JPH0114839B2 - - Google Patents

Info

Publication number
JPH0114839B2
JPH0114839B2 JP57173310A JP17331082A JPH0114839B2 JP H0114839 B2 JPH0114839 B2 JP H0114839B2 JP 57173310 A JP57173310 A JP 57173310A JP 17331082 A JP17331082 A JP 17331082A JP H0114839 B2 JPH0114839 B2 JP H0114839B2
Authority
JP
Japan
Prior art keywords
water
sludge
human waste
biological treatment
treated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57173310A
Other languages
Japanese (ja)
Other versions
JPS5966398A (en
Inventor
Katsuyuki Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP57173310A priority Critical patent/JPS5966398A/en
Publication of JPS5966398A publication Critical patent/JPS5966398A/en
Publication of JPH0114839B2 publication Critical patent/JPH0114839B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はし尿、各種産業廃液などの有機性廃液
の処理方法に関するものである。 従来のし尿処理において最も進歩したプロセス
として評価され実施例が激増しているプロセス
は、例えば、し尿に希釈水(10倍量程度)を添加
して生物学的硝化脱窒処理したのち、処理水を凝
集沈殿、砂過し、さらにオゾン処理、活性炭吸
着後、滅菌処理するという方法である。 このプロセスは現在秀れたプロセスとして評価
されているが、厳しい視点から技術評価すると、
次のような重大欠点を本質的に内在していること
を本発明者は認識するに至つた。 すなわち、 数多くの単位操作を直列的に並べているた
め、プロセスが複雑で維持管理性も悪い。 凝集沈殿又は凝集浮上工程に多量の無機凝集
剤の添加を必要とし、資源多消費型であるほか
難脱水性の凝集沈殿汚泥が発生し、その処理・
処分が難点となると同時に多大の経費を要す
る。また、凝集汚泥の存在はコンポスト製品の
品質を低下させる。 オゾン発生電力に約25KWH/Kg−O3という
多量の電力を必要とし、また活性炭処理に500
〜600円/Kg−し尿という高額の経費を要する。 生物処理工程の反応槽容積の決定には、年間
の最低水温における微生物反応速度を用いて設
計しなければならないので、どうしても生物処
理槽が大きくならざるを得ない。 本発明者は、このような現状に強い疑問を持ち
検討を進め本発明を完成した。本発明の効果は驚
くべきものと言つてもよく、従来の凝集沈殿、砂
過、オゾン処理、活性炭吸着、滅菌処理の各工
程が全く不要になり、しかも処理水質は著しく向
上する。 すなわち本発明は、し尿などの有機性廃液を生
物処理したのち、該処理水を蒸発濃縮しめ、該蒸
発水蒸気の凝縮水を前記有機性廃液の高度処理水
となすとともに、該凝縮水の保有熱によつて前記
生物処理工程内の反応液を加温することを特徴と
する有機性廃液の処理方法である。 以下に、本発明の一実施態様を図面を参照しな
がら説明する。 除渣したし尿(浄化槽汚泥が混入している場合
が多い)1を、これに希釈水を添加することなく
生物学的硝化脱窒素法による生物処理工程2に流
入せしめ、主としてBOD、NH3−Nなどの窒素
成分を充分除去する。生物処理工程2に希釈水を
多量に添加することは水温の低下を招くばかりで
なく蒸発対象水量が増加するので極めて好ましく
ない。 しかして、生物処理工程2から流出する活性汚
泥スラリー3は、遠心濃縮機などを使用する固液
分離工程4において固液分離され、分離汚泥5の
大部分は返送汚泥5′として生物処理工程2にリ
サイクルされる。 一方、余剰活性汚泥6はフイルタプレス、スク
リユープレスなどの汚泥脱水工程7で処理され、
脱水分離水8と、脱水ケーキ9(含水率63〜65
%)に分離される。 生物処理水10はBOD、窒素成分は良好に除
去されているが非生物分解性COD、リン酸、色
度、有機性窒素が多量に残留している。このため
従来プロセスでは生物処理水10に対し凝集沈
殿、砂過、オゾン処理、活性炭処理を行ない
COD、色度、リン酸、有機性窒素を除去してい
るのであるが、本発明はこのような問題点の多い
常套手段は採用しない。 即ち、生物処理水10を蒸発工程11の蒸発缶
11′に供給し、蒸発せしめた水蒸気12を蒸気
圧縮機13にて圧縮昇温させたのち蒸発缶11′
の間接加熱部14に導き、水蒸気の凝縮潜熱を加
熱源として再利用する。 凝縮水15は100℃弱の高温(蒸発缶11′内は
ほぼ常圧)であるので、熱交換器16に流入せし
めて生物処理水10を予熱したのち、さらに生物
処理工程2内の熱交換器17に流入させ、生物処
理槽内スラリーを加温し、冬期において微生物の
活性が弱まるのを防止してから、超高度処理水1
8となる。 超高度処理水18は蒸留水であるので水質は極
めて良好であり、し尿の無希釈処理水として、従
来法では考えられない最高級の水質を示す。 一方、蒸発濃縮液19は、噴霧燃焼など、任意
の焼却処分工程20にて処分される。 さらに、この実施態様には重要概念の一つとし
て、次の点が含まれる。すなわち、し尿1を生物
処理する際に発生する微生物酸化熱(本発明者の
実測によれば、30000〜40000Kcal/Kl−し尿の発
熱量がある)によつて、生物処理槽内液温、した
がつて、生物処理水10の温度が原し尿1の温度
よりも20〜30℃上昇する効果に着目し、微生物酸
化熱によつて温度上昇されたものをさらに予熱し
蒸発濃縮することが重要概念となつている。 以上のようにな実施態様では蒸発工程11とし
て蒸気圧縮蒸発法によるものを採用した場合を説
明したが、多重効用法又は蒸気圧縮法と多重効用
法の併用によるものも効果的である。また、ゴミ
焼却場などの余熱を利用できる場合は、単効用蒸
発缶を使用しても問題はない。 以上のような本発明によれば、次のような重要
効果を得ることができる。 熱エネルギーを合理的に利用し、冬季など低
水温、低気温時でも生物処理槽内を微生物の活
動に好適な高水温に維持できる。 従来プロセスでは望むべくもない最高級の処
理水質が得られると同時に、プロセスも著く簡
略化される。 凝集剤、オゾン発生電力、活性炭、滅菌剤の
すべてが不要になる。 難脱水性汚泥として周知の無機凝集汚泥
(Al(OH)3、又はFe(OH)3を主成分とする)が
全く発生しないので、処理すべき汚泥は余剰生
物汚泥だけですみ、汚泥処理・処分の経費が著
しく節減できる。 脱水ケーキ中に難脱水性無機凝集汚泥が混入
していないので脱水ケーキの発熱量が約4000K
cal/Kg−D.S.と高く、含水率も65%以下にする
ことが容易であるため、燃料的性状に秀れてい
る。従つて、自燃するので重油などの補助燃料
を必要としない。この効果が省エネルギーに大
きく寄与する。 蒸発対象水は、生物処理水でありし尿を直接
蒸発処理するのではないから臭気発生、アンモ
ニア、揮発性有機酸の飛散がなく、しかもし尿
中の高濃度のSS成分による蒸発缶内の目詰ま
り、流動不能現象も起きない。 従来のし尿処理水の塩素イオン濃度は300mg/
程度と高いため、山林・田畑のかんがい用水
にすることは塩類障害のため困難であるが、本
発明の処理水素イオンは0〜1mg/程度であ
るため、容易にかんがい用水に再利用できる。 さらに、し尿を直接蒸発処理すると、し尿中
に存在する硫化物、有機酸のため蒸発缶の腐蝕
の可能性が大きいが、本発明は、生物処理によ
つて硫化物及び有機酸を除去してあるので上記
の問題は解消される。 次に本発明の実施例について記す。 実施例 神奈川県某し尿処理場に搬入されるし尿(浄化
槽汚泥が10%混入)をロータリスクリーンによつ
て除渣したのち、し尿処理量1Kl/日の規模で硝
化液循環型の生物学的硝化脱窒素工程により無希
釈処理した。生物学的硝化脱窒素工程のMLSSは
18000〜20000mg/、滞留日数は7日間とした。
生物処理槽内の水温は微生物酸化熱のため33〜42
℃となつた。 生物処理槽流出スラリーの固液分離には無薬注
型遠心濃縮機(巴工業製品)を使用し、濃縮汚泥
(濃度5〜6%)の大部分を脱窒槽にリサイクル
させ、一部を余剰汚泥として脱水工程に供給し
た。脱水機には全自動フイルタプレスを採用し
た。脱水ケーキの含水率は63〜64%、ケーキ発熱
量は約4000Kcal/Kg−DrySolidであり、流動床焼
却炉で容易に自燃した。 しかして、遠心濃縮分離水を蒸気圧縮蒸発缶に
供給し、濃縮比50倍に濃縮し20/日の濃縮液と
180/日の水蒸気凝縮水(これがし尿の高度処
理水である)を得た。凝縮水(温度100℃)で蒸
発缶供給液(遠心分離水)を予熱したのち、温度
60℃に低下した凝縮水をさらに生物処理槽内に設
置した蛇管式熱交換器に流入させたところ、生物
焼却槽内の液温は冬期(原し尿の温度5〜8℃)
においても39〜42℃に維持できた。一方、凝縮水
によつて生物処理槽を加温しない場合の生物処理
槽内の液温は28〜30℃であつた。 除渣し尿、生物学的硝化脱窒処理水(生物処理
水)および高度処理水(凝縮水)の水質は次表の
とおりであつた。
The present invention relates to a method for treating organic waste liquids such as human waste and various industrial waste liquids. A process that has been evaluated as the most advanced in conventional human waste treatment, and the number of examples of which has been rapidly increasing, is, for example, adding diluted water (approximately 10 times the amount) to human waste, performing biological nitrification and denitrification treatment, and then processing the treated water. This method involves coagulating sedimentation, sand filtration, ozone treatment, activated carbon adsorption, and sterilization. This process is currently being evaluated as an excellent process, but when the technology is evaluated from a strict perspective,
The present inventor has come to realize that the following serious drawbacks are inherently inherent. In other words, because many unit operations are arranged in series, the process is complex and maintenance is poor. The coagulation-sedimentation or coagulation-floating process requires the addition of a large amount of inorganic flocculant, which is resource-intensive and produces coagulation-sedimentation sludge that is difficult to dewater.
Disposal is difficult and requires a great deal of expense. Also, the presence of flocculated sludge reduces the quality of the compost product. A large amount of electricity is required for ozone generation, approximately 25KWH/Kg- O3 , and 500KWH is required for activated carbon treatment.
~600 yen/Kg - requires a high cost of human waste. When determining the reaction tank volume for the biological treatment process, the microbial reaction rate at the annual lowest water temperature must be used in the design, so the biological treatment tank has no choice but to be large. The present inventor had strong doubts about the current situation and proceeded with studies to complete the present invention. The effects of the present invention can be said to be surprising; the conventional steps of coagulation and sedimentation, sand filtration, ozone treatment, activated carbon adsorption, and sterilization are completely unnecessary, and the quality of treated water is significantly improved. That is, the present invention biologically treats organic waste liquid such as human waste, then evaporates and concentrates the treated water, converts the condensed water of the evaporated water vapor into highly treated water of the organic waste liquid, and reduces the heat retained in the condensed water. This is a method for treating an organic waste liquid, characterized in that the reaction liquid in the biological treatment step is heated by a method of heating the reaction liquid in the biological treatment step. An embodiment of the present invention will be described below with reference to the drawings. The removed human waste (often contaminated with septic tank sludge) 1 is passed into the biological treatment process 2 using the biological nitrification and denitrification method without adding dilution water, which mainly produces BOD, NH 3 - Thoroughly remove nitrogen components such as N. Adding a large amount of dilution water to the biological treatment step 2 not only causes a drop in water temperature but also increases the amount of water to be evaporated, which is extremely undesirable. The activated sludge slurry 3 flowing out from the biological treatment process 2 is subjected to solid-liquid separation in a solid-liquid separation process 4 using a centrifugal concentrator, and most of the separated sludge 5 is returned to the biological treatment process 2 as return sludge 5'. will be recycled. On the other hand, the surplus activated sludge 6 is processed in a sludge dewatering process 7 such as a filter press or screw press.
Dehydrated separated water 8 and dehydrated cake 9 (moisture content 63-65
%). In biologically treated water 10, BOD and nitrogen components were successfully removed, but large amounts of non-biodegradable COD, phosphoric acid, chromaticity, and organic nitrogen remained. For this reason, in the conventional process, biologically treated water 10 is subjected to coagulation sedimentation, sand filtration, ozone treatment, and activated carbon treatment.
Although COD, chromaticity, phosphoric acid, and organic nitrogen are removed, the present invention does not employ conventional methods that are fraught with such problems. That is, the biologically treated water 10 is supplied to the evaporator 11' of the evaporation step 11, and the evaporated water vapor 12 is compressed and heated by the vapor compressor 13, and then transferred to the evaporator 11'.
The latent heat of condensation of the water vapor is reused as a heating source. Since the condensed water 15 is at a high temperature of just under 100°C (approximately normal pressure inside the evaporator 11'), it flows into the heat exchanger 16 to preheat the biologically treated water 10, and then undergoes heat exchange in the biological treatment process 2. The slurry in the biological treatment tank is heated to prevent the activity of microorganisms from weakening in the winter, and then the ultra-highly treated water 1
It becomes 8. Since the ultra-highly treated water 18 is distilled water, the water quality is extremely good, and as undiluted treated water of human waste, it exhibits the highest quality water that would be unimaginable with conventional methods. On the other hand, the evaporative concentrate 19 is disposed of in an arbitrary incineration process 20 such as spray combustion. Furthermore, this embodiment includes the following points as one of the important concepts. That is, due to the microbial oxidation heat generated when human waste 1 is biologically treated (according to actual measurements by the inventor, the calorific value of human waste is 30,000 to 40,000 Kcal/Kl), the temperature of the liquid in the biological treatment tank increases. Therefore, we focused on the effect that the temperature of the biologically treated water 10 rises by 20 to 30 degrees Celsius compared to the temperature of the raw human waste 1, and the important concept is to further preheat and evaporate the water whose temperature has been raised by the heat of microbial oxidation. It is becoming. In the embodiments described above, the vapor compression evaporation method is used as the evaporation step 11, but a multiple effect method or a combination of the vapor compression method and the multiple effect method is also effective. Furthermore, if residual heat from a garbage incinerator or the like can be used, there is no problem in using a single-effect evaporator. According to the present invention as described above, the following important effects can be obtained. By using thermal energy rationally, it is possible to maintain the inside of the biological treatment tank at a high water temperature suitable for microbial activity even during low water and air temperatures such as in winter. This method provides the highest quality treated water that could not be achieved using conventional processes, and at the same time, the process is significantly simplified. Flocculants, ozone generating electricity, activated carbon, and sterilizers are all eliminated. Since no inorganic flocculated sludge (mainly composed of Al(OH) 3 or Fe(OH) 3 ), which is well known as sludge that is difficult to dewater, is not generated, the only sludge that needs to be treated is excess biological sludge, and sludge treatment and Disposal costs can be significantly reduced. The calorific value of the dehydrated cake is approximately 4000K because no inorganic flocculated sludge that is difficult to dewater is mixed in the dehydrated cake.
It has excellent fuel properties because it has a high cal/Kg-DS and the water content can be easily reduced to 65% or less. Therefore, since it self-combusts, it does not require auxiliary fuel such as heavy oil. This effect greatly contributes to energy saving. The water to be evaporated is biologically treated water, and human waste is not directly evaporated, so there is no odor, ammonia, or volatile organic acid scattering, and there is no clogging in the evaporator due to the high concentration of SS components in urine. , no flowability phenomenon occurs. The chloride ion concentration of conventional human waste water is 300mg/
However, since the amount of hydrogen ions treated in the present invention is about 0 to 1 mg/1, it is difficult to use water for irrigation in mountains and forests and fields because of the salt damage. Furthermore, if human waste is directly evaporated, there is a high possibility that the evaporator will be corroded due to the sulfides and organic acids present in the human waste, but the present invention removes sulfides and organic acids through biological treatment. Therefore, the above problem is solved. Next, examples of the present invention will be described. Example: Human waste (containing 10% septic tank sludge) delivered to a certain human waste treatment plant in Kanagawa Prefecture is removed using a rotary screen, and then biological nitrification is carried out using nitrifying liquid circulation at a scale of 1 Kl/day of human waste. It was treated without dilution through a denitrification process. MLSS of biological nitrification and denitrification process is
The dose was 18,000 to 20,000 mg/distance and the residence time was 7 days.
The water temperature in the biological treatment tank is 33-42 due to heat of microbial oxidation.
It became ℃. A chemical-free centrifugal concentrator (Tomoe Kogyo products) is used for solid-liquid separation of the slurry flowing out of the biological treatment tank, and most of the thickened sludge (concentration 5-6%) is recycled to the denitrification tank, with some remaining as surplus. It was supplied to the dewatering process as sludge. A fully automatic filter press was used for the dehydrator. The moisture content of the dehydrated cake was 63-64%, the cake calorific value was about 4000 Kcal/Kg-DrySolid, and it easily self-combusted in a fluidized bed incinerator. Then, the centrifugally concentrated separated water is supplied to a vapor compression evaporator and concentrated to a concentration ratio of 50 times, resulting in a concentrated liquid of 20 times a day.
180/day of steam condensed water (this is highly treated human waste water) was obtained. After preheating the evaporator feed liquid (centrifuged water) with condensed water (temperature 100℃), the temperature
When the condensed water, which had dropped to 60℃, was further flowed into a corrugated pipe heat exchanger installed in the biological treatment tank, the liquid temperature in the biological incinerator was found to be the same as in winter (the temperature of raw human waste is 5 to 8℃).
It was also possible to maintain the temperature at 39-42°C. On the other hand, when the biological treatment tank was not heated by condensed water, the liquid temperature in the biological treatment tank was 28 to 30°C. The water quality of the filtered human waste, biologically nitrified and denitrified treated water (biologically treated water), and advancedly treated water (condensed water) was as shown in the table below.

【表】 なお、前記濃縮液は汚泥の流動層焼却炉に噴霧
させ燃焼処分した。
[Table] The concentrated liquid was sprayed into a sludge fluidized bed incinerator and burned.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の一実施態様を示すフローシー
トである。 1…し尿、2…生物処理工程、3…活性汚泥ス
ラリー、4…固液分離工程、5…分離汚泥、5′
…返送汚泥、6…余剰活性汚泥、7…汚泥脱水工
程、8…脱水分離水、9…脱水ケーキ、10…生
物処理水、11…蒸発工程、11′…蒸発缶、1
2…水蒸気、13…蒸気圧縮機、14…間接加熱
部、15…凝縮水、16,17…熱交換器、18
…超高度処理水、19…蒸発濃縮液、20…焼却
処分工程。
The drawing is a flow sheet illustrating one embodiment of the invention. 1... Human waste, 2... Biological treatment process, 3... Activated sludge slurry, 4... Solid-liquid separation process, 5... Separated sludge, 5'
...Return sludge, 6... Surplus activated sludge, 7... Sludge dewatering process, 8... Dehydrated separated water, 9... Dehydrated cake, 10... Biological treatment water, 11... Evaporation process, 11'... Evaporator, 1
2... Steam, 13... Vapor compressor, 14... Indirect heating section, 15... Condensed water, 16, 17... Heat exchanger, 18
...Ultra-highly treated water, 19. Evaporation concentrate, 20. Incineration disposal process.

Claims (1)

【特許請求の範囲】[Claims] 1 し尿などの有機性廃液を生物処理したのち、
該処理水を蒸発濃縮せしめ、該蒸発水蒸気の凝縮
水を前記有機性廃液の高度処理水となすととも
に、該凝縮水の保有熱によつて前記生物処理工程
内の反応液を加温することを特徴とする有機性廃
液の処理方法。
1 After biologically treating organic wastewater such as human waste,
The treated water is evaporated and concentrated, the condensed water of the evaporated water vapor is used as the highly treated water of the organic waste liquid, and the reaction liquid in the biological treatment process is heated by the heat retained in the condensed water. Features of organic waste liquid treatment method.
JP57173310A 1982-10-04 1982-10-04 Treatment of organic waste liquid Granted JPS5966398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57173310A JPS5966398A (en) 1982-10-04 1982-10-04 Treatment of organic waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57173310A JPS5966398A (en) 1982-10-04 1982-10-04 Treatment of organic waste liquid

Publications (2)

Publication Number Publication Date
JPS5966398A JPS5966398A (en) 1984-04-14
JPH0114839B2 true JPH0114839B2 (en) 1989-03-14

Family

ID=15958071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57173310A Granted JPS5966398A (en) 1982-10-04 1982-10-04 Treatment of organic waste liquid

Country Status (1)

Country Link
JP (1) JPS5966398A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104418472A (en) * 2013-09-11 2015-03-18 三菱丽阳株式会社 Treatment device and treatment method of wastewater containing organic matters
CN117509993B (en) * 2024-01-04 2024-04-09 清大国华环境集团股份有限公司 Physical and chemical high-concentration waste liquid treatment process

Also Published As

Publication number Publication date
JPS5966398A (en) 1984-04-14

Similar Documents

Publication Publication Date Title
US5702572A (en) Method for treating exhaust gases and foul water
CN111115933A (en) Flameless torch type ultra-clean discharge process for high-ammonia nitrogen wastewater containing VOCs
JPH0114836B2 (en)
JPH0114839B2 (en)
JPH0135719B2 (en)
CN211972063U (en) Flameless torch device
KR102266988B1 (en) Hybrid waste-water disposal system
JPH0114833B2 (en)
JPS6366593B2 (en)
JPH0114837B2 (en)
JPS5962391A (en) Treatment of organic waste water
JPH0114835B2 (en)
JPH0114838B2 (en)
JPH0114832B2 (en)
JPS58223498A (en) Treatment of organic waste water
KR100332923B1 (en) A treatment method of landfill leachates using landfill gases
JP2001104939A (en) Method for cleaning wastewater
KR100487609B1 (en) A livestock wastewater treatment process combining a distillation under reduced pressure with a biological treatment
CA2114583C (en) Waste activated sludge treatment system
JPH0114840B2 (en)
KR960001397Y1 (en) Waste water treatment apparatus
JP2001252697A (en) Treatment method and apparatus for night soil and/or septic tank sludge
JPS5830399A (en) Treatment of organic sludge
JPH0567358B2 (en)
JPS6121792A (en) Treatment of organic waste water