JPH0114838B2 - - Google Patents

Info

Publication number
JPH0114838B2
JPH0114838B2 JP57160869A JP16086982A JPH0114838B2 JP H0114838 B2 JPH0114838 B2 JP H0114838B2 JP 57160869 A JP57160869 A JP 57160869A JP 16086982 A JP16086982 A JP 16086982A JP H0114838 B2 JPH0114838 B2 JP H0114838B2
Authority
JP
Japan
Prior art keywords
water
evaporation
treatment
activated carbon
human waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57160869A
Other languages
Japanese (ja)
Other versions
JPS5952598A (en
Inventor
Katsuyuki Kataoka
Keigo Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP57160869A priority Critical patent/JPS5952598A/en
Publication of JPS5952598A publication Critical patent/JPS5952598A/en
Publication of JPH0114838B2 publication Critical patent/JPH0114838B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、有機性廃水とくに、し尿のような高
濃度有機性廃水に好適な処理プロセスに関するも
のである。 従来、し尿処理プロセスのなかで最も進歩した
プロセスであると評価されているものは、し尿を
生物学的硝化脱窒素処理したのち活性汚泥を沈殿
池で固液分離し、上澄水を凝集沈殿・砂過し、
さらにオゾン処理、活性炭処理および滅菌処理す
るという方法である。 しかしながら、この従来プロセスは次のような
重大な問題点をかかえている。すなわち、 数多くの単位操作を直列的に並べているた
め、プロセスが複雑で維持管理性が悪い。設置
面積も広くなる。 凝集沈殿(又は浮上)処理に硫酸ばん土など
の凝集剤を多量に必要とし資源多消費型である
ほか、難脱水性の凝集汚泥(Al(OH)3など)
が発生し、その処理・処分が難点となると同時
に多大のエネルギー及び経費を要する。 オゾン発生電力に約20〜30Kwh/Kg・O3とい
う多量の電力を必要とし、又活性炭処理にも
500〜600円/Kl−し尿という高額な経費を要す
る。 廃活性炭の再生にも多量のエネルギーを必要
とする。 本発明は、以上のような従来プロセスの諸欠点
を解決することができる方法を提供するものであ
る。 すなわち本発明は、有機性廃水を、生物処理工
程にて処理したのち、該処理水を蒸発工程にて蒸
発せしめ、該蒸発水蒸気の凝縮水を前記有機性廃
水の高度処理水となすと共に、該高度処理水中の
臭気成分を活性炭吸着処理することを特徴とする
有機性廃水の処理方法である。 以下に、本発明の一実施態様を図面を参照しな
がら、し尿処理を例にとつて説明する。 除渣したし尿1(浄化槽汚泥が混入している場
合が多い)を、これに希釈水を添加することなく
生物学的硝化脱窒素法による生物処理工程2に流
入せしめ、主としてBOD、COD、窒素成分を生
物的に除去する。生物処理工程2としては硝化液
循環型、し尿のステツプ供給型、好気的脱窒素
型、回分処理型など、し尿中のBODを脱窒素菌
の水素供与体として利用できる方法を採用する。 生物処理工程2に従来の如く希釈水を多量(10
倍が通常)に添加することは、水温の低下を招き
微生物の活性が劣化するだけでなく蒸発処理対象
水量が増大するので、非常に好ましくない。 しかして、生物処理工程2から流出する活性汚
泥スラリー3は遠心濃縮機、沈殿槽、浮上分離装
置などの回液分離工程4にて固液分離され、分離
汚泥5の大部分は返送汚泥5′としてリサイクル
される。 一方、余剰活性汚泥6は汚泥脱水工程7にて処
理される。しかして、固液分離工程4から流出す
る生物処理水8はBOD、窒素成分、SSは良好に
除去されているが非生物分解性COD、色度、リ
ン酸、有機性窒素が多量に残留している。このた
め従来プロセスでは、生物処理水8に対し、凝集
沈殿、砂過、オゾン処理および活性炭吸着処理
によつてCOD、色度、リン酸、有機性窒素を除
去しているのである。 しかし本発明は、このような常套手段をやめ
て、全く新しい技術思想を導入する。 すなわち、生物処理水8を熱交換器9にて予熱
したのち、蒸気圧縮法による蒸発工程10(1
0′は蒸発缶)に供給し、蒸発せしめた水蒸気1
1を蒸気圧縮機12にて圧縮昇温させたのち、蒸
発缶10′内の間接加熱部13に導き水蒸気の凝
縮潜熱を蒸発用加熱源として再利用する。 凝縮水14は温度が100℃程度(蒸発缶10′内
の圧力はほぼ常圧)であるので、熱交換器9の高
温熱源として利用されたのち活性炭吸着工程15
を経て超高度処理水16として流出する。 凝縮水14は蒸留水であるので水質は極めて良
好でありSSゼロ、色度ゼロ、リン酸、BOD、
COD、窒素成分は0〜数mg/と、し尿の無希釈
処理水として最高級の水質を示す。 しかしながら、本発明プロセスの実証プラント
運転の結果、次のような問題点が見出された。す
なわち、生物処理水8を蒸発処理する過程で臭気
成分が生成するためか、凝縮水14中に少量の臭
気成分が共存する場合があることが判明した。こ
の臭気成分は、ジメチルサルフアイドなど硫黄系
悪臭物質を主体とするものであつた。 このため、凝縮水14中の悪臭成分を除去する
ための効果的な方法を追求した結果、活性炭によ
り吸着処理する方法が非常に秀れていることが判
つた。活性炭吸着工程に流入する凝縮水中には悪
臭成分以外の共存物質が殆ど含まれていないので
極めて効果的な吸着が行なわれ、活性炭のライフ
も6000〜8000/、carbonと充分長いことが判
明した。 このように本発明の重要ポイントは、有機性廃
水をまず生物処理し、生物処理水という特定の対
象水を例えば蒸気圧縮法による蒸発工程によつて
処理し蒸発水蒸気の凝縮水を得て、この凝縮水と
いう特定の対象水を活性炭吸着することにある。 さらに、この実施態様には重要な概念の一つと
して、次の点が含まれる。すなわち、し尿1を生
物処理する際に発生する微生物酸化反応生成熱
(約40000Kcal/Kl−し尿)によつて生物処理槽内
液温したがつて生物処理水8の温度が、し尿1の
温度よりも20〜30℃上昇するという効果に着目
し、微生物酸化熱によつて温度上昇された生物処
理水8を蒸発処理することが重要ポイントの一つ
である。この結果、蒸発缶10′内の蒸発温度
(通常90〜100℃)にまで加熱するのに必要な熱量
が節減できるという省エネルギー効果がある。 しかして、蒸発濃縮液17(生物処理水が数十
倍に濃縮されたもの)は、噴霧燃焼など任意の焼
却処分工程18にて処分され、発生する熱エネル
ギーは蒸発工程10、蒸気圧縮機12、汚泥脱水
工程7などに有効利用される。 以上のような実施態様では、蒸発工程10は蒸
気圧縮法に基づくものであつたが、多重効用蒸発
法によるものとしてもよく、また多重効用缶から
の発生水蒸気を蒸気圧縮機により圧縮し、これを
上記多重効用缶のうち任意のものに供給するよう
にした蒸発工程とすることもできる。 なお、熱交換器9から流出してくる凝縮水14
は未だ水温が50℃程度であるので、そのまま活性
炭吸着工程15に流入させずに脱水ケーキ7′の
乾燥工程の熱源として利用する方法を採用するこ
とが極めて望ましい。 また、有機性廃水1がし尿のようにアンモニア
性窒素成分を多量に含んでいる場合には、生物処
理工程2を生物学的硝化法又は生物学的硝化脱窒
素法によるものとすることが好ましく、生物処理
工程2がBOD除去機能のみを有するものである
場合には、生物処理水中のアンモニア性窒素が蒸
発水蒸気とともに蒸発し、凝縮水中に多量のアン
モニアが混入してしまう。 以上のような本発明によれば、次のような数多
くの重要効果を得ることができる。 従来プロセスで不可欠となつていた生物処理
液の凝集沈殿、過、オゾン酸化、活性炭吸着
によるCOD・色度の除去工程、滅菌のすべて
の工程が不要になり、しかも従来プロセスより
もはるかに秀れた水質の処理水が得られる。こ
の結果、環境汚染防止上著しい効果があるほ
か、プロセスも簡潔化される。 活性炭吸着の目的は低濃度の臭気成分の吸着
除去だけであり、従来プロセスのように活性炭
でCOD、色度を除去する必要がないので、活
性炭のライフは6000/・carbon以上と極め
て長く、従来プロセスにおけるCOD・色度除
去用活性炭のライフ500〜1000/・carbon
に比べて著しく長い。従つて、活性炭処理コス
トは従来プロセスの1/6以下にすぎない。 凝集剤、オゾン発生電力、滅菌用塩素が不要
となるので、省資源・省エネルギー効果が大き
い。 凝集沈殿処理が不要であるので、凝集沈殿汚
泥が発生せず汚泥処理は余剰活性汚泥だけを処
理すればよい。この結果、汚泥処理コストが軽
減し、汚泥処理施設も節減される。 生物処理工程からの余剰活性汚泥の脱水ケー
キ中に無機物を主体とする凝集沈殿汚泥が混入
していないので、脱水ケーキの発熱量が4000K
cal/Kg・dsと高く燃料的性状に秀れており容易
に自燃するので、重油などの補助燃料を必要と
しない。この効果も大きく省エネルギーに寄与
する。 し尿中には高濃度のアンモニア、有機酸、臭
気成分が極めて多量に含まれているため、本発
明によらずし尿を直接蒸発処理すると、発生水
蒸気および水蒸気の凝縮水中に極めて多量のア
ンモニア、揮発性有機酸および臭気成分が含ま
れるので、本発明の如く水蒸気の凝縮水を高度
処理水となすことは不可能である。しかも、し
尿の蒸発工程で生し尿の臭気よりも強い、耐え
がたい臭気が発生するという問題もある。あま
つさえ、し尿中には10000〜20000mg/という
高濃度のSSが含まれているので、蒸発濃縮に
よつてSS濃度が極度に増加し流動性を失い、
蒸発缶が閉塞してしまうという本質的な問題点
がある。 これに対し本発明では、し尿をまず生物処理
しアンモニア、揮発性有機成分、臭気成分を充
分生物的に除去したのち蒸発処理を行なうの
で、蒸発水蒸気の凝縮水はBOD、COD、窒素、
リン酸、色度成分、SSがいずれもゼロ又は数
mg/と、極めて秀れた水質を示す。また、凝
縮水中の臭気濃度は、し尿の直接蒸発処理の場
合に比べて数千分の1と極めて少ない。さら
に、蒸発対象液のSSは数10〜100mg/と少な
いので、SS濃度の増加による流動性の悪化も
発生しないという重要な効果がある。 従来の無希釈し尿処理水の塩素イオンCl-
度は3000mg/程度と極めて高いので山林散布、
田畑のかんがい用水にすることは塩類障害によ
つて不可能に近かつたが、本発明の処理水の
Cl-イオン濃度は0〜数mg/と極めて微量であ
るため山林散布水、かんがい用水に容易に使用
することができる。 揮発性有機酸を含む液を直接蒸発処理すると
蒸発缶及び蒸気圧縮機などが有機酸によつて腐
蝕する可能性が大きいが、本発明では微生物に
よつて資化されやすい有機酸をあらかじめ生物
処理工程において除去するので、上記のような
トラブルはあり得ない。 次に、本発明の実施例について記す。 実施例 神奈川県藤沢市Hし尿処理場に搬入されるし尿
(浄化槽汚泥が15%混入している)をロータリス
クリーンによつて除渣したのち、し尿処理量1
Kl/日の規模で硝化液循環生物学的脱窒素法によ
り無希釈処理した。無希釈処理した理由は、微生
物酸化熱を利用して液温を上昇させるためと蒸発
工程流入水量を減少して省エネルギー化を図るた
めである。 生物処理工程のMLSSは19000〜22000mg/、
滞留日数は7日間とした。 生物処理槽内の水温はBOD資化菌、硝化菌な
どの微生物の酸化熱によつて夏季は42℃、冬季は
33〜34℃に維持された。生物処理槽流出スラリー
の固液分離には無薬注型遠心濃縮機を使用し、濃
縮汚泥(濃度5〜6%)の大部分を脱窒素槽にリ
サイクルし、余剰活性汚泥はフイルタプレスで脱
水し含水率65〜67%の脱水ケーキを得た。 しかして、遠心濃縮分離水(SS300〜400mg/
)を沈殿槽に流入させてさらにSSを除去し、
SS100mg/以下の上澄水を蒸気圧縮蒸発缶に供
給し濃縮比40倍に濃縮し、25/日の濃縮液と
975/日の水蒸気凝縮水(これがし尿の無希釈
超高度処理水に相当する)を得た。 除渣し尿、生物処理水(蒸発缶流入水)および
凝縮水(高度処理水)の水質は次表のとおりであ
つた。
The present invention relates to a treatment process suitable for organic wastewater, particularly highly concentrated organic wastewater such as human waste. Conventionally, the process that has been evaluated as the most advanced among human waste treatment processes involves biological nitrification and denitrification treatment of human waste, solid-liquid separation of activated sludge in a settling tank, and coagulation and sedimentation of supernatant water. sand filter,
This method further includes ozone treatment, activated carbon treatment, and sterilization treatment. However, this conventional process has the following serious problems. In other words, many unit operations are arranged in series, making the process complex and difficult to maintain. The installation area will also be larger. Coagulation-sedimentation (or flotation) treatment requires a large amount of flocculant such as sulfate clay, which is resource-intensive, and flocculated sludge that is difficult to dewater (Al(OH) 3 , etc.)
is generated, and its treatment and disposal are difficult and require a large amount of energy and expense. A large amount of electricity is required to generate ozone, approximately 20 to 30 Kwh/Kg・O 3 , and it is also necessary to process activated carbon.
It costs 500 to 600 yen/Kl - human waste, which is an expensive expense. Recycling waste activated carbon also requires a large amount of energy. The present invention provides a method that can overcome the various drawbacks of the conventional processes as described above. That is, the present invention treats organic wastewater in a biological treatment process, then evaporates the treated water in an evaporation process, and uses condensed water of the evaporated water vapor as highly treated water of the organic wastewater. This is a method for treating organic wastewater characterized by adsorption treatment of odor components in highly treated water with activated carbon. An embodiment of the present invention will be described below with reference to the drawings, taking human waste treatment as an example. The removed human waste 1 (often contaminated with septic tank sludge) is passed into the biological treatment process 2 using the biological nitrification and denitrification method without adding dilution water, which mainly removes BOD, COD, and nitrogen. Biologically remove components. As biological treatment process 2, a method is adopted in which BOD in human waste can be used as a hydrogen donor for denitrifying bacteria, such as a nitrification liquid circulation type, a step-supply type of human waste, an aerobic denitrification type, and a batch treatment type. In biological treatment step 2, a large amount of dilution water (10
It is extremely undesirable to add more than twice the normal amount of water, as this not only lowers the water temperature and deteriorates the activity of microorganisms, but also increases the amount of water to be evaporated. The activated sludge slurry 3 flowing out from the biological treatment process 2 is subjected to solid-liquid separation in a return liquid separation process 4 such as a centrifugal thickener, settling tank, flotation separator, etc., and most of the separated sludge 5 is returned to the sludge 5'. recycled as On the other hand, the surplus activated sludge 6 is processed in a sludge dewatering step 7. However, although BOD, nitrogen components, and SS have been successfully removed from the biologically treated water 8 flowing out from the solid-liquid separation process 4, large amounts of non-biodegradable COD, chromaticity, phosphoric acid, and organic nitrogen remain. ing. Therefore, in the conventional process, COD, chromaticity, phosphoric acid, and organic nitrogen are removed from the biologically treated water 8 through coagulation sedimentation, sand filtration, ozone treatment, and activated carbon adsorption treatment. However, the present invention abandons such conventional means and introduces a completely new technical idea. That is, after preheating the biologically treated water 8 in a heat exchanger 9, it is subjected to an evaporation step 10 (1) using a vapor compression method.
0' is the water vapor 1 supplied to the evaporator) and evaporated.
1 is compressed and heated in a vapor compressor 12, and then guided to an indirect heating section 13 in an evaporator 10', where the latent heat of condensation of the steam is reused as a heat source for evaporation. Since the temperature of the condensed water 14 is approximately 100°C (the pressure inside the evaporator 10' is approximately normal pressure), it is used as a high-temperature heat source for the heat exchanger 9 and then subjected to the activated carbon adsorption step 15.
The water flows out as ultra-highly treated water 16. Since the condensed water 14 is distilled water, the water quality is extremely good, with zero SS, zero color, phosphoric acid, BOD,
The COD and nitrogen content ranges from 0 to several mg/d, indicating the highest quality of undiluted human waste treated water. However, as a result of the demonstration plant operation of the process of the present invention, the following problems were found. That is, it has been found that a small amount of odor components may coexist in the condensed water 14, probably because the odor components are generated during the process of evaporating the biologically treated water 8. This odor component was mainly composed of sulfur-based malodorous substances such as dimethyl sulfide. Therefore, as a result of searching for an effective method for removing malodorous components from the condensed water 14, it was found that a method of adsorption treatment using activated carbon is extremely superior. Since the condensed water flowing into the activated carbon adsorption process contains almost no coexisting substances other than malodorous components, extremely effective adsorption is achieved, and the activated carbon has a sufficiently long life of 6000 to 8000/carbon. As described above, the important point of the present invention is that organic wastewater is first subjected to biological treatment, and a specific target water called biologically treated water is treated by an evaporation process using, for example, the vapor compression method to obtain condensed water of evaporated water vapor. The purpose is to adsorb a specific target water called condensed water using activated carbon. Furthermore, this embodiment includes the following points as one of the important concepts. That is, the temperature of the liquid in the biological treatment tank due to the heat produced by the microbial oxidation reaction (approximately 40,000 Kcal/Kl - human waste) generated when human waste 1 is biologically treated, and therefore the temperature of biologically treated water 8 becomes lower than the temperature of human waste 1. One of the important points is to evaporate the biologically treated water 8 whose temperature has been raised by the heat of microbial oxidation, focusing on the effect that the water temperature increases by 20 to 30°C. As a result, there is an energy-saving effect in that the amount of heat required to heat the inside of the evaporator 10' to the evaporation temperature (usually 90 to 100° C.) can be reduced. The evaporative concentrate 17 (biologically treated water concentrated several tens of times) is disposed of in an arbitrary incineration process 18 such as spray combustion, and the generated thermal energy is transferred to the evaporation process 10 and the vapor compressor 12. , sludge dewatering process 7, etc. In the embodiments described above, the evaporation step 10 is based on a vapor compression method, but it may also be based on a multiple effect evaporation method, and the steam generated from the multiple effect can is compressed by a vapor compressor. The evaporation process may be such that it is supplied to any one of the multi-effect cans. Note that condensed water 14 flowing out from the heat exchanger 9
Since the water temperature is still around 50° C., it is highly desirable to adopt a method of not allowing the water to directly flow into the activated carbon adsorption step 15 but instead using it as a heat source for the drying step of the dehydrated cake 7'. In addition, when the organic wastewater 1 contains a large amount of ammonia nitrogen components such as human waste, it is preferable that the biological treatment step 2 is a biological nitrification method or a biological nitrification denitrification method. If the biological treatment step 2 has only a BOD removal function, ammonia nitrogen in the biologically treated water will evaporate together with the evaporated water vapor, and a large amount of ammonia will be mixed into the condensed water. According to the present invention as described above, many important effects such as those described below can be obtained. All of the steps that were essential in conventional processes, such as coagulation sedimentation of biological treatment liquid, filtration, ozone oxidation, COD/chromaticity removal through activated carbon adsorption, and sterilization, are no longer necessary, and are far superior to conventional processes. Treated water with high quality can be obtained. As a result, it not only has a significant effect on preventing environmental pollution, but also simplifies the process. The purpose of activated carbon adsorption is only to adsorb and remove low concentrations of odor components, and there is no need to remove COD and chromaticity with activated carbon as in the conventional process.The life of activated carbon is extremely long at over 6000/・carbon. Life of activated carbon for COD and color removal in process: 500 to 1000/・carbon
significantly longer than . Therefore, the cost of activated carbon treatment is less than 1/6 of the conventional process. Since there is no need for flocculants, ozone generation electricity, or chlorine for sterilization, there is a significant resource and energy saving effect. Since coagulation and sedimentation treatment is not necessary, no flocculation and sedimentation sludge is generated and only excess activated sludge needs to be treated. As a result, sludge treatment costs are reduced and sludge treatment facilities are also saved. The calorific value of the dehydrated cake is 4000K because the dehydrated cake of surplus activated sludge from the biological treatment process does not contain coagulated sedimentation sludge mainly composed of inorganic substances.
It has excellent fuel properties with a high cal/kg/ds and easily self-combustes, so it does not require auxiliary fuel such as heavy oil. This effect also greatly contributes to energy saving. Since human waste contains extremely large amounts of highly concentrated ammonia, organic acids, and odor components, direct evaporation treatment of human waste according to the present invention results in extremely large amounts of ammonia and volatile components in the generated water vapor and water vapor condensation. Since the water contains organic acids and odor components, it is impossible to use water vapor condensate as highly treated water as in the present invention. Moreover, there is a problem in that the evaporation process of human waste generates an intolerable odor that is stronger than the odor of raw human waste. Since human waste contains a high concentration of SS of 10,000 to 20,000 mg/, the concentration of SS increases extremely due to evaporation and concentration, resulting in loss of fluidity.
There is an essential problem that the evaporator gets clogged. In contrast, in the present invention, the human waste is first biologically treated to remove ammonia, volatile organic components, and odor components sufficiently before being evaporated, so that the condensed water of evaporated water vapor contains BOD, COD, nitrogen,
Phosphoric acid, chromaticity component, SS are all zero or several
mg/, indicating extremely excellent water quality. Furthermore, the odor concentration in the condensed water is extremely low, several thousand times lower than in the case of direct evaporation treatment of human waste. Furthermore, since the SS content of the liquid to be evaporated is as small as several 10 to 100 mg/ml, there is an important effect that fluidity does not deteriorate due to an increase in the SS concentration. The chloride ion Cl - concentration of conventional undiluted human waste treatment water is extremely high at around 3000mg/, so it is not recommended for forest spraying.
It was almost impossible to use the water for irrigation in fields due to salt damage, but the water treated by the present invention can be used for irrigation.
Since the Cl - ion concentration is extremely small, ranging from 0 to several mg/, it can be easily used for forest spray water and irrigation water. If a liquid containing a volatile organic acid is directly evaporated, there is a high possibility that the evaporator, vapor compressor, etc. will be corroded by the organic acid, but in the present invention, the organic acid that is easily assimilated by microorganisms is biologically treated in advance. Since it is removed during the process, troubles such as those described above cannot occur. Next, examples of the present invention will be described. Example: Human waste (containing 15% septic tank sludge) transported to the H human waste treatment plant in Fujisawa City, Kanagawa Prefecture is removed using a rotary screen, and the amount of human waste processed is 1
No-dilution treatment was carried out using nitrified fluid circulation biological denitrification method at a scale of Kl/day. The reason for non-dilution treatment is to raise the liquid temperature by utilizing the heat of microbial oxidation and to save energy by reducing the amount of water flowing into the evaporation process. MLSS of biological treatment process is 19000~22000mg/,
The length of stay was 7 days. The water temperature in the biological treatment tank is 42℃ in summer and 42℃ in winter due to the oxidation heat of microorganisms such as BOD assimilating bacteria and nitrifying bacteria.
It was maintained at 33-34°C. A chemical-free centrifugal concentrator is used for solid-liquid separation of the biological treatment tank effluent slurry, and most of the thickened sludge (concentration 5-6%) is recycled to the denitrification tank, and excess activated sludge is dehydrated using a filter press. A dehydrated cake with a moisture content of 65-67% was obtained. However, centrifugal concentrated separated water (SS300~400mg/
) into the sedimentation tank to further remove SS.
Supernatant water of less than 100 mg SS is supplied to a vapor compression evaporator and concentrated to a concentration ratio of 40 times, resulting in a concentrated liquid of 25 mg/day.
975/day of steam condensed water (corresponding to undiluted ultra-highly treated human waste water) was obtained. The water quality of the filtered human waste, biologically treated water (evaporator inflow water), and condensed water (highly treated water) was as shown in the table below.

【表】【table】

【表】 *6段階強度表示法による
この凝縮水を活性炭吸着塔(ツルミコールGL
−30を使用し、SV1.0で流通させた)に導入し、
凝縮水中の臭気成分を除去した。活性炭流出水の
水質についてはSS、色度、Cl-、PO4はいずれも
ゼロ、CODは0〜1mg/、BODは0〜2mg/、
T−Nは1〜3mg/、臭気強度はゼロであつた。 活性炭の悪臭成分除去容量は極めて大きく、
6000/・carbonを通水しても活性炭処理水の
臭気強度はゼロであつた。なお、蒸発缶濃縮液は
噴霧燃焼炉で焼却処分した。
[Table] *6-stage intensity display method This condensed water is collected using an activated carbon adsorption tower (Tsurumicol GL).
−30 and distributed with SV1.0),
Odor components in condensed water were removed. Regarding the water quality of activated carbon effluent, SS, chromaticity, Cl - , and PO 4 are all zero, COD is 0 to 1 mg/, BOD is 0 to 2 mg/,
TN was 1-3 mg/, and the odor intensity was zero. Activated carbon has an extremely large ability to remove malodor components.
Even when 6000/·carbon was passed through the water, the odor intensity of the activated carbon-treated water was zero. The evaporator concentrate was incinerated in a spray combustion furnace.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の実施態様を示すフローシート
である。 1…し尿、2…生物処理工程、3…活性汚泥ス
ラリー、4…固液分離工程、5…分離汚泥、5′
…返送汚泥、6…余剰活性汚泥、7…汚泥脱水工
程、7′…脱水ケーキ、8…生物処理水、9…熱
交換器、10…蒸発工程、10′…蒸発缶、11
…水蒸気、12…蒸気圧縮機、13…間接加熱
部、14…凝縮水、15…活性炭吸着工程、16
…超高度処理水、17…蒸発濃縮液、18…焼却
処分工程。
The drawings are flow sheets illustrating embodiments of the invention. 1... Human waste, 2... Biological treatment process, 3... Activated sludge slurry, 4... Solid-liquid separation process, 5... Separated sludge, 5'
...Return sludge, 6... Surplus activated sludge, 7... Sludge dewatering process, 7'... Dehydrated cake, 8... Biological treatment water, 9... Heat exchanger, 10... Evaporation process, 10'... Evaporator, 11
...Steam, 12...Vapor compressor, 13...Indirect heating section, 14...Condensed water, 15...Activated carbon adsorption step, 16
...Ultra-highly treated water, 17. Evaporation concentrate, 18. Incineration disposal process.

Claims (1)

【特許請求の範囲】 1 有機性廃水を生物処理工程にて処理したの
ち、該処理水を蒸発工程にて処理し、該蒸発水蒸
気の凝縮水を活性炭吸着処理することを特徴とす
る有機性廃水の処理方法。 2 前記蒸発工程が、蒸気圧縮法によるものであ
る特許請求の範囲第1項記載の方法。 3 前記蒸発工程が、多重効用蒸発法によるもの
である特許請求の範囲第1項記載の方法。 4 前記蒸発工程が、蒸気圧縮法による蒸発工程
と多重効用蒸発法による蒸発工程とを組み合わせ
たものであつて、多重効用缶にて発生する水蒸気
の少なくとも一部を圧縮機により圧縮し、該昇圧
水蒸気を前記多重効用缶のいずれか少なくとも一
つに供給するようにしたものである特許請求の範
囲第1項記載の方法。 5 前記有機性廃水がアンモニア性窒素を含有す
るものであり、前記生物処理工程が生物学的硝化
法によるものである特許請求の範囲第2項、第3
項又は第4項記載の方法。 6 前記有機性廃水がアンモニア性窒素を含有す
るものであり、前記生物処理工程が生物学的硝化
脱窒素法によるものである特許請求の範囲第2
項、第3項又は第4項記載の方法。
[Claims] 1. Organic wastewater characterized by treating the organic wastewater in a biological treatment process, then treating the treated water in an evaporation process, and subjecting the condensed water of the evaporated steam to activated carbon adsorption treatment. processing method. 2. The method according to claim 1, wherein the evaporation step is based on a vapor compression method. 3. The method of claim 1, wherein the evaporation step is by a multiple effect evaporation method. 4. The evaporation step is a combination of an evaporation step using a vapor compression method and an evaporation step using a multiple effect evaporation method, in which at least a part of the water vapor generated in the multiple effect tank is compressed by a compressor, and the pressure is increased. 2. The method according to claim 1, wherein water vapor is supplied to at least one of said multiple effect cans. 5. Claims 2 and 3, wherein the organic wastewater contains ammonia nitrogen, and the biological treatment step is based on a biological nitrification method.
or the method described in paragraph 4. 6. Claim 2, wherein the organic wastewater contains ammonia nitrogen, and the biological treatment process is based on a biological nitrification and denitrification method.
3. The method described in Section 3, Section 3, or Section 4.
JP57160869A 1982-09-17 1982-09-17 Treatment of organic waste water Granted JPS5952598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57160869A JPS5952598A (en) 1982-09-17 1982-09-17 Treatment of organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57160869A JPS5952598A (en) 1982-09-17 1982-09-17 Treatment of organic waste water

Publications (2)

Publication Number Publication Date
JPS5952598A JPS5952598A (en) 1984-03-27
JPH0114838B2 true JPH0114838B2 (en) 1989-03-14

Family

ID=15724124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57160869A Granted JPS5952598A (en) 1982-09-17 1982-09-17 Treatment of organic waste water

Country Status (1)

Country Link
JP (1) JPS5952598A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108726776B (en) * 2018-06-08 2021-03-23 江苏涞森环保设备有限公司 Wind turbine wastewater treatment device

Also Published As

Publication number Publication date
JPS5952598A (en) 1984-03-27

Similar Documents

Publication Publication Date Title
CN102976543A (en) Garbage leachate disposal method and system
CN203173935U (en) Rubbish leach liquor processing system
JPS59392A (en) Treatment of organic waste liquor
JPH03131394A (en) Combined treatment method of refuse and raw sewage
JPH0124558B2 (en)
JPH0114838B2 (en)
JPH0135720B2 (en)
JPS6366593B2 (en)
JPH0135719B2 (en)
JPS6320600B2 (en)
JPS58210900A (en) Treatment of organic waste liquid
JPH0114832B2 (en)
JPS5919598A (en) Treatment of organic liquid waste
JPH0114839B2 (en)
KR100487609B1 (en) A livestock wastewater treatment process combining a distillation under reduced pressure with a biological treatment
JPH0114835B2 (en)
JPH0114834B2 (en)
JPS5962391A (en) Treatment of organic waste water
JP3672175B2 (en) Organic wastewater treatment method and treatment apparatus
CN116375244A (en) Treatment process of high-salt wastewater containing methylene dichloride
JPS63214389A (en) Treatment of organic sewage
JPH0114840B2 (en)
JPS5827700A (en) Treatment of sewage sludge
JPH0123600Y2 (en)
Maeda Re-use of treated laboratory effluents by a treatment system incorporating the'sirotherm'desalination process