JPH081808B2 - Fuel cell plant - Google Patents

Fuel cell plant

Info

Publication number
JPH081808B2
JPH081808B2 JP61159624A JP15962486A JPH081808B2 JP H081808 B2 JPH081808 B2 JP H081808B2 JP 61159624 A JP61159624 A JP 61159624A JP 15962486 A JP15962486 A JP 15962486A JP H081808 B2 JPH081808 B2 JP H081808B2
Authority
JP
Japan
Prior art keywords
gas
differential pressure
fuel
gas system
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61159624A
Other languages
Japanese (ja)
Other versions
JPS6316571A (en
Inventor
雅教 山口
武男 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61159624A priority Critical patent/JPH081808B2/en
Publication of JPS6316571A publication Critical patent/JPS6316571A/en
Publication of JPH081808B2 publication Critical patent/JPH081808B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池プラントに係り、特に、燃料電池の
ガス供給側あるいはガス排出側に圧力調整用のガス放出
装置を備えた燃料電池プラントに関する。
Description: TECHNICAL FIELD The present invention relates to a fuel cell plant, and more particularly to a fuel cell plant provided with a gas releasing device for pressure adjustment on a gas supply side or a gas discharge side of a fuel cell. .

〔従来の技術〕[Conventional technology]

従来一般に採用されているこの種の燃料電池プラント
は、電池内でガスの漏洩による異種ガス混合を避けるた
めに、燃料極ガス系統と空気極ガス系統との間にガス差
圧ができないよう夫々のガス系統に圧力調整用のガス放
出装置を備えているのが普通である。
This type of fuel cell plant that has been generally adopted in the past has been designed to prevent gas differential pressure between the fuel electrode gas system and the air electrode gas system in order to avoid mixing of different gases due to gas leakage in the cell. The gas system is usually equipped with a gas releasing device for pressure adjustment.

このガス放出装置としては、種々のものが考えられる
が、極く一般的にはたとえば特開昭60−198064号公報に
記載されているようにガス放出弁を用いることが多い。
Various types of gas releasing devices can be considered, but most commonly, a gas releasing valve is often used as described in JP-A-60-198064.

すなわち、燃料極ガス系統および空気極ガス系統に、
これらの系統内のガスを、系統外へ放出してガス圧を調
節するガス放出弁を設け、そしてこのガス放出弁を、両
極ガス系統間のガス差圧がある所定値以上になった場合
に開くようになし、両極ガス系統間のガス差圧を抑制す
るようにしている。
That is, in the fuel electrode gas system and the air electrode gas system,
A gas release valve that controls the gas pressure by releasing the gas in these systems to the outside of the system is installed, and this gas release valve is used when the gas pressure difference between the two polar gas systems exceeds a certain value. It is opened so that the gas pressure difference between the two polar gas systems is suppressed.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

この場合、一般にこの圧力調整用として用いられるガ
ス放出弁の容量は、両極ガス系統間の最大ガス差圧、す
なわちガス放出弁の駆動を必要とするガス差圧のときに
所定時間内にこのガス放出弁に流通させるべきガス容量
によって決定されている。したがって、燃料極ガス系統
と空気極ガス系統間にガス差圧が発生した場合で、その
発生差圧の時間的変化(差圧上昇率)が大きい場合には
放出弁の開閉により充分ガス差圧を吸収し得満足できる
が、逆に発生差圧の時間的変化が小さい場合には、ガス
放出弁の閉動作時、ガス放出弁の閉動作時間は有限であ
ることから多くのガスを放出してしまい、つまりガス圧
を低下させようとする系統側のガス圧が低下しすぎ、両
極系統間のガス差圧が許容値を越え、やがて電池内の電
解質層が破壊し異種ガスが混合する恐れがあった。
In this case, generally, the capacity of the gas release valve used for this pressure adjustment is the maximum gas differential pressure between the bipolar gas systems, that is, the gas differential valve that requires driving of the gas release valve, within the predetermined time. It is determined by the volume of gas to be passed through the release valve. Therefore, when a gas differential pressure is generated between the fuel electrode gas system and the air electrode gas system, and if the temporal change in the generated differential pressure (differential pressure increase rate) is large, opening and closing the release valve will allow sufficient gas differential pressure. However, if the generated differential pressure changes little with time, on the contrary, when the gas release valve is closed, the gas release valve has a finite closing time, so a large amount of gas is released. In other words, the gas pressure on the system side that attempts to reduce the gas pressure becomes too low, the gas differential pressure between the two electrode systems exceeds the allowable value, and the electrolyte layer in the battery may eventually break down and different gases may mix. was there.

本発明の目的は、燃料極ガス系統と空気極ガス系統間
に生じるガス差圧の、その時間的変化が大きい小さいに
拘らず、すなわち、燃料電池を運転する場合に全ての運
転工程で発生する如何なる時間的変化の差圧であって
も、その差圧を充分に吸収して異常ガスが混合すること
のない燃料電池プラントを提供することである。
An object of the present invention is that the gas differential pressure generated between the fuel electrode gas system and the fuel electrode gas system has a large temporal change and is small, that is, it occurs in all operating steps when operating the fuel cell. It is an object of the present invention to provide a fuel cell plant in which abnormal pressure is not mixed by sufficiently absorbing the pressure difference regardless of the time-dependent pressure difference.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するため、本発明は、燃料極ガス系統
を介してほぼ一定圧力で供給される燃料ガスと空気極ガ
ス系統を介してほぼ一定圧力で供給される空気とを化学
反応させて電力を得る燃料電池本体と、前記燃料極ガス
系統と空気極ガス系統との間のガス差圧を検出する差圧
検出部と、前記燃料極ガス系統および前記空気極ガス系
統に設けられ、燃料極ガス系統内の燃料ガス又は空気極
ガス系統内の空気を外部に放出するためのガス放出部
と、前記差圧検出部で検出した前記両極ガス系統間のガ
ス差圧が所定値以上となったとき、前記ガス放出部を作
動させてガス差圧を小さくする制御部と、を備えた燃料
電池プラントにおいて、前記ガス放出部として、同一容
量で且つ小容量の複数個のガス放出弁を前記燃料極ガス
系統および前記空気極ガス系統にそれぞれ同数個ずつ設
けるとともに、前記差圧検出部からの信号を取り込んで
ガス差圧の上昇率を算出する差圧上昇率算出手段と、前
記ガス放出弁を作動させる場合に、複数個設けられたガ
ス放出弁のうち前記上昇率に比例した個数のガス放出弁
を作動させるガス放出弁制御手段と、を前記制御部内に
設けたことを特徴とするものである。
In order to achieve the above-mentioned object, the present invention chemically reacts a fuel gas supplied at a substantially constant pressure via a fuel electrode gas system with air supplied at a substantially constant pressure via an air electrode gas system to generate electric power. A fuel cell body, a differential pressure detector for detecting a gas differential pressure between the fuel electrode gas system and the air electrode gas system, and a fuel electrode gas system and an air electrode gas system. The gas pressure difference between the gas discharge unit for discharging the fuel gas in the gas system or the air in the air electrode gas system to the outside and the gas pressure difference between the both electrode gas systems detected by the pressure difference detection unit is equal to or more than a predetermined value. At this time, in a fuel cell plant including a control unit that operates the gas release unit to reduce the gas differential pressure, a plurality of gas release valves having the same capacity and a small capacity are used as the gas release unit. Polar gas system and the air electrode The same number is provided for each of the gas pressure systems, and a plurality of differential pressure increase rate calculating means for calculating the increase rate of the gas differential pressure by receiving the signal from the differential pressure detecting section, and a plurality of them when activating the gas release valve are provided. Among the gas release valves provided, gas release valve control means for operating a number of gas release valves in proportion to the rate of increase are provided in the control unit.

〔作用〕[Action]

上記構成によれば、燃料極ガス系統と空気極ガス系統
間の差圧の上昇率に比例した個数のガス放出弁が作動し
て、燃料ガス又は空気を放出する。例えば、上昇率が小
さい場合には1つのガス放出弁が作動するので、燃料ガ
ス又は空気の放出量は小さく抑えられ、系統内ガス圧の
低下しすぎを防ぐことが可能となる。
According to the above configuration, the gas release valves, the number of which is proportional to the increase rate of the differential pressure between the fuel electrode gas system and the air electrode gas system, operate to release the fuel gas or air. For example, when the rate of increase is small, one gas release valve operates, so that the amount of fuel gas or air released can be kept small, and it is possible to prevent the system gas pressure from dropping too low.

また、上記構成では燃料極ガス系統と空気極ガス系に
設けたガス放出弁が全て同一容量で且つ小容量であるか
ら、弁の動作速度に大きなバラツキが生じることがな
く、ガス差圧解消までの時間を高精度に制御することが
できるとともに、弁の動作速度も向上してガス差圧のな
い状態を速やかに実現することができる。
Further, in the above configuration, since the gas discharge valves provided in the fuel electrode gas system and the air electrode gas system have the same capacity and a small capacity, there is no large variation in the operating speed of the valves, and the gas differential pressure is eliminated. The time can be controlled with high accuracy, the operating speed of the valve can be improved, and a state without gas differential pressure can be quickly realized.

〔実施例〕〔Example〕

以下図示した実施例に基づいて本発明を詳細に説明す
る。
The present invention will be described in detail based on the illustrated embodiments.

図は燃料電池プラントの主要部の系統を示したもので
あり、1は電池容器の空間、2は空気極のガス空間、3
は燃料極のガス空間を示している。定常状態において、
電池容器のガス系統には入口側から流量調整弁4を介し
て窒素が流入し、出口側は電池容器・空気極間の差圧調
節弁5を介してリホーマ燃焼部6に接続されている。空
気極のガス系統では入口側の流量調節弁7を介して空気
極のガス空間2に空気が流入し、電流発生に必要な酸素
が消費された後、後流側に排出され熱交換器等による圧
力損失8を介してリホーマ燃焼部6に流入する。一方、
燃料極のガス系統ではリホーマプロセス側(図示せず)
で発生した改質ガスが流量調節弁9を介して燃料極のガ
ス空間3に流入し、発電に必要な水素が消費された後、
燃料極後流側に設置された差圧調節弁10および熱交換器
等による圧力損失11を介して、リホーマ燃焼部6に流入
する。
The figure shows the system of the main part of the fuel cell plant, 1 is the space of the battery container, 2 is the gas space of the air electrode, 3
Indicates the gas space of the fuel electrode. In the steady state,
Nitrogen flows into the gas system of the battery container from the inlet side via the flow rate adjusting valve 4, and the outlet side is connected to the reformer combustion unit 6 via the differential pressure adjusting valve 5 between the battery container and the air electrode. In the gas system of the air electrode, air flows into the gas space 2 of the air electrode through the flow rate control valve 7 on the inlet side, consumes oxygen necessary for generating an electric current, and then is discharged to the downstream side to a heat exchanger or the like. Flows into the reformer combustion section 6 via the pressure loss 8 due to. on the other hand,
In the gas system of the fuel electrode, the reformer process side (not shown)
After the reformed gas generated in 1 flows into the gas space 3 of the fuel electrode through the flow rate control valve 9 and hydrogen required for power generation is consumed,
It flows into the reformer combustion section 6 via a pressure difference control valve 10 installed on the downstream side of the fuel electrode and a pressure loss 11 due to a heat exchanger or the like.

通常の動作における空気極のガス系統と燃料極のガス
系統間の差圧抑制は差圧調節弁10により行うが、差圧調
節弁10にて制御しきれないガス差圧が発生した場合に
は、ガス圧力が高い側のガス系統のガス放出装置12を作
動させ、ガスを放出させることによりその差圧吸収が行
われる。
The differential pressure between the gas system of the air electrode and the gas system of the fuel electrode in normal operation is suppressed by the differential pressure control valve 10, but when a gas differential pressure that cannot be controlled by the differential pressure control valve 10 occurs. The differential pressure absorption is performed by activating the gas release device 12 of the gas system on the high gas pressure side to release the gas.

このガス放出装置12は、複数個の小容量弁を並列結合
して所要容量の弁となした放出弁群12a〜12fにて形成さ
れている。そしてこれら放出弁群12a〜12fは制御装置22
により開閉動作するわけであるが、この場合、特に制御
装置22の制御信号に、ガス系統のガス圧力上昇率が放出
弁群の駆動要素として取り入れられている。そして、放
出弁群のうち開となる放出弁の個数はガス圧力の上昇率
に比例して設定される。すなわち所定のガス差圧が発生
した場合には、空気極下流側(空気排出側)に設けられ
ている放出弁群12a,12b,12c及び燃料極下流側(燃料ガ
ス排出側)に設けられている放出弁群12d,12e,12fのう
ち、圧力の高い側のガス系統の放出弁の所要数が作動
し、ガス差圧の抑制が行われる。
The gas discharge device 12 is formed of discharge valve groups 12a to 12f in which a plurality of small capacity valves are connected in parallel to form a valve having a required capacity. The discharge valve groups 12a to 12f are controlled by the control device 22.
In this case, the gas pressure increase rate of the gas system is incorporated as a drive element of the discharge valve group in the control signal of the control device 22 in particular. The number of open release valves in the release valve group is set in proportion to the rate of increase in gas pressure. That is, when a predetermined gas differential pressure is generated, the release valve group 12a, 12b, 12c provided on the air electrode downstream side (air discharge side) and the fuel electrode downstream side (fuel gas discharge side) are provided. Among the discharge valve groups 12d, 12e, 12f that are present, a required number of discharge valves of the gas system on the high pressure side are activated to suppress the gas differential pressure.

すなわち、検出装置20で検出されたガス差圧信号が微
分演算器21に入力されてガス差圧上昇率が算出され、そ
の算出結果が検出装置20からの差圧検出値と共に制御装
置22に入力される。制御装置22ではガス差圧測定値が一
定レベルを越えたこと及びその時点でのガス差圧上昇
率、すなわち差圧変化速度により、この値が第1の設定
レベル未満の場合には開動作させる放出弁数を1とし、
第1の設定レベル以上で第2の設定レベル未満の場合に
は開動作させる放出弁数を2とし、第2の設定レベル以
上の場合には開動作させる放出弁数を3とする。この様
な動作方法をとることにより燃料電池プラントの広い範
囲の差圧変動速度に対して差圧抑制機能を発揮すること
が出来るのである。
That is, the gas differential pressure signal detected by the detection device 20 is input to the differential calculator 21 to calculate the gas differential pressure increase rate, and the calculation result is input to the control device 22 together with the differential pressure detection value from the detection device 20. To be done. When the measured value of the gas differential pressure exceeds a certain level and the rate of increase in the gas differential pressure at that time, that is, the rate of change of the differential pressure, the control device 22 causes the opening operation when the value is less than the first set level. The number of discharge valves is 1,
When the level is equal to or higher than the first set level and lower than the second set level, the number of release valves to be opened is set to 2, and when the level is equal to or higher than the second set level, the number of release valves to be opened is set to 3. By adopting such an operation method, it is possible to exert the differential pressure suppressing function with respect to the differential pressure fluctuation speed in a wide range of the fuel cell plant.

本実施例において、電池容器の空間1、空気極のガス
空間および燃料極のガス空間3は燃料電池本体の一部を
構成している。また検出装置20は差圧検出部を、ガス放
出装置12はガス放出部を、微分演算器21は差圧上昇率算
出手段を、制御装置21はガス放出弁制御手段に相当して
いる。そして、微分演算器21と制御装置21は制御部内に
設けられている。
In this embodiment, the space 1 of the cell container, the gas space of the air electrode and the gas space 3 of the fuel electrode constitute a part of the fuel cell body. Further, the detection device 20 corresponds to a differential pressure detection part, the gas release device 12 corresponds to a gas release part, the differential calculator 21 corresponds to a differential pressure increase rate calculation means, and the control device 21 corresponds to a gas release valve control means. The differential calculator 21 and the control device 21 are provided in the control unit.

なお、以上の説明では放出弁群として放出弁数が3個
の場合について説明してきたが、この放出弁の数はこの
数に限られるものではなく、性能的には数多い程有利で
ある。しかし、保守性や経済性の面から考えると2〜5
個位が実用的である。
In the above description, the case where the number of discharge valves is three in the discharge valve group has been described, but the number of discharge valves is not limited to this number, and the larger the number, the more advantageous in terms of performance. However, in terms of conservativeness and economy, 2-5
The position is practical.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、燃料極ガス系
統と空気極ガス系統間のガス差圧の上昇率が小さい場合
は、複数個設けられたガス放出弁のうちの例えば1つだ
けが作動するので、系統内の燃料ガスや空気を必要以上
に放出してしまうといった事態を回避できる。また、燃
料極ガス系統と空気極ガス系に設けたガス放出弁の径が
全て同一であるので、弁の動作速度に大きなバラツキが
なく、ガス差圧解消までの時間を高精度に制御すること
ができ、しかもガス放出弁が小容量の弁であるから弁の
動作速度も速く、ガス差圧のない状態を速やかに実現で
きる。その結果、燃料ガスと空気の混合を完全に防ぐこ
とができ、信頼性の高い燃料電池プラントを得ることが
可能となる。
As described above, according to the present invention, when the increase rate of the gas differential pressure between the fuel electrode gas system and the air electrode gas system is small, for example, only one of the plurality of gas release valves is provided. Since it operates, it is possible to avoid a situation where the fuel gas or air in the system is released more than necessary. Also, since the diameters of the gas release valves provided in the fuel electrode gas system and the air electrode gas system are all the same, there is no large variation in the operating speed of the valves, and the time until the gas differential pressure is eliminated must be controlled with high accuracy. In addition, since the gas release valve is a small-capacity valve, the operating speed of the valve is fast, and a state without gas differential pressure can be quickly realized. As a result, mixing of fuel gas and air can be completely prevented, and a highly reliable fuel cell plant can be obtained.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の燃料電池プラントの要部構成図である。 1……電池容器の空間、2……空気極のガス空間、3…
…燃料極のガス空間、5,10……差圧調節弁、6……リホ
ーマ燃焼部、12……ガス放出装置、20……検出装置、21
……微分演算器、22……制御装置。
FIG. 1 is a schematic view of the essential parts of a fuel cell plant of the present invention. 1 ... Battery container space, 2 ... Air electrode gas space, 3 ...
… Gas space of fuel electrode, 5,10 …… Differential pressure control valve, 6 …… Reformer combustion part, 12 …… Gas release device, 20 …… Detection device, 21
...... Differentiation calculator, 22 …… Control device.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−198064(JP,A) 特開 昭60−7065(JP,A) 実開 昭57−84012(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-60-198064 (JP, A) JP-A-60-7065 (JP, A) Practical application Sho-57-84012 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】燃料極ガス系統を介してほぼ一定圧力で供
給される燃料ガスと空気極ガス系統を介してほぼ一定圧
力で供給される空気とを化学反応させて電力を得る燃料
電池本体と、前記燃料極ガス系統と空気極ガス系統との
間のガス差圧を検出する差圧検出部と、前記燃料極ガス
系統および前記空気極ガス系統に設けられ、燃料極ガス
系統内の燃料ガス又は空気極ガス系統内の空気を外部に
放出するためのガス放出部と、前記差圧検出部で検出し
た前記両極ガス系統間のガス差圧が所定値以上となった
とき、前記ガス放出部を作動させてガス差圧を小さくす
る制御部と、を備えた燃料電池プラントにおいて、 前記ガス放出部として、同一容量で且つ小容量の複数個
のガス放出弁を前記燃料極ガス系統および前記空気極ガ
ス系統にそれぞれ同数個ずつ設けるとともに、前記差圧
検出部からの信号を取り込んでガス差圧の上昇率を算出
する差圧上昇率算出手段と、前記ガス放出弁を作動させ
る場合に、複数個設けられたガス放出弁のうち前記上昇
率に比例した個数のガス放出弁を作動させるガス放出弁
制御手段と、を前記制御部内に設けたことを特徴とする
燃料電池プラント。
1. A fuel cell main body for obtaining electric power by chemically reacting a fuel gas supplied at a substantially constant pressure via a fuel electrode gas system with air supplied at a substantially constant pressure via an air electrode gas system. A differential pressure detection unit that detects a gas differential pressure between the fuel electrode gas system and the air electrode gas system, and a fuel gas in the fuel electrode gas system that is provided in the fuel electrode gas system and the air electrode gas system. Alternatively, when the gas pressure difference between the gas discharge unit for discharging the air in the air electrode gas system to the outside and the bipolar gas system detected by the differential pressure detection unit becomes a predetermined value or more, the gas discharge unit In the fuel cell plant comprising: a control unit for activating the gas pressure difference to reduce the gas differential pressure, a plurality of gas discharge valves having the same capacity and a small capacity are provided as the gas discharge unit and the air electrode gas system and the air as the gas discharge unit. The same number for each polar gas system A differential pressure increase rate calculation means for calculating the increase rate of the gas differential pressure by taking in a signal from the differential pressure detection section, and a plurality of gas discharges provided when the gas release valve is operated. A fuel cell plant comprising: a gas release valve control unit that operates a number of gas release valves of the valves that are proportional to the rate of increase.
JP61159624A 1986-07-09 1986-07-09 Fuel cell plant Expired - Fee Related JPH081808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61159624A JPH081808B2 (en) 1986-07-09 1986-07-09 Fuel cell plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61159624A JPH081808B2 (en) 1986-07-09 1986-07-09 Fuel cell plant

Publications (2)

Publication Number Publication Date
JPS6316571A JPS6316571A (en) 1988-01-23
JPH081808B2 true JPH081808B2 (en) 1996-01-10

Family

ID=15697785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61159624A Expired - Fee Related JPH081808B2 (en) 1986-07-09 1986-07-09 Fuel cell plant

Country Status (1)

Country Link
JP (1) JPH081808B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3951885B2 (en) * 2002-10-22 2007-08-01 日産自動車株式会社 Fuel cell system
JP4564347B2 (en) * 2004-11-29 2010-10-20 本田技研工業株式会社 Fuel cell system

Also Published As

Publication number Publication date
JPS6316571A (en) 1988-01-23

Similar Documents

Publication Publication Date Title
JP4692869B2 (en) Abnormality detection device for fuel cell system
US7425380B2 (en) Fuel cell system and related method
EP1642351B1 (en) Fuel cell system and related method
US5059494A (en) Fuel cell power plant
JP3572455B2 (en) Fuel cell system
US20070287041A1 (en) System level adjustments for increasing stack inlet RH
JP2000208161A (en) Operating method of and operating device for fuel cell
US20070138309A1 (en) Non-linear cathode inlet/outlet humidity control
US20050164057A1 (en) Virtual compressor operational parameter measurement and surge detection in a fuel cell system
JP2002151116A (en) Fuel cell system
JPH081808B2 (en) Fuel cell plant
JPH0652665B2 (en) Fuel cell operation method
JP2931372B2 (en) Operating method of fuel cell power generation system
JPH0354433B2 (en)
JP2948037B2 (en) Fuel cell power plant
JPH0261098B2 (en)
JPH0282459A (en) Service control device for fuel cell
JP2006107998A (en) Fuel cell system
JP2004111266A (en) Fuel cell system
JP2714236B2 (en) Fuel cell power plant
JP4802486B2 (en) Fuel cell system
WO2004049486A2 (en) Reactant supply for a fuel cell power system
JP3244133B2 (en) How to prevent excessive differential pressure in fuel cells
JPH08138702A (en) Fuel cell power generating plant
JP3536323B2 (en) Differential pressure controller for fuel cell power plant

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees