for fuel cell plant

Info

Publication number
JPH01151162A
JPH01151162A JP62309626A JP30962687A JPH01151162A JP H01151162 A JPH01151162 A JP H01151162A JP 62309626 A JP62309626 A JP 62309626A JP 30962687 A JP30962687 A JP 30962687A JP H01151162 A JPH01151162 A JP H01151162A
Authority
JP
Japan
Prior art keywords
differential pressure
pressure difference
electrode
control valve
bleed valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62309626A
Other languages
Japanese (ja)
Other versions
JPH0719614B2 (en
Inventor
Masanori Yamaguchi
山口 雅教
Takeo Kuwabara
桑原 武男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62309626A priority Critical patent/JPH0719614B2/en
Publication of JPH01151162A publication Critical patent/JPH01151162A/en
Publication of JPH0719614B2 publication Critical patent/JPH0719614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

PURPOSE:To prevent a trouble of the pressure difference suppressing operation due to the wasteful time by determining the change rate of the pressure difference between an oxidizer gas electrode and a fuel electrode with a computer and changing the operation starting level of bleed valves in response to it. CONSTITUTION:Nitrogen is fed to a cell container 2 via an inlet flow control valve 1, the pressure difference between the container 2 and an oxidizer gas electrode 4 is controlled by a pressure difference control valve 3 at the outlet side. The pressure difference between the gas electrode 4 and a fuel electrode 9 is controlled by a pressure difference control valve 10 at the outlet side of the fuel electrode 9. In this case, the control valve 10 is operated by a pressure difference transmitter 11. Bleed valves 12 and 13 provided at the gas electrode 4 and the fuel electrode 9 suppress the pressure difference due to the disturbance not fully controlled by the control valve 10 and are operated by signals from a computer 14. The change rate by the pressure difference is determined by the computer 14, the operation starting level of the bleed valves 12 and 13 is changed in response to the change rate. The delay of the pressure difference suppressing operation due to the wasteful time of the bleed valves can be avoided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池プラントの差圧抑制方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for suppressing differential pressure in a fuel cell plant.

〔従来の技術〕[Conventional technology]

従来の燃料電池プラントの差圧抑制方法は特開昭60−
241661号公報に記載されているように、差圧の変
化速度(変化率)によりブリード弁の動作数を変化させ
、これにより差圧が一定値以上になることを防止してい
た。
The conventional method for suppressing differential pressure in fuel cell plants is disclosed in Japanese Patent Application Laid-Open No. 1986-
As described in Japanese Patent No. 241661, the number of operations of the bleed valve is changed depending on the speed of change (rate of change) of the differential pressure, thereby preventing the differential pressure from exceeding a certain value.

すなわち第2図には燃料電池プラントの差圧抑制装置が
示されているが、同図に示されているように入口流量調
節弁1を介して電池容器2に窒素が供給され、出口側は
差圧調節弁3により電池容器2と酸化剤ガス極4との間
の差圧が制御されるが、この場合差圧調節弁3は電池容
器2と酸化剤ガス極4との間に設けである差圧伝送器5
により動作する。酸化剤ガス極側は入口流量調節弁6を
介して酸化剤ガス極4に空気が供給され、酸化剤ガス極
排ガスは容器出口ガスと混合した後、リホーマ燃焼部7
に流入する。燃料極側は入口流量調節弁8を介して燃料
改質器(図示せず)からの改質ガスが燃料極9に流入し
、燃料極排ガスはリホーマ燃焼部7に流入する。燃料極
出口側は差圧調節弁10により酸化剤ガス極4と燃料極
9との間の差圧が制御されるが、この場合差圧調節弁1
0は酸化剤ガス極4と燃料極9との間に設けである差圧
伝送器11により動作する。酸化剤ガス極4に設けであ
るブリード弁12.燃料極9に設けであるブリード弁1
3は酸化剤ガス極4.燃料極9間の差圧調節弁10で制
御しきれない大きな外乱等による差圧を抑制するもので
あり、差圧伝送器11からの信号を取込む制御用計算機
14からの信号によって動作する。このような燃料電池
プラントの差圧抑制装置で酸化剤ガス極4と燃料極9と
の間の差圧を抑制するのに、従来は差圧伝送器11から
の信号を制御用計算機14に取込み、差圧が一定値(動
作開始レベル)以上になった場合に圧力の高い側のブリ
ード弁に開信号を送り、この電極の圧力を低下させてい
た。
That is, FIG. 2 shows a differential pressure suppression device for a fuel cell plant. As shown in the figure, nitrogen is supplied to the cell container 2 via the inlet flow rate control valve 1, and the outlet side is supplied with nitrogen. The differential pressure regulating valve 3 controls the differential pressure between the battery container 2 and the oxidizing gas electrode 4. In this case, the differential pressure regulating valve 3 may be provided between the battery container 2 and the oxidizing gas electrode 4. A differential pressure transmitter 5
It works by On the oxidizing gas electrode side, air is supplied to the oxidizing gas electrode 4 via the inlet flow rate control valve 6, and the oxidizing gas electrode exhaust gas is mixed with the container outlet gas and then sent to the reformer combustion section 7.
flows into. On the fuel electrode side, reformed gas from a fuel reformer (not shown) flows into the fuel electrode 9 via an inlet flow control valve 8, and fuel electrode exhaust gas flows into the reformer combustion section 7. On the fuel electrode outlet side, the differential pressure between the oxidizing gas electrode 4 and the fuel electrode 9 is controlled by the differential pressure regulating valve 10. In this case, the differential pressure regulating valve 1
0 is operated by a differential pressure transmitter 11 provided between the oxidant gas electrode 4 and the fuel electrode 9. A bleed valve 12 provided at the oxidizing gas electrode 4. Bleed valve 1 provided at fuel electrode 9
3 is an oxidizing gas electrode 4. It suppresses the differential pressure caused by a large disturbance that cannot be controlled by the differential pressure regulating valve 10 between the fuel electrodes 9, and is operated by a signal from a control computer 14 that receives a signal from a differential pressure transmitter 11. In order to suppress the differential pressure between the oxidizing gas electrode 4 and the fuel electrode 9 in such a differential pressure suppressing device of a fuel cell plant, conventionally, a signal from the differential pressure transmitter 11 is input to the control computer 14. When the differential pressure exceeds a certain value (operation start level), an open signal is sent to the bleed valve on the higher pressure side, reducing the pressure at this electrode.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術はブリード弁動作開始後の差圧制御効果は
大きいが、差圧信号そのものの妥当性の検討が欠除して
いるため、ブリード弁の動作開始そのものが遅れる欠点
があった。
Although the above-mentioned conventional technology has a large effect of controlling the differential pressure after the start of the bleed valve operation, it lacks consideration of the validity of the differential pressure signal itself, and therefore has the disadvantage that the start of the bleed valve operation itself is delayed.

この欠点を第3図に基づいて説明する。同図は一例とし
て酸化剤ガス極のブリード弁の開閉動作状態が示されて
いる。同図においてAは酸化剤ガス極のブリード弁の動
作開始レベル、Bは実際のシステムに発生している差圧
、Cは差圧伝送器を介して計測された差圧、Dは計測さ
れた差圧に基づいて動作する酸化剤ガス極のブリード弁
の流量である。なお横軸は時間である。同図に示されて
いるように真の差圧Bと計測された差圧Cとの間には測
定の無駄時間Δt1があるため、計測された差圧Cがブ
リード弁の動作開始レベルAに達した時には真の差圧B
は動作開始レベルAを超えている。更にブリード弁動作
の無駄時間Δt2が加わるため、ブリード弁が動作開始
する時点の差圧は設定値からかなり離れた値となり、酸
化剤ガス極、燃料極間の差圧を所定の値以下に制御する
ことができなかった。
This drawback will be explained based on FIG. The figure shows, as an example, the opening and closing operation states of the bleed valve of the oxidizing gas electrode. In the figure, A is the operating start level of the bleed valve of the oxidant gas electrode, B is the differential pressure occurring in the actual system, C is the differential pressure measured via the differential pressure transmitter, and D is the measured pressure. This is the flow rate of the bleed valve of the oxidant gas electrode, which operates based on the differential pressure. Note that the horizontal axis is time. As shown in the figure, there is a measurement dead time Δt1 between the true differential pressure B and the measured differential pressure C, so the measured differential pressure C reaches the bleed valve operation start level A. When it reaches true differential pressure B
exceeds operation start level A. Furthermore, since the dead time Δt2 of the bleed valve operation is added, the differential pressure at the time the bleed valve starts operating becomes a value far away from the set value, and the differential pressure between the oxidant gas electrode and the fuel electrode is controlled to be below the predetermined value. I couldn't do it.

本発明は以上の点に鑑みなされたものであり、システム
の無駄時間に基づく差圧抑制動作の不具合を防止するこ
とを可能とした燃料電池プラントの差圧抑制方法を提供
することを目的とするものである。
The present invention has been made in view of the above points, and an object of the present invention is to provide a method for suppressing differential pressure in a fuel cell plant, which makes it possible to prevent malfunctions in differential pressure suppressing operation due to dead time in the system. It is something.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、制御用計算機で求めた差圧の変化率に応じ
て動作開始レベルを変えることにより、達成される。
The above object is achieved by changing the operation start level according to the rate of change in differential pressure determined by the control computer.

〔作用〕[Effect]

差圧の変化率に応じて動作開始レベルが変化するので、
差圧の変化率に応じてブリード弁が動作するようになっ
て、ブリード弁の動作無駄時間および計測無駄時間に基
づく差圧抑制動作の遅れが回避されるようになり、シス
テムの無駄時間に基づく差圧抑制動作の不具合が防止さ
れる。
Since the operation start level changes depending on the rate of change in differential pressure,
The bleed valve operates according to the rate of change in the differential pressure, thereby avoiding delays in differential pressure suppression based on the bleed valve operation dead time and measurement dead time. Malfunctions in the differential pressure suppression operation are prevented.

〔実施例〕〔Example〕

以下、図示した実施例に基づいて本発明を説明する。第
1図には本発明の一実施例が示されている。同図に示さ
れているように本実施例では制御用計算機で求めた差圧
の変化率に応じて動作開始レベルを変えるようにした。
The present invention will be explained below based on the illustrated embodiments. FIG. 1 shows an embodiment of the invention. As shown in the figure, in this embodiment, the operation start level is changed in accordance with the rate of change in the differential pressure determined by the control computer.

このようにすることによりシステムの無駄時間に基づく
差圧抑制動作の不具合が防止されるようになって、シス
テムの無駄時間に基づく差圧抑制動作の不具合を防止す
ることを可能とした燃料電池プラントの差圧抑制方法を
得ることができる。
By doing this, malfunctions in the differential pressure suppression operation due to dead time in the system can be prevented, making it possible to prevent malfunctions in the differential pressure suppression operation due to dead time in the system. A method for suppressing differential pressure can be obtained.

すなわち同図は一例として酸化剤ガス極系に関するブリ
ード弁の動作法を示したもので、縦軸にブリード弁動作
開始差圧(ブリード弁の動作開始レベル)をとり、横軸
に差圧変化率をとって差圧変化率とブリード弁動作開始
差圧との関係が示されている。制御用計算機(第2図参
照)内で測定された差圧から差圧の変化率を求める。計
算機内では予め同図に示されているような差圧変化率と
ブリード弁動作開始差圧とを記憶しておく。計測された
差圧および差圧変化率が同図の斜線で示されるような領
域に入った場合に開動作を行う。すなわち差圧変化率が
大きい場合はブリード弁の動作開始レベルを下げる。こ
のように差圧変化率および計測の無駄時間を考慮してブ
リード弁を早目に開くことにより、発生差圧を許容値以
内に抑制することができる。このように本実施例によれ
ば電池の酸化剤ガス極、燃料極間の差圧を一定値以内に
抑制でき、電池運転の信頼性を向上させることができる
In other words, the figure shows, as an example, how the bleed valve operates in relation to the oxidizing gas polar system.The vertical axis shows the differential pressure at which the bleed valve starts operating (bleed valve operating start level), and the horizontal axis shows the rate of change in the differential pressure. The relationship between the rate of change in differential pressure and the differential pressure at which the bleed valve starts operating is shown. The rate of change in differential pressure is determined from the differential pressure measured in the control computer (see Figure 2). In the computer, the differential pressure change rate and the bleed valve operation start differential pressure as shown in the figure are stored in advance. The opening operation is performed when the measured differential pressure and rate of change in differential pressure fall within the shaded area in the figure. That is, when the rate of change in differential pressure is large, the operation start level of the bleed valve is lowered. In this way, by opening the bleed valve early in consideration of the differential pressure change rate and measurement dead time, the generated differential pressure can be suppressed within an allowable value. As described above, according to this embodiment, the differential pressure between the oxidant gas electrode and the fuel electrode of the battery can be suppressed within a certain value, and the reliability of battery operation can be improved.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明はシステムの無駄時間に基づく差圧
抑制動作の不具合が防止されるようになって、システム
の無駄時間に基づく差圧抑制動作の不具合を防止するこ
とを可能とした燃料電池プラントの差圧抑制方法を得る
ことができる。
As described above, the present invention prevents malfunctions in the differential pressure suppressing operation due to dead time of the system, and provides a fuel cell that makes it possible to prevent malfunctions in the differential pressure suppressing operation based on the dead time of the system. A method for suppressing differential pressure in a plant can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の燃料電池プラントの差圧抑制方法の一
実施例のブリード弁動作開始差圧と差圧変化率との関係
を示す特性図、第2図は燃料電池プラントの差圧抑制装
置の系統を示す説明図、第3図は従来の燃料電池プラン
トの差圧抑制方法によるブリード弁の動作開始レベル、
実際のシステムに発生している差圧、差圧伝送器を介し
て計測された差圧、計測された差圧に基づいて動作する
ブリード弁の流量の関係を示す説明図である。 4・・・酸化剤ガス極、9・・・燃料極、11・・差圧
伝送器、12.13・・・ブリード弁、14・・・制御
用計算機。
FIG. 1 is a characteristic diagram showing the relationship between the differential pressure at the start of bleed valve operation and the rate of change in differential pressure in an embodiment of the method for suppressing differential pressure in a fuel cell plant of the present invention, and FIG. 2 is a characteristic diagram showing the relationship between differential pressure control in a fuel cell plant An explanatory diagram showing the system of the device, Fig. 3 shows the operation start level of the bleed valve according to the differential pressure suppression method of a conventional fuel cell plant;
FIG. 2 is an explanatory diagram showing the relationship among the differential pressure occurring in an actual system, the differential pressure measured via a differential pressure transmitter, and the flow rate of a bleed valve that operates based on the measured differential pressure. 4... Oxidizing gas electrode, 9... Fuel electrode, 11... Differential pressure transmitter, 12.13... Bleed valve, 14... Control computer.

Claims (1)

【特許請求の範囲】 1、酸化剤ガス極、燃料極間の差圧を測定し伝送する差
圧伝送器からの信号を制御用計算機に取込み、前記差圧
が前記両極に設けられたブリード弁の動作開始レベルに
達した場合に、前記ブリード弁のうち圧力の高い側の電
極のブリード弁に前記制御用計算機から信号を送り前記
圧力の高い側の電極からガスを放出させる燃料電池プラ
ントの差圧抑制方法において、前記制御用計算機で求め
た前記差圧の変化率に応じて前記動作開始レベルを変え
るようにしたことを特徴とする燃料電池プラントの差圧
抑制方法。 2、前記動作開始レベルが、前記差圧の変化率が大きく
なるにつれて下がるようにされたものである特許請求の
範囲第1項記載の燃料電池プラントの差圧抑制方法。
[Claims] 1. A signal from a differential pressure transmitter that measures and transmits the differential pressure between the oxidizing gas electrode and the fuel electrode is taken into a control computer, and the differential pressure is detected by a bleed valve provided at the both electrodes. When the operation start level is reached, the control computer sends a signal to the bleed valve of the electrode on the higher pressure side among the bleed valves to release gas from the electrode on the higher pressure side. A method for suppressing differential pressure in a fuel cell plant, characterized in that the operation start level is changed in accordance with a rate of change in the differential pressure determined by the control computer. 2. The method for suppressing differential pressure in a fuel cell plant according to claim 1, wherein the operation start level is lowered as the rate of change in the differential pressure increases.
JP62309626A 1987-12-09 1987-12-09 Method for suppressing differential pressure in fuel cell plant Expired - Fee Related JPH0719614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62309626A JPH0719614B2 (en) 1987-12-09 1987-12-09 Method for suppressing differential pressure in fuel cell plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62309626A JPH0719614B2 (en) 1987-12-09 1987-12-09 Method for suppressing differential pressure in fuel cell plant

Publications (2)

Publication Number Publication Date
JPH01151162A true JPH01151162A (en) 1989-06-13
JPH0719614B2 JPH0719614B2 (en) 1995-03-06

Family

ID=17995294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62309626A Expired - Fee Related JPH0719614B2 (en) 1987-12-09 1987-12-09 Method for suppressing differential pressure in fuel cell plant

Country Status (1)

Country Link
JP (1) JPH0719614B2 (en)

Also Published As

Publication number Publication date
JPH0719614B2 (en) 1995-03-06

Similar Documents

Publication Publication Date Title
US5059494A (en) Fuel cell power plant
JPS61241425A (en) Fuel gas controlling method of gas turbine and controller
JPH01151162A (en) Pressure difference suppressing method for fuel cell plant
JPH0652665B2 (en) Fuel cell operation method
US11555611B2 (en) Feedforward structure for controlling steam drum water level in steam turbine FCB test and control method for the same
JPS6231954A (en) Fuel cell differential pressure control device
JP2519727B2 (en) Gas turbine injection steam control device
JPH05266907A (en) Differential pressure control of fuel cell
JPS61239303A (en) Feedforward type controlling method
JPS61262286A (en) Hot and cold water mixing cock
JPS60107268A (en) Control system for fuel cell power generation plant
JPH0135410Y2 (en)
JP3244133B2 (en) How to prevent excessive differential pressure in fuel cells
JPS60157163A (en) Fuel cell system
JPS5955334A (en) System for controlling injection of reducing agent in denitrator for stack gas
JPH0227790B2 (en)
JPS5956611A (en) Fuel pressure controller
JPS62160666A (en) Fuel cell power generation system
JPH081808B2 (en) Fuel cell plant
JPS5818506A (en) Method of controlling operation of boiler turbine under variable pressure
JPH09204226A (en) Pressure controller
JPH0337966A (en) Transferring method to no-load operation for fuel cell
JPS62170735A (en) Fuel gas system
JPH01186569A (en) Pressure difference suppressor for fuel cell plant
JPS6466447A (en) Fuel injection control method of diesel engine

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees