JPH011483A - ultrasonic motor - Google Patents

ultrasonic motor

Info

Publication number
JPH011483A
JPH011483A JP62-156113A JP15611387A JPH011483A JP H011483 A JPH011483 A JP H011483A JP 15611387 A JP15611387 A JP 15611387A JP H011483 A JPH011483 A JP H011483A
Authority
JP
Japan
Prior art keywords
friction
vibrating body
discharge
micro
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62-156113A
Other languages
Japanese (ja)
Other versions
JPS641483A (en
Inventor
潔 井上
Original Assignee
株式会社井上ジャパックス研究所
Filing date
Publication date
Application filed by 株式会社井上ジャパックス研究所 filed Critical 株式会社井上ジャパックス研究所
Priority to JP62156113A priority Critical patent/JPS641483A/en
Priority claimed from JP62156113A external-priority patent/JPS641483A/en
Publication of JPH011483A publication Critical patent/JPH011483A/en
Publication of JPS641483A publication Critical patent/JPS641483A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超呂波振動により移動体をl!Jra駆動する
超音波七−夕に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention uses super wave vibration to move a moving body! Regarding Ultrasonic Tanabata Driven by JRA.

(従来技術〕 超高波モータは、電歪名しくは磁歪素子材料とこれに接
着固定した移動体とからなるステータと、前記移動体に
摩擦接触した移動体とから構成され(いる。
(Prior Art) A superhigh wave motor is composed of a stator made of an electrostrictive or magnetostrictive element material and a movable body adhesively fixed to the stator, and a movable body that is in frictional contact with the movable body.

第1図は従来の円板形超音波七−夕の構成図で、移動体
となるステータ基体1に厚さ1111以下の電歪セラミ
ック2を重ねて一体化しである。振動体1上の突起3は
、振動体円板の上下方向の撓み振動が最大になる位置に
設け、切欠きを入れることにより軟らかく、周方向と上
下方向の撮幅を拡大する。移動体のロータ4は、ステー
タとの接触部に摩擦材5を取付け、これをステータの突
起3に圧接して摩擦移動せしめる。電歪材2には振動を
起す分極電極を設け、厚さ方向に電界を加えると、電界
の方向が分極方向と同じときには厚み方向に伸び、分極
と逆方向のときには縮み、電歪材表面に正と負の電界が
交互に並んで印加できるように電極を配置し、交流高周
波電界を印加すると、その周波数に応じた速度で上下に
振動すると共に、電極配置に応じた正弦波が発生する。
FIG. 1 is a block diagram of a conventional disk-shaped ultrasonic Tanabata device, in which an electrostrictive ceramic 2 having a thickness of 1111 mm or less is stacked and integrated with a stator base 1 serving as a moving body. The protrusion 3 on the vibrating body 1 is provided at a position where the bending vibration in the vertical direction of the vibrating body disc is maximum, and by making a notch, it is soft and expands the imaging width in the circumferential direction and the vertical direction. The rotor 4 of the movable body has a friction material 5 attached to the contact portion with the stator, and is pressed against the protrusion 3 of the stator to cause frictional movement. The electrostrictive material 2 is provided with a polarized electrode that causes vibration, and when an electric field is applied in the thickness direction, it expands in the thickness direction when the direction of the electric field is the same as the polarization direction, and contracts when the direction of the electric field is opposite to the polarization direction. When the electrodes are arranged so that positive and negative electric fields can be applied alternately and an alternating high-frequency electric field is applied, it vibrates up and down at a speed corresponding to the frequency, and a sine wave corresponding to the electrode arrangement is generated.

第2図のようにE!とE2の2組の電極群6を設け、夫
々の電Ni群によって励振される定在波が位置的に90
°ずれるように電極6を配置し、更に電源E1と[2に
時間的に90”位相差のある交流電界を印加すると、E
lによって発生する実線とF2によって発生ずる点線の
波が重なり合った進行波が発生する。
As shown in Figure 2, E! Two sets of electrode groups 6, E2 and E2, are provided, and the standing waves excited by the respective electrode groups are positioned at 90°.
When the electrodes 6 are arranged so as to be shifted by 1°, and an AC electric field with a temporal phase difference of 90'' is applied to the power sources E1 and [2, E
A traveling wave is generated in which the solid line generated by l and the dotted line wave generated by F2 overlap.

第3図のA、B、C,Dが時間と共に波動の振幅が移動
する進行波を示す。この電歪材2に8個の電極6を設け
、2つの電源E+ 、F2で振動させたとき、2つの定
在波が重なり合った時間と共に一方向に移動する4つの
山をもった進行波により移動体1は第4図のような振動
の変位分布をちって撮動する。この撮動によって突起部
分3に摩擦材5を介して圧接した移動体4は振動体の円
周方向の4つの山と接触点が次々に移動し、接触摩擦力
によって回転する。
A, B, C, and D in FIG. 3 show traveling waves in which the wave amplitude moves with time. When this electrostrictive material 2 is provided with eight electrodes 6 and vibrated by two power sources E+ and F2, a traveling wave with four peaks that moves in one direction with time when two standing waves overlap is generated. The moving body 1 photographs the vibration displacement distribution as shown in FIG. As a result of this photographing, the movable body 4, which is in pressure contact with the protruding portion 3 through the friction material 5, moves its contact point with the four circumferential peaks of the vibrating body one after another, and rotates due to the contact friction force.

〔問題点〕〔problem〕

前記のように、移動体ローラの回転は、振動体に圧接し
て摩擦力作用により回転するから振動体の撮動駆動力を
摩擦によって効率良く移動体に伝達する必要がある。こ
のために移動体には摩擦材を設けているが、従来摩擦材
には、樹脂、繊維シート等を用いているが、摩擦係数が
充分とは言えない。又摩擦材が合成樹脂等であると摩耗
により経時変化を起して特性を低下させる欠点がある。
As described above, since the movable body roller rotates due to the action of frictional force when pressed against the vibrating body, it is necessary to efficiently transmit the photographing driving force of the vibrating body to the movable body through friction. For this purpose, the movable body is provided with a friction material. Conventionally, resin, fiber sheets, etc. have been used as the friction material, but the coefficient of friction is not sufficient. Furthermore, if the friction material is made of synthetic resin or the like, there is a drawback that the friction material deteriorates over time due to wear and the characteristics deteriorate.

(問題点の解決手段) 本発明は以上の欠点に鑑みて提案されたもので、振動体
と移動体間の接触面の一方若しくは両方に耐摩耗材を凹
凸状にマイクロ溶接した摩擦層を形成したことを特徴と
するものである。
(Means for Solving Problems) The present invention was proposed in view of the above-mentioned drawbacks, and a friction layer is formed by micro-welding a wear-resistant material into an uneven shape on one or both of the contact surfaces between the vibrating body and the moving body. It is characterized by this.

〔実施例〕〔Example〕

以下図面の一実施例により本発明を説明する。 The present invention will be explained below with reference to an embodiment of the drawings.

第5図は円環形超音波モータの分解構成図で、円環状振
動体1には、超音波の撮動に対する機械的なかたさを避
け、且つ振幅を拡大するために縦方向の切り欠き8を設
けである。2は環状の電歪セラミック材(!1歪材も利
用される)で、振動体1に溶接しである。4は振動体1
に圧接する環状移動体の一部切断片で、これが振動体1
の振動進行波によって環状移動により回転する。7は振
動体1及び移動体4の接触面に耐摩耗材を凹凸状にマイ
クロ溶接した摩擦層である。耐摩耗材にはWClTi 
 0% Ba  C,Hf  C,Zr  C,Ta 
C,、TiN、BN・・・・・・・・・その伯の耐摩耗
性の高い材料を用い、これをマイクロ溶接して厚さ10
〜25μm程度の層に形成する。
FIG. 5 is an exploded configuration diagram of an annular ultrasonic motor. The annular vibrating body 1 has a vertical notch 8 in order to avoid mechanical stiffness for ultrasonic imaging and to increase the amplitude. It is a provision. 2 is an annular electrostrictive ceramic material (!1 strained material is also used), which is welded to the vibrating body 1. 4 is vibrating body 1
This is a partially cut piece of the annular moving body that comes into pressure contact with the vibrating body 1.
It rotates by annular movement due to the vibration traveling wave. Reference numeral 7 denotes a friction layer in which a wear-resistant material is micro-welded to the contact surfaces of the vibrating body 1 and the movable body 4 in a concavo-convex shape. WClTi is the wear-resistant material
0% Ba C, Hf C, Zr C, Ta
C,, TiN, BN...... Using the same highly wear-resistant materials, we micro-welded them to a thickness of 10 mm.
It is formed into a layer of about 25 μm.

マイクロ溶接は放電(プラズマ)を利用する場合及びレ
ーザを利用する場合がある。
Micro welding may use electric discharge (plasma) or laser.

第6図は放電を利用する場合の一実施例で、電磁石コイ
ル9を交流励磁して振動片10を振動せしめ、先端振動
ヘッド11の支持チャック12に被覆材を微小デツプ1
3に形成したものを取付け、被覆母材14に対応して振
動により接触開離振動させる。
FIG. 6 shows an example in which electric discharge is used, in which the electromagnetic coil 9 is excited with alternating current to vibrate the vibrating piece 10, and the coating material is applied to the supporting chuck 12 of the tip vibrating head 11 in a minute depth 1.
3 is attached and caused to vibrate into contact and release by vibration corresponding to the coating base material 14.

両者間にはパルス電源15によってパルス放電を行い、
デツプ13の放電によって溶解した微小放電点部分を振
動接触時に熱容燵の大きい母材14に転移溶着し、この
微小溶着を振動を繰返しながら、又手動υ1t11.N
C制御等により相対移動してチップ3と母材14の対向
間隙を移動させながら、微小デポジットを母材14の表
面全体に溶着処理して層状に形成する。
Pulse discharge is performed between the two by a pulse power source 15,
The minute discharge point portion melted by the discharge of the depth 13 is transferred and welded to the base material 14 having a large heat capacity during vibration contact, and this minute welding is performed while repeating vibration, and manually υ1t11. N
While moving the opposing gap between the chip 3 and the base material 14 by relative movement using C control or the like, micro deposits are welded to the entire surface of the base material 14 to form a layer.

このデポジットは電源15による放電パルス条件(i 
p、ron、 z:off等)、電磁石コイル9による
振動条件(周波数等)、NG!1Jtl1等による相対
移動速度等を精密制御して1つ1つのデポジットを精密
に一定に制御することによって、その集積として被覆層
が形成され、表面粗さ10μRwax以下のμオーダの
均一な凹凸面の被?i層が形成でき、厚さ5〜30μm
程度には極く短時間に形成できる。
This deposit is applied to the discharge pulse condition (i
p, ron, z: off, etc.), vibration conditions due to electromagnetic coil 9 (frequency, etc.), NG! By precisely controlling the relative movement speed etc. by 1Jtl1 etc. and controlling each deposit precisely and constant, a coating layer is formed as an accumulation of them, and a uniform uneven surface with a surface roughness of μ order of 10μRwax or less is formed. Covered? I-layer can be formed with a thickness of 5 to 30 μm
It can be formed in a relatively short time.

第7図は被覆材を線径0.5〜2m■程度のワイヤ状1
6に形成し、リール17に貯蔵して連続的に供給し、振
動ヘッド11にガイドさせる。ワイヤ16の先端と母材
14間にパルス放電を行なわせてワイヤ先端を母材14
に溶断溶着し、これをヘッド11の振動に伴なわせて母
材14の被覆面全体に処理する。
Figure 7 shows the coating material in the form of a wire with a wire diameter of approximately 0.5 to 2 m.
6, stored on a reel 17, continuously supplied, and guided by the vibrating head 11. A pulse discharge is caused between the tip of the wire 16 and the base material 14 to connect the tip of the wire to the base material 14.
This is applied to the entire coated surface of the base material 14 as the head 11 vibrates.

第8図は筒状電極18に同軸に棒状電極19を挿入し、
両者間にパルス電源20を接続し、ホッパ21に被覆材
を粉末22にして貯蔵し、所要量をホッパから電極18
.19放電間隙に供給し、放電vjJ撃により筒体18
先端から噴射して母材23に衝突溶着させる。
FIG. 8 shows a rod-shaped electrode 19 inserted coaxially into a cylindrical electrode 18,
A pulse power source 20 is connected between the two, and the coating material is stored as a powder 22 in a hopper 21, and the required amount is transferred from the hopper to the electrode 18.
.. 19 to the discharge gap, and the cylinder body 18 is
It is sprayed from the tip and is impact-welded to the base material 23.

粉末22の粒径制御によって面粗さμオーダの被覆層が
容易に得られる。
By controlling the particle size of the powder 22, a coating layer with a surface roughness on the order of μ can be easily obtained.

第9図は被覆材を線径0.05〜0.51+1111稈
度の細線24に形成し、これを電極25間に張架し、衝
撃電流を流して溶断放電し、放電によって微粒子化した
溶解微粒子を母材26に衝突溶着させる。これによって
も表面粗さ数μRll1ax程度の被覆層が容易に得ら
れ、被覆細線24を母材26の形状、例えば円環形に対
応して円形に張架する等により一度に所装形状のは材に
所要の被rIJmを形成することができる。
Figure 9 shows the coating material formed into a thin wire 24 with a wire diameter of 0.05 to 0.51 + 1111 culm, which is stretched between electrodes 25 and subjected to an impact current to melt and discharge. The fine particles are impact-welded to the base material 26. This also makes it easy to obtain a coating layer with a surface roughness of about several μRll1ax, and by stretching the coating thin wire 24 in a circular shape corresponding to the shape of the base material 26, for example, an annular shape, the material can be formed into a predetermined shape at once. The required rIJm can be formed.

以上は放電又はプラズマを利用したマイクロ溶接の例で
あるが、更に被覆材を円板、棒状、線状に形成して、こ
れを母材に接触した状態で回転摺動した間隙にパルス放
電を行なうとか、被覆材の電極と電極を対向した間隙に
放電を行なって、放電によって溶解して周囲に飛散する
微粒子を近傍に配置した母材に衝突溶着させるとか、放
電により被覆処理を排気ガス、不活性ガス中で行ない放
電蒸着による被覆層を形成するとか、反応ガス中て・の
放電によって被f!!層の炭化、窒化、硼化等の処理も
同時に行なって耐摩耗層を形成することも同様に利用で
きる。何れの放電被覆処理に於ても放゛市のパルス条件
の制御、振動、回転条件の制御、移動速度の制御笠を一
定に微細に制御し、1つ1つのデポジットを定量被覆す
ることによってμオーダの凹凸表面の摩擦層を形成する
ことができる。
The above is an example of micro welding using electric discharge or plasma. Furthermore, the coating material is formed into a disk, rod, or wire shape, and pulsed discharge is applied to the gap formed by rotating and sliding the coating material while it is in contact with the base material. Alternatively, an electric discharge may be applied to the gap between opposing electrodes of the coating material, and the fine particles that are dissolved by the discharge and scattered around will be impact-welded to the base material placed nearby. A coating layer is formed by discharge deposition in an inert gas, or a coating layer is formed by discharge in a reactive gas. ! It is also possible to simultaneously perform treatments such as carbonization, nitridation, and boronization of the layer to form a wear-resistant layer. In any discharge coating process, the control of the pulse conditions of the discharge market, the control of the vibration and rotation conditions, and the control of the moving speed are kept constant and finely controlled, and each deposit is coated quantitatively. It is possible to form a friction layer with an uneven surface of an order of magnitude.

例えば、鋼材の振動体及び移動体の接触面に第10図の
装置によりWC材をマイクロ溶接した。母材27はNC
8#Jテーブル28に固定し、被覆材電極29は直径3
mlφの棒状に形成し、これを100FIZの上下振動
と80Orpmの回転を与えるヘッド30に固定支持す
る。この回転撮動する電極29を母材27に接触開離し
、両者間にパルス電源31よりIp=60Δ、ron=
20μs 、 roff =40μsのパルスを加えて
放電を行なわせ、NG装置32によりモータ33.34
を駆動してテーブルを移動速度150 mm/minで
移動しながら、母材21の全面にWC材を被覆した。被
覆層の面粗さは、約8μI、厚さ約20μmに形成した
とき、摩擦係数は約0.2(動摩擦)であり、荷重60
H/ CI2 ’Z−耐摩テストしたとき焼入鋼に比べ
て約10〜50倍以上の耐摩耗性を示した。
For example, a WC material was micro-welded to the contact surfaces of a vibrating body and a movable body made of steel using the apparatus shown in FIG. Base material 27 is NC
8#J Fixed to table 28, covering material electrode 29 has a diameter of 3
It is formed into a rod shape of mlφ, and is fixedly supported by a head 30 that provides vertical vibration of 100 FIZ and rotation of 80 Orpm. This rotating electrode 29 is brought into contact with and released from the base material 27, and a pulse power source 31 is applied between the two to provide Ip=60Δ, ron=
A pulse of 20 μs and roff = 40 μs is applied to cause discharge, and the NG device 32 causes the motor 33.34 to
While driving the table at a moving speed of 150 mm/min, the entire surface of the base material 21 was coated with the WC material. When the surface roughness of the coating layer is approximately 8 μI and the thickness is approximately 20 μm, the friction coefficient is approximately 0.2 (dynamic friction) and the load is 60 μm.
H/CI2'Z-When tested for wear resistance, it showed about 10 to 50 times more wear resistance than hardened steel.

尚、被覆層の表面形状は第11図に示すように、NGテ
ーブル2Bをパルスステップ送りすることにより(イ)
図のように点状に形成でき、連続放(ト)状送りにより
(「1)図のように放射線条に形成することができる。
The surface shape of the coating layer can be determined by feeding the NG table 2B in pulse steps (a) as shown in FIG.
It can be formed into dots as shown in the figure, and by continuous radial feeding (1) it can be formed into radial lines as shown in the figure.

前記第8図及び第9図の実施例による場合は梨地状の表
面層に形成でき、マスクによって4■愚の形状、任意の
表面に形成することができる。又被覆層は良材の全面に
均一に形成することなく、部分的に形成することができ
る。
In the case of the embodiments shown in FIGS. 8 and 9, a satin-like surface layer can be formed, and by using a mask, it can be formed in a square shape and on any desired surface. Moreover, the coating layer can be formed partially, without being uniformly formed over the entire surface of the quality material.

第12図はレーザを利用したマイクロ溶接の実施例で、
母材35上に被覆材粉末36を供給し、これにレーザビ
ームを照射して溶接被覆する。37はレーザ発振器、3
8は照射レンズ、39は支持ヘッド、40送り軸、41
は駆動モータである。送り軸はXY軸に設け、NG装置
により各軸駆i1]モータを制御することにより、レー
ザビーム照射点を移動制御し、レーザ照射点に被覆材を
点溶着し、これをヘッドの移動により母材35の表面に
走Mすることによって被覆層を形成覆る。レーザ発振器
は50W〜500W程度のCO2ガスレーザ、YAGレ
ーザ等を用い、連続的に又は断続パルス的に照射する。
Figure 12 shows an example of micro welding using a laser.
A coating material powder 36 is supplied onto the base material 35 and is irradiated with a laser beam to weld and coat it. 37 is a laser oscillator, 3
8 is an irradiation lens, 39 is a support head, 40 is a feed shaft, 41
is the drive motor. The feed axes are provided on the XY axes, and by controlling each axis drive motor with the NG device, the movement of the laser beam irradiation point is controlled, the coating material is spot-welded at the laser irradiation point, and this is fixed by the movement of the head. A coating layer is formed and covered by running M on the surface of the material 35. The laser oscillator uses a CO2 gas laser, YAG laser, etc. of approximately 50 W to 500 W, and irradiates continuously or in an intermittent pulsed manner.

尚、被覆材は粉末に限らず、ワイヤ状、帯状、薄板状に
して母材表面に供給し、これを点状に又は連続線状に溶
接被覆することができる。又粉末層を予め接着剤で接着
しておき、マイクロ溶接処理後に余分の粉末を除去する
ようにすることができる。
Note that the coating material is not limited to powder, and can be supplied to the surface of the base material in the form of a wire, band, or thin plate, and welded and coated in dots or continuous lines. It is also possible to adhere the powder layer in advance with an adhesive and remove excess powder after the micro-welding process.

〔発明の効果〕〔Effect of the invention〕

以上のように、振動体1、移動体4の一方若しくは両方
の接触摩擦面に耐摩材をマイクロ溶接しで形成した摩擦
層7は凹凸表面粗さが10μRmax以下のμオーダの
均一な凹凸面が容易に形成され、この摩擦層の摩擦υ1
!11によって撮動体1に発生する超音波振動の定在波
若しくは進行波による駆動力を効率良く移動体4に伝達
し高トルクの安定した回転を与えることができる。又、
低速、高トルクが容易に得られ、保持トルクも大きく、
応答性に浸れたモータが容易に得られる。又前記摩擦層
lは炭化物等の耐摩材をマイクロ溶接したものであるか
ら、摩耗が少なく、接触摩擦力の経時変化少なく、常に
より高い電気、機械エネルギ変換効率で安定したモータ
駆動が1!7られる。
As described above, the friction layer 7 formed by micro-welding a wear-resistant material on the contact friction surface of one or both of the vibrating body 1 and the movable body 4 has a uniform uneven surface of μ order with a roughness of 10 μRmax or less. It is easily formed and the friction of this friction layer υ1
! 11, it is possible to efficiently transmit the driving force due to standing waves or traveling waves of ultrasonic vibrations generated in the moving body 1 to the movable body 4, thereby providing stable rotation with high torque. or,
Low speed and high torque can be easily obtained, and holding torque is also large.
A motor with excellent responsiveness can be easily obtained. In addition, since the friction layer 1 is micro-welded with a wear-resistant material such as carbide, there is little wear, little change in contact friction force over time, and stable motor drive with always higher electrical and mechanical energy conversion efficiency. It will be done.

尚、七−夕は回転する場合に限らずリニアモータも利用
でき、定在波方式、進行波方式の任意の移動体駆動を採
用することができる。
Note that the Tanabata is not limited to a rotating case; a linear motor can also be used, and any moving body driving method such as a standing wave method or a traveling wave method can be adopted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の超昌波七−夕の分解図、第2図(まその
一部の展開説明図、第3図はその特性説明図、第4図は
その一部撮動説明図、第5図は本発明の一実施例の分解
図、第6図乃至第10図及び第12図は本発明のマイク
ロ溶接の実施例説明図、第11図はそのマイクロ溶接被
覆面の説明図である。 1・・・・・・・・・撮動体 2・・・・・・・・・電歪素子材料 3・・・・・・・・・振動体突起部 4・・・・・・・・・移動体 5・・・・・・・・・摩擦材 1・・・・・・・・・マイクロ溶接摩擦層第1図 第2図 第3図 第4図 第5図 第6図 第7図 どb 第8図 第12図
Fig. 1 is an exploded view of the conventional Choshoha Tanabata, Fig. 2 is an explanatory view of a part of the main body developed, Fig. 3 is an explanatory view of its characteristics, and Fig. 4 is a photographic explanatory view of a part of it. FIG. 5 is an exploded view of an embodiment of the present invention, FIGS. 6 to 10 and 12 are explanatory diagrams of an embodiment of micro welding of the present invention, and FIG. 11 is an explanatory diagram of the micro welding covered surface. Yes. 1...Moving body 2...Electrostrictive element material 3...Vibrating body protrusion 4... ...Moving body 5...Friction material 1...Micro welding friction layer Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Figure b Figure 8 Figure 12

Claims (1)

【特許請求の範囲】[Claims]  電歪若しくは磁歪素子材料とこれに接着固定した振動
体とからなるステータと、前記振動体に摩擦接触した移
動体と、及び前記電歪若しくは磁歪素子材料を超音波駆
動する制御電源とで構成される超音波モータに於て、前
記振動体と移動体間の接触面の一方若しくは両方に耐摩
耗材を凹凸状にマイクロ溶接した摩擦層を形成したこと
を特徴とする超音波モータ。
A stator comprising an electrostrictive or magnetostrictive element material and a vibrating body adhesively fixed to the stator, a movable body in frictional contact with the vibrating body, and a control power source for ultrasonically driving the electrostrictive or magnetostrictive element material. 1. An ultrasonic motor characterized in that a friction layer is formed on one or both of the contact surfaces between the vibrating body and the movable body by micro-welding a wear-resistant material into an uneven shape.
JP62156113A 1987-06-23 1987-06-23 Supersonic motor Pending JPS641483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62156113A JPS641483A (en) 1987-06-23 1987-06-23 Supersonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62156113A JPS641483A (en) 1987-06-23 1987-06-23 Supersonic motor

Publications (2)

Publication Number Publication Date
JPH011483A true JPH011483A (en) 1989-01-05
JPS641483A JPS641483A (en) 1989-01-05

Family

ID=15620596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62156113A Pending JPS641483A (en) 1987-06-23 1987-06-23 Supersonic motor

Country Status (1)

Country Link
JP (1) JPS641483A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2742011B1 (en) * 1995-11-30 1998-02-20 Sfim Ind ROTOR / STATOR INTERFACE VIBRATION MOTOR WITH SHAPE MEMORY ALLOY

Similar Documents

Publication Publication Date Title
JPS5935743B2 (en) Ultrasonic grinding equipment
JPS5955362A (en) Electric discharge coating device
JPWO2006137453A1 (en) Polishing equipment using ultrasonic vibration
JP5629851B2 (en) Composite plating processing method and processing apparatus
TW200900184A (en) Disklike cutting tool and cutting device
JP2006346848A (en) Ultrasonic wire saw device
JPH011483A (en) ultrasonic motor
JP2007111803A (en) Ultrasonic vibration cutting device
JP2009285798A (en) Grinding method of sapphire substrate
JPH0649241B2 (en) Superposed vibration cutting method
JP2002283216A (en) Magnetic polishing method utilizing ellipse vibration, device therefor and magnetic abrasive grain
JP2005001096A (en) Ultrasonic vibrating table
JPH0120035B2 (en)
JPS63183793A (en) Sliding face for sliding parts
RU2101145C1 (en) Method of electric-spark alloying and device intended for its realization
JP2011167836A (en) Wire saw device and cutting method using the same
RU2126315C1 (en) Apparatus for electric spark alloying
JPS63166977A (en) Electrode for discharge coating
JP2008238398A (en) Manufacturing equipment of lapping machine
JP2003039248A (en) Method of electro-chemical machining, and method for manufacturing hydrodynamic bearing apparatus, and hydrodynamic bearing apparatus manufactured by the manufacturing method
JP2010076085A (en) Wire saw apparatus and cutting method using the same
JP2013123787A (en) Processing device
JPS60155433A (en) Ultrasonic plastics continuous welder
JP7285005B2 (en) Mechanical vibration processing device and mechanical vibration processing method
JPH0192001A (en) Supersonic vibration cutting method and device therefor