JPH0114834B2 - - Google Patents

Info

Publication number
JPH0114834B2
JPH0114834B2 JP57106707A JP10670782A JPH0114834B2 JP H0114834 B2 JPH0114834 B2 JP H0114834B2 JP 57106707 A JP57106707 A JP 57106707A JP 10670782 A JP10670782 A JP 10670782A JP H0114834 B2 JPH0114834 B2 JP H0114834B2
Authority
JP
Japan
Prior art keywords
water
treatment
incineration
biological
human waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57106707A
Other languages
Japanese (ja)
Other versions
JPS58223498A (en
Inventor
Katsuyuki Kataoka
Takayuki Suzuki
Keigo Watanabe
Ryozo Kojima
Taisuke Tooya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP57106707A priority Critical patent/JPS58223498A/en
Publication of JPS58223498A publication Critical patent/JPS58223498A/en
Publication of JPH0114834B2 publication Critical patent/JPH0114834B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、し尿系汚水、下水その他の有機性廃
水の処理方法に関するものである。 〔従来技術〕 従来のし尿系汚水処理において最も進歩したプ
ロセスとして評価され、実施例が近年急増してい
るプロセスは、し尿に希釈水を添加して生物学的
硝化脱窒素処理したのち活性汚泥を沈殿池で固液
分離し、上澄水を凝集沈殿、砂過し、さらにオ
ゾン処理、活性炭処理するという方法である。 このプロセスは、一見かなり妥当なプロセスに
みえ、秀れた方式として評価されやすいが、厳し
い視点から技術評価すると、次のような重大な問
題点を本質的に内在していることを本発明者は認
識するに至つた。 すなわち、 数多くの単位操作を直列的に並べているた
め、プロセスが複雑で維持管理性も悪い。 凝集沈殿又は凝集浮上工程に多量の凝集剤の
添加を必要とし資源消費型であるほか、難脱水
性の凝集沈殿汚泥が発生し、その処理・処分が
難点となると同時に処理・処分に多大の経費を
要する。 オゾン処理のためのオゾン発生電力に約20〜
300KWH/Kg・オゾンという多量の電力を必要
とし、又活性炭処理に500〜600円/Kg・活性炭
という高価な活性炭を使用するので、活性炭処
理コストが多大になる。 活性炭の使いすてをやめるためには廃活性炭
の再生を必要とするが、再生には多量の熱エネ
ルギーを使用することになり、結局のところ省
エネルギー的でない。 本発明者は、以上のような問題点を内在する従
来プロセスの技術レベルに強い凝問をもち、検討
を進め本発明を完成した。 〔発明の目的〕 すなわち本発明は、従来方法の上記問題点を極
めて合理的に解決しうる有機性廃水の処理方法を
提供することを目的とするものである。 〔発明の構成〕 本発明は、有機性廃水を消化処理することな
く、生物学的硝化反応が遂行される生物処理工程
で生物処理し、該生物処理水を蒸発濃縮工程にて
濃縮処理したのち、該濃縮液を焼却工程を含む後
処理工程により処理することを特徴とする有機性
廃水の処理方法である。 本発明プロセスの効果は驚くべきものと言つて
よく、従来プロセスの凝集沈殿・砂過・オゾン
処理、活性炭吸着の各工程が全く不要になり、し
かも処理水質は従来プロセスより著しく秀れてお
り、維持管理費も節減される。 以下に、本発明の一実施態様を図面を参照しな
がら説明する。 除渣したし尿(浄化槽汚泥が混入している場合
が多い)1を、これに希釈水を添加することなく
生物学的硝化脱窒素法による生物処理工程2に流
入せしめ主としてBOD、アンモニアなどの窒素
成分を充分除去する。生物処理工程2としては、
し尿1中のBOD成分を脱窒素菌のための水素供
与体として利用する硝化液循環型、し尿のステツ
プ的流入型、好気性脱窒型、回分処理型などを採
用する。生物処理工程2に希釈水を多量に添加す
ることは、水温の低下を招くばかりでなく蒸発対
象水量が増加するので好ましくない。 し尿を謙気性消化もしくは好気性消化処理して
から生物学的硝化脱窒素処理すると、消化処理工
程においてBODが除去されるため、脱窒素菌の
ための有機炭素源が不足し、外部からメタノー
ル、エタノール、酢酸などの高価な有機炭素源を
添加しなくてはならず極めて不合理な結果をもた
らすので本発明では、し尿をこのような消化処理
をすることなく、直接生物学的硝化脱窒素処理す
る。 しかして、生物処理槽2′から流出する活性汚
泥スラリー3は遠心濃縮機などを使用する固液分
離工程4において固液分離され、分離汚泥5の大
部分は返送汚泥5′として生物処理槽2′にリサイ
クルされる。一方、余剰(活性)汚泥6はフイル
タプレス、スクリユープレスなどの機械脱水工程
7によつて脱水され、脱水分離水7′と含水率60
〜65%前後の脱水ケーキ8となる。 しかして、固液分離工程4にて分離された生物
処理水9はBOD、アンモニア窒素成分、SSは良
好に除去されているが非生物分解性COD、色度、
リン酸、有機性窒素が多量に残留している。この
ため従来プロセスでは生物処理水9に対し凝集沈
殿、砂過、オゾン処理、活性炭処理を行ない
COD、色度、リン酸、有機性窒素を除去してい
るのであるが、本発明では、このような常套手段
を廃し、生物処理水9を蒸気圧縮法及び/又は多
重効用法による間接加熱式蒸発濃縮工程10にて
濃縮し、発生する水蒸気の凝縮水を生物処理水9
の高度処理水とするか、または硝化された生物処
理水を焼却炉の排熱によつて蒸発濃縮せしめると
いう新しい方法を導入する。 すなわち、蒸気圧縮法による蒸発濃縮法につい
て図示例で説明すれば、生物処理水9を予熱した
のち、常圧条件下にある蒸発缶10′内に供給し、
蒸発した水蒸気11を蒸気圧縮機12にて圧縮昇
温させたのち、蒸発缶10′内の間接加熱部13
に導き、水蒸気の凝集潜熱を蒸発用加熱源として
再利用する。 間接加熱部13において水蒸気は凝集水14と
なるが、この凝集水14は温度が100℃程度で多
量の熱量をもつているので、熱交換器15におい
て、生物処理水9の予熱に利用したのち、処理水
14′となつて放流される。処理水14′は蒸留水
とほぼ同等であり無色透明、COD・BOD・リン
酸・窒素が極めて少なく(0〜1mg/程度)、し
尿処理水として最高級の水質を示す。 また、この実施態様には重要な概念の一つとし
て次の点が含まれる。すなわち、し尿1を生物処
理する際に発生する微生物酸化反応生成熱
(30000〜40000Kcal/Kl・し尿の発熱量がある)
によつて生物処理槽内液温、したがつて生物処理
水9の温度が、原し尿1の温度よりも20〜30℃上
昇するという効果に着目し、微生物酸化熱によつ
て温度上昇された生物処理水9を蒸発濃縮処理す
ることが重要ポイントの一つである。 この結果、蒸発缶10′内の蒸発温度(通常100
℃)にまで加熱するのに必要な熱量が節減できる
という極めて重要な効果が得られる。 しかして、蒸発缶10′内で蒸発濃縮された濃
縮液16(生物処理水9が数十倍に濃縮されたも
の)は、別個の蒸発乾燥工程17(ドラムドライ
ヤーが好適である)にて蒸発乾固され、乾固物1
8(組成はBOD成分、NaClなどの塩類)は焼却
工程19において焼却される。蒸発濃縮液は高濃
度のBOD成分および色度成分を含有しているの
で、焼却処分することが本発明において不可欠な
工程である。すなわち、蒸発濃縮液から単に塩分
のみを析出させても高濃度のCOD、色度成分が
また残留しているので、蒸発濃縮液のまゝ、ある
いはこれを単に乾燥後処分すると、処分地におい
てCOD、色度の溶出などの2次公害を招くので、
本発明の如く焼却せしめて、COD、色度成分を
熱的に完全に分解することが必須要件である。 一方、し渣8′と脱水ケーキ8は排熱ボイラー
付の流動床焼却炉などを適用する上記焼却工程1
9で自然焼却され、回収熱エネルギー20は蒸発
濃縮工程10及び/又は蒸発乾燥工程17に供給
され有効利用される。21は焼却残渣である。上
記蒸発濃縮工程10及び蒸発乾燥工程17のスタ
ートアツプに当たつては系外から供給される水蒸
気26又は焼却工程19からの水蒸気26′が使
用される。 なお、本発明においては「焼却」という術語
は、熱分解処理も焼却処理の範ちゆうに入るもの
として使用している。また、ゴミ焼却場がし尿処
理場に隣接設置又は併設されている場合は、ゴミ
焼却工程から発生する余剰熱を蒸発濃縮工程10
および/又は蒸発乾燥工程17に給することが極
めて望ましい。余剰熱からタービンなどで電力を
発生させて蒸気圧縮機12の駆動電力に利用する
方法も推奨できる。 本発明において濃縮液16の蒸発乾燥工程17
として特に推奨できる方法は次のものである。す
なわち、濃縮液16を余熱したのち常圧条件下に
ある密閉型間接加熱式蒸発乾燥器、例えば図示例
のように密閉型ドラムドライヤー22に供給し、
回転ドラムの表面に濃縮液16をフイルム状に付
着させ、ドラム内部に供給されたスチームによつ
てフイルム状液を蒸発乾固させて、乾固物18を
スクレーパーによつてドラム表面からかき取つて
ホツパーから槽外に排出させる。一方、フイルム
状液膜から蒸発した水蒸気23を蒸気圧縮機24
にて圧縮昇温させたのちドラム内にリサイクルさ
せ、蒸発乾燥用加熱源として再利用するという方
法である。この場合ドラムドライヤー22内部で
凝縮した凝縮水25の水質も極めて良好であるの
で、処理水14′に合流される。 以上のように本発明の一実施態様では蒸気圧縮
法を採用した場合について説明したが、蒸発濃縮
工程10および蒸発乾燥工程17に多重効用蒸発
法または多重効用蒸発法と蒸気圧縮法の併用法を
採用してもよいことは云うまでもない。 蒸発乾燥工程17は、いかなるタイプでよく、
また濃縮液16の供給方法としては、図示例では
回転ドラムが浸漬されている汚泥貯留部22′に
供給されるが、回転ドラムの表面に直接噴霧もし
くは流下させる方法でもよい。また、濃縮液16
は蒸発乾燥工程17で処理せず直接焼却工程19
により噴霧焼却してもよい。 さらに、熱交換器15から流出してくる凝縮水
(し尿の高度処理水)14は、未だ水温が50℃程
度であり多大の保有熱量をもつているので、その
まま放流せずに脱水ケーキ8の通気乾燥工程(図
示せず)の空気加熱源として利用する方法を採用
することによつて、焼却工程19からの回収熱エ
ネルギー20を増加させることができる。 処理水14′を任意のポリツシング工程(例え
ばイオン交換、吸着、化学酸化処理、限外過膜
処理など)にてさらに超高度処理を行なうことは
随意である。また、上記図示例では蒸発濃縮工程
10蒸発乾燥工程17を共に常圧条件下で行なう
ようにしたが、このようにすると、し尿1の生物
処理水9が100℃程度の加熱工程を経由した凝縮
水が処理水14′となるので、これには大腸菌群
などの細菌が全く残存しなくなる。従つて、特別
の滅菌工程が不要になる。 なお、上記両工程のうち少なくとも一方を常圧
条件下でなく、減圧下で行なつたり、生物処理工
程2を生物学的硝化工程もしくは生物学的脱窒素
工程としもよい。 〔発明の効果〕 以上のような本発明によれば、次のような数多
くの重要効果が得られる。 従来プロセスで不可欠となつていた生物処理
液の凝集沈殿(浮上)・過・オゾン酸化・活
性炭吸着のすべての工程が不要になり、しか
も、従来プロセスよりもはるかに秀れた水質の
処理水が得られる。 従つて、環境汚染防止上著しい効果があるほ
か、プロセスも簡潔化される。 凝集剤、オゾン発生電力、活性炭の補給、活
性炭の再生用エネルギーのすべてが不要とな
り、大きな省資源・省エネルギーが達成され
る。 凝集沈殿(又は浮上)汚泥が発生しないの
で、処理すべき汚泥は余剰生物汚泥だけです
み、処理・処分の経費が大幅に節減できる。 脱水ケーキ中に凝集沈殿(浮上)汚泥などの
無機水酸化物(Al(OH)3、Fe(OH)3など)が
混入していないので、脱水ケーキの発熱量が
4000〜4500Kcal/Kg・乾燥物と高く燃料的性状
に秀れており、容易に自燃するので、重油など
の補助燃料を必要としない。この点が省エネル
ギー効果に大きく寄与する。 し尿中には高濃度のアンモニア、有機酸、臭
気成分が含まれているため、本発明によらず、
し尿を直接蒸発処理すると発生水蒸気および水
蒸気の凝縮水中に多量のアンモニア、揮発性有
機酸および臭気成分が含まれるので、到底水蒸
気の凝縮水をし尿の処理水として放流すること
はできない。しかも、し尿中には10000〜20000
ml/という高濃度のSSが含まれているので、
通常の蒸発操作では水分蒸発によつてSS濃度
が増加し、また粘性が極度に増加し蒸発缶が閉
塞するので、重油などの油を予めし尿に混合
し、水分蒸発によつても流動性が失なわれない
ようにする方法が従来採用されている。 これに対し本発明では、し尿をまず生物処理
しアンモニア、揮発性有機成分、臭気成分を充
分除去したのち活性汚泥など微生物を固液分離
し、この分離水に対し蒸気圧縮法などによる蒸
発処理を行なうので、蒸発水蒸気およびこれの
凝縮水中にBOD、COD、窒素、リン酸、色度
成分、臭気成分がほとんど全く存在しない極め
て清澄な蒸留水なみの水質が得られる。また、
蒸発缶からの臭気成分のリークもないし、蒸発
対象液にSSが殆ど無いので、従来のような油
を添加して流動媒体にするという面倒な操作を
必要とせずに容易に蒸発濃縮できるという重要
な利点がある。 従来のし尿処理水の塩素イオン濃度は300〜
3000mg/と高いため山林、田畑のかんがい用
水にすることは困難であつたが、本発明の処理
水は蒸留水に近いため塩素イオン濃度は数ppm
程度にすぎない。したがつて、かんがい用水に
容易に使用することができる。 さらに、し尿を直接蒸発処理すると、し尿中
に存在する硫化物などのスケール生成成分及び
SSのため蒸発缶内の伝熱面へのスケール付着
がはげしいが、本発明ではし尿の生物処理水に
対し蒸発処理するので、スケール生成が非常に
少ないことが実験的に確認された。 〔実施例〕 神奈川県某し尿処理場に搬入されるし尿(浄化
槽汚泥10%混入)をロータリスクリーンによつて
除渣してし渣を除去したのち、し尿処理量1Kl/
日の規模で硝化液循環生物学的脱窒素工程により
無希釈処理した。無希釈処理した理由は蒸発工程
流入水の量を減少させるためと、微生物反応熱に
よつて水温を上昇させるためである。無希釈処理
の結果、硝化槽水面の発泡が激しかつたが、硝化
槽水面の泡沫層に消泡機を設置することによつて
解決した。生物学的硝化脱窒素工程のMLSSは
20000mg/〜23000mg/、滞留日数は7日間とし
た。 生物処理槽内の水温は微生物(BOD資化菌、
硝化菌、脱窒素菌など)の微生物反応生成熱によ
つて夏季は45〜46℃冬期は33〜35℃、春・秋季37
〜42℃に維持された。生物処理槽流出スラリーの
固液分離には無薬注型遠心濃縮機を使用し、濃縮
汚泥(濃度5〜6%)の大部分を脱窒素槽にリサ
イクルさせ、一部を余剰活性汚泥として排出し
た。 しかして、遠心濃縮分離水(SS300〜500ml/
程度)を沈殿槽に流入させてさらに残留SSを除
去し、SS20〜30mg/の分離水を蒸気圧縮式蒸発
缶に供給し、濃縮比50倍に濃縮し、20/日の濃
縮液と180/日の水蒸気凝縮水(し尿の高度処
理水)を得た。上記蒸発缶には小型規模の流下膜
式を使用し、蒸気圧縮機にはルーツ式を用いた。
蒸発缶流入液および凝縮水の水質は次表のとおり
であつた。
[Industrial Application Field] The present invention relates to a method for treating human waste, sewage, and other organic wastewater. [Prior art] The process that has been evaluated as the most advanced in conventional human wastewater treatment, and the number of examples of which has been implemented rapidly in recent years, involves adding dilution water to human waste, performing biological nitrification and denitrification treatment, and then converting activated sludge into activated sludge. This method involves separating solid and liquid in a settling tank, and then coagulating and settling the supernatant water, filtering it with sand, and then subjecting it to ozone treatment and activated carbon treatment. At first glance, this process appears to be a fairly reasonable process and is easily evaluated as an excellent method. However, when the technology is evaluated from a strict perspective, the inventor found that it inherently contains the following serious problems. I came to realize that. In other words, because many unit operations are arranged in series, the process is complex and maintenance is poor. In addition to requiring the addition of a large amount of flocculant in the coagulation-sedimentation or coagulation-floating process, which consumes resources, coagulation-sedimentation sludge, which is difficult to dewater, is generated, making its treatment and disposal difficult and requiring a large amount of expense. It takes. About 20~ to ozone generation power for ozone treatment
It requires a large amount of electricity of 300KWH/Kg of ozone, and the activated carbon treatment uses expensive activated carbon of 500 to 600 yen/Kg of activated carbon, so the cost of activated carbon treatment becomes large. In order to stop using activated carbon, it is necessary to regenerate the waste activated carbon, but regeneration requires a large amount of thermal energy, which is not energy-saving after all. The present inventor had a strong inquiry into the technical level of the conventional process which had the above-mentioned problems, and proceeded with the study and completed the present invention. [Object of the Invention] That is, an object of the present invention is to provide a method for treating organic wastewater that can extremely rationally solve the above-mentioned problems of the conventional methods. [Structure of the Invention] The present invention provides biological treatment of organic wastewater in a biological treatment process in which a biological nitrification reaction is performed without digestion treatment, and after concentrating the biologically treated water in an evaporation concentration process. , a method for treating organic wastewater, characterized in that the concentrated liquid is treated in a post-treatment process including an incineration process. The effects of the process of the present invention can be said to be surprising, as the conventional processes of coagulation sedimentation, sand filtration, ozone treatment, and activated carbon adsorption are completely unnecessary, and the quality of the treated water is significantly superior to that of the conventional process. Maintenance costs will also be reduced. An embodiment of the present invention will be described below with reference to the drawings. The removed human waste (often contaminated with septic tank sludge) 1 is passed into the biological treatment process 2 using the biological nitrification and denitrification method without adding dilution water, which mainly removes nitrogen such as BOD and ammonia. Thoroughly remove components. As biological treatment step 2,
A nitrification liquid circulation type that uses the BOD component in human waste 1 as a hydrogen donor for denitrifying bacteria, a stepwise inflow type of human waste, an aerobic denitrification type, and a batch processing type are adopted. Adding a large amount of dilution water to the biological treatment step 2 is not preferable because it not only causes a decrease in water temperature but also increases the amount of water to be evaporated. When human waste is subjected to humility digestion or aerobic digestion and then biological nitrification and denitrification, BOD is removed during the digestion process, resulting in a lack of organic carbon sources for denitrifying bacteria, and methanol, Since it is necessary to add expensive organic carbon sources such as ethanol and acetic acid, which brings extremely unreasonable results, in the present invention, human waste is directly subjected to biological nitrification and denitrification treatment without undergoing such a digestion treatment. do. The activated sludge slurry 3 flowing out from the biological treatment tank 2' is subjected to solid-liquid separation in a solid-liquid separation step 4 using a centrifugal concentrator, and most of the separated sludge 5 is returned to the biological treatment tank 2 as return sludge 5'. ’ will be recycled. On the other hand, the surplus (activated) sludge 6 is dehydrated by a mechanical dewatering process 7 such as a filter press or screw press, and is converted into dehydrated separated water 7' with a moisture content of 60.
The dehydrated cake 8 will be around 65%. However, the biologically treated water 9 separated in the solid-liquid separation step 4 has BOD, ammonia nitrogen components, and SS removed well, but non-biodegradable COD, chromaticity,
Large amounts of phosphoric acid and organic nitrogen remain. For this reason, in the conventional process, biologically treated water9 is subjected to coagulation sedimentation, sand filtration, ozone treatment, and activated carbon treatment.
COD, chromaticity, phosphoric acid, and organic nitrogen are removed, but in the present invention, such conventional methods are abolished, and biologically treated water 9 is heated indirectly using a vapor compression method and/or a multiple effect method. Condensed in the evaporation concentration step 10, the condensed water of the generated water vapor is converted into biologically treated water 9.
A new method will be introduced in which the nitrified biologically treated water is evaporated and concentrated using the exhaust heat of the incinerator. That is, to explain the evaporation concentration method using the vapor compression method using the illustrated example, the biologically treated water 9 is preheated and then supplied into the evaporator 10' under normal pressure conditions.
After the evaporated water vapor 11 is compressed and heated in the vapor compressor 12, it is heated to an indirect heating section 13 in the evaporator 10'.
The latent heat of condensation of water vapor is reused as a heating source for evaporation. In the indirect heating section 13, the water vapor becomes condensed water 14. Since this condensed water 14 has a temperature of about 100°C and has a large amount of heat, it is used in the heat exchanger 15 to preheat the biologically treated water 9. , and is discharged as treated water 14'. The treated water 14' is almost the same as distilled water, is colorless and transparent, has extremely low COD, BOD, phosphoric acid, and nitrogen (about 0 to 1 mg/d), and exhibits the highest quality as human waste treated water. Furthermore, this embodiment includes the following points as one of the important concepts. In other words, the heat produced by the microbial oxidation reaction generated during the biological treatment of human waste 1 (30,000 to 40,000 Kcal/Kl, the calorific value of human waste is 30,000 to 40,000 Kcal/Kl)
We focused on the effect that the temperature of the liquid in the biological treatment tank, and therefore the temperature of the biologically treated water 9, rose by 20 to 30°C over the temperature of the raw human waste 1, and the temperature was raised by the heat of microbial oxidation. One of the important points is to evaporate and concentrate the biologically treated water 9. As a result, the evaporation temperature inside the evaporator 10' (usually 100
This has the extremely important effect of reducing the amount of heat required to heat the product to temperatures up to 30°F (°C). The concentrated liquid 16 (biologically treated water 9 concentrated several tens of times) evaporated in the evaporator 10' is then evaporated in a separate evaporative drying process 17 (preferably a drum dryer). Dry and solidify 1
8 (composition is BOD component, salts such as NaCl) is incinerated in incineration step 19. Since the evaporative concentrate contains high concentrations of BOD components and color components, incineration is an essential step in the present invention. In other words, even if only salt is precipitated from the evaporative concentrate, high concentrations of COD and chromaticity components remain, so if the evaporative concentrate is disposed of as it is, or if it is simply dried and then disposed of, the COD will be reduced at the disposal site. , as it causes secondary pollution such as chromaticity elution.
It is essential to completely thermally decompose COD and chromaticity components by incineration as in the present invention. On the other hand, the residue 8' and the dehydrated cake 8 are processed in the above-mentioned incineration process 1 in which a fluidized bed incinerator equipped with an exhaust heat boiler is used.
It is naturally incinerated in step 9, and the recovered thermal energy 20 is supplied to the evaporative concentration step 10 and/or the evaporative drying step 17 for effective use. 21 is incineration residue. At the start-up of the evaporative concentration step 10 and the evaporative drying step 17, steam 26 supplied from outside the system or steam 26' from the incineration step 19 is used. In the present invention, the term "incineration" is used to mean that thermal decomposition treatment also falls within the scope of incineration treatment. In addition, if a garbage incinerator is installed adjacent to or attached to a human waste treatment plant, excess heat generated from the garbage incineration process can be used in the evaporation concentration step 10.
and/or evaporative drying step 17 is highly desirable. A method of generating electric power using a turbine or the like from the surplus heat and using the generated electric power to drive the vapor compressor 12 can also be recommended. In the present invention, the evaporation drying step 17 of the concentrated liquid 16
The following methods are particularly recommended. That is, after preheating the concentrated liquid 16, it is supplied to a closed type indirect heating evaporation dryer under normal pressure conditions, for example, a closed type drum dryer 22 as shown in the illustrated example,
The concentrated liquid 16 is attached to the surface of the rotating drum in the form of a film, the film-like liquid is evaporated to dryness by steam supplied inside the drum, and the dried substance 18 is scraped off from the drum surface with a scraper. Discharge from the hopper to the outside of the tank. On the other hand, water vapor 23 evaporated from the film-like liquid film is transferred to a vapor compressor 24.
This method involves compressing and raising the temperature in a drum, recycling it into a drum, and reusing it as a heating source for evaporative drying. In this case, since the quality of the condensed water 25 condensed inside the drum dryer 22 is also very good, it is merged with the treated water 14'. As described above, in one embodiment of the present invention, a case has been described in which the vapor compression method is adopted.However, a multiple effect evaporation method or a combined method of a multiple effect evaporation method and a vapor compression method may be used in the evaporation concentration step 10 and the evaporation drying step 17. Needless to say, it may be adopted. The evaporative drying step 17 may be of any type,
In the illustrated example, the concentrated liquid 16 is supplied to the sludge storage section 22' in which the rotating drum is immersed, but it may also be directly sprayed or allowed to flow down onto the surface of the rotating drum. In addition, concentrate 16
is not treated in the evaporation drying step 17 and is directly incinerated step 19
It may also be incinerated by spraying. Furthermore, the condensed water (highly treated human waste water) 14 flowing out from the heat exchanger 15 is still at a temperature of about 50°C and has a large amount of heat, so it is not discharged as it is, and the dehydrated cake 8 is heated. The recovered thermal energy 20 from the incineration process 19 can be increased by utilizing the air as a heating source for the ventilation drying process (not shown). Optionally, the treated water 14' may be further subjected to ultra-high-level treatment by any polishing step (eg, ion exchange, adsorption, chemical oxidation treatment, ultrafiltration treatment, etc.). In addition, in the example illustrated above, both the evaporation concentration step 10 and the evaporation drying step 17 are performed under normal pressure conditions, but in this case, the biologically treated water 9 of human waste 1 is condensed through a heating step of about 100°C. Since the water becomes treated water 14', no bacteria such as coliform bacteria remain in it. Therefore, no special sterilization process is required. Note that at least one of the above two steps may be performed not under normal pressure conditions but under reduced pressure, or the biological treatment step 2 may be a biological nitrification step or a biological denitrification step. [Effects of the Invention] According to the present invention as described above, the following many important effects can be obtained. All the steps of coagulation and sedimentation (floating), oxidation, ozone oxidation, and activated carbon adsorption of the biological treatment liquid, which were essential in the conventional process, are no longer necessary, and the treated water is of much better quality than the conventional process. can get. Therefore, it not only has a significant effect on preventing environmental pollution, but also simplifies the process. A flocculant, ozone generation power, activated carbon replenishment, and activated carbon regeneration energy are all unnecessary, resulting in significant resource and energy savings. Since no flocculation-sedimentation (or flotation) sludge is generated, the only sludge that needs to be treated is excess biological sludge, and treatment and disposal costs can be significantly reduced. Since inorganic hydroxides (Al(OH) 3 , Fe(OH) 3 , etc.) such as coagulated sedimentation (floating) sludge are not mixed in the dehydrated cake, the calorific value of the dehydrated cake is low.
It has excellent fuel properties at 4000 to 4500 Kcal/Kg dry matter, and easily self-combustes, so it does not require auxiliary fuel such as heavy oil. This point greatly contributes to the energy saving effect. Since human waste contains high concentrations of ammonia, organic acids, and odor components,
When human waste is directly evaporated, a large amount of ammonia, volatile organic acids, and odor components are contained in the generated water vapor and the water vapor condensed, so it is impossible to discharge the water vapor condensed as treated human waste water. Moreover, human waste contains 10,000 to 20,000
Contains a high concentration of SS per ml,
In normal evaporation operations, the SS concentration increases due to water evaporation, and the viscosity increases extremely, clogging the evaporator. Conventionally, methods have been adopted to prevent data from being lost. In contrast, in the present invention, human waste is first biologically treated to sufficiently remove ammonia, volatile organic components, and odor components, and then microorganisms such as activated sludge are separated into solid and liquid. As a result, extremely clear water quality equivalent to that of distilled water is obtained, with almost no BOD, COD, nitrogen, phosphoric acid, color components, or odor components present in the evaporated steam and its condensed water. Also,
There is no leakage of odor components from the evaporator, and there is almost no SS in the liquid to be evaporated, so it is important that it can be easily evaporated and concentrated without the need for the conventional troublesome operation of adding oil to create a fluid medium. There are advantages. The chloride ion concentration of conventional human waste water is 300~
It was difficult to use the water for irrigation in forests and fields because of the high chlorine ion concentration of 3000 mg/kg, but since the treated water of the present invention is close to distilled water, the chlorine ion concentration is only a few ppm.
It's just a matter of degree. Therefore, it can be easily used for irrigation water. Furthermore, when human waste is directly evaporated, scale-forming components such as sulfides present in human waste are removed.
Because of SS, scale adhesion on the heat transfer surface inside the evaporator is severe, but in the present invention, since the biologically treated water of human waste is evaporated, it has been experimentally confirmed that scale formation is extremely small. [Example] Human waste (containing 10% septic tank sludge) delivered to a certain human waste treatment plant in Kanagawa Prefecture was filtered using a rotary screen to remove the human waste, and the amount of human waste processed was 1Kl/
The nitrified solution was treated undiluted by biological denitrification process on a daily scale. The reason for non-dilution treatment was to reduce the amount of water flowing into the evaporation process and to raise the water temperature due to the heat of microbial reaction. As a result of the non-dilution treatment, there was severe foaming on the water surface of the nitrification tank, but this was resolved by installing a defoamer on the foam layer on the water surface of the nitrification tank. MLSS of biological nitrification and denitrification process is
20,000 mg/~23,000 mg/, and the residence time was 7 days. The water temperature in the biological treatment tank is controlled by microorganisms (BOD assimilating bacteria,
Due to the heat produced by microbial reactions (nitrifying bacteria, denitrifying bacteria, etc.), the temperature rises to 45-46℃ in summer, 33-35℃ in winter, and 37℃ in spring and autumn.
It was maintained at ~42°C. A chemical-free centrifugal thickener is used for solid-liquid separation of the biological treatment tank effluent slurry, and most of the thickened sludge (concentration 5-6%) is recycled to the denitrification tank, with a portion being discharged as surplus activated sludge. did. However, centrifugal concentrated separated water (SS300~500ml/
The remaining SS is further removed by flowing into the sedimentation tank, and the separated water containing 20 to 30 mg of SS is supplied to the vapor compression evaporator, where it is concentrated to a concentration ratio of 50 times, and the concentrated liquid is mixed with the concentrated liquid of 20 to 180 mg/day. The water vapor condensed water (highly treated human waste water) was obtained. A small-scale falling film type was used for the above-mentioned evaporator, and a Roots type was used for the vapor compressor.
The water quality of the evaporator influent and condensed water was as shown in the table below.

【表】 蒸発缶から排出された濃縮液を、本発明者が開
発した密閉型自己蒸気圧縮式ドラムドライヤーに
供給して蒸発乾固しCOD成分、リン酸、色度成
分と塩類との混合物を得た。 一方、余剰汚泥に塩化第2鉄を対SSあたり12
%添加したのちCa(OH)2でPH4〜5に中和し、
次いで圧搾機構付フイルタプレスにて脱水し、含
水率64〜65%、低位発熱量約4000Kcal/Kg−
D・Sの脱水ケーキを得た。また、し渣はスクリ
ユープレスで脱水し、水分60〜61%の脱水し渣を
得た。 脱水ケーキ、脱水し渣および上記濃縮液の蒸発
乾固物ならびに処理場管理棟及び付近の団地から
出るゴミを排熱ボイラー付流動床焼却炉で自燃焼
却させ、回収熱量を上記蒸発缶のスタートアツプ
用と定常運転用及び蒸発缶流入液の予熱に利用し
た。 なお、余剰汚泥の脱水には、前記フイルタプレ
スの他に高分子凝集剤添加後スクリユープレスで
脱水する方法を検討した結果、含水率62〜64%の
脱水ケーキが得られフイルムプレス脱水法と同等
の好結果を得た。以上のような本発明によつてし
尿1Klあたりの処理経費は900〜1000円であり、
従来プロセスの約1/4の経費で最高度の処理水質
が得られた。
[Table] The concentrated liquid discharged from the evaporator is supplied to a closed type self-vapor compression type drum dryer developed by the present inventor and evaporated to dryness to produce a mixture of COD components, phosphoric acid, color components and salts. Obtained. On the other hand, ferric chloride was added to the excess sludge at 12% per SS.
After adding %, neutralize to pH4~5 with Ca(OH) 2 ,
Next, it is dehydrated using a filter press with a squeezing mechanism, with a moisture content of 64 to 65% and a lower calorific value of approximately 4000 Kcal/Kg.
A dehydrated cake of D.S. was obtained. In addition, the residue was dehydrated using a screw press to obtain a dehydrated residue with a water content of 60 to 61%. Dehydrated cake, dehydrated residue, evaporated dry matter of the above concentrated liquid, and garbage from the treatment plant management building and nearby housing complex are self-incinerated in a fluidized bed incinerator equipped with an exhaust heat boiler, and the recovered heat is used to start up the above evaporator. It was used for normal operation, steady-state operation, and preheating of the evaporator inflow. In addition to the above-mentioned filter press, we investigated a method of dewatering surplus sludge using a screw press after adding a polymer flocculant, and as a result, a dehydrated cake with a water content of 62 to 64% was obtained, which was combined with the film press dewatering method. We obtained equally good results. According to the present invention as described above, the processing cost per 1Kl of human waste is 900 to 1000 yen,
The highest quality treated water was obtained at approximately 1/4 the cost of the conventional process.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の実施態様を示すフローシート
である。 1…し尿、2…生物処理工程、2′…生物処理
槽、3…活性汚泥スラリー、4…固液分離工程、
5…分離汚泥、5′…返送汚泥、6…余剰(活性)
汚泥、7…機械脱水工程、7′…脱水分離水、8
…脱水ケーキ、8′…し渣、9…生物処理水、1
0…蒸発濃縮工程、10′…蒸発缶、11,23,
26,26′…水蒸気、12,24…蒸気圧縮機、
13…間接加熱部、14,25…凝縮水、14′
…処理水、15…熱交換器、16…濃縮液、17
…蒸発乾燥工程、18…乾固物、19…焼却工
程、20…回収熱エネルギー、21…焼却残渣、
22…ドラムドライヤー。
The drawings are flow sheets illustrating embodiments of the invention. 1... Human waste, 2... Biological treatment process, 2'... Biological treatment tank, 3... Activated sludge slurry, 4... Solid-liquid separation process,
5...separated sludge, 5'...return sludge, 6...surplus (activated)
Sludge, 7...Mechanical dewatering process, 7'...Dehydrated separated water, 8
...Dehydrated cake, 8'...Residue, 9...Biologically treated water, 1
0...evaporation concentration step, 10'...evaporator, 11, 23,
26, 26'... water vapor, 12, 24... vapor compressor,
13... Indirect heating section, 14, 25... Condensed water, 14'
... Treated water, 15 ... Heat exchanger, 16 ... Concentrate, 17
... Evaporation drying process, 18... Drying solid matter, 19... Incineration process, 20... Recovered thermal energy, 21... Incineration residue,
22...Drum dryer.

Claims (1)

【特許請求の範囲】 1 有機性廃水を消化処理することなく、生物学
的硝化反応が遂行される生物処理工程で生物処理
し、該生物処理水を蒸発濃縮工程にて濃縮処理し
たのち、該濃縮液を焼却工程を含む後処理工程に
より処理することを特徴とする有機性廃水の処理
方法。 2 前記後処理工程が、蒸発乾燥工程を前段工
程、前記焼却工程を後段工程として構成されてい
るものである特許請求の範囲第1項記載の方法。 3 前記蒸発乾燥工程が、前記濃縮液を蒸発乾固
処理するものである特許請求の範囲第2項記載の
方法。 4 前記蒸発濃縮工程、前記蒸発乾燥工程の少な
くとも一方が、焼却工程からの焼却排熱を利用し
て行なわれるものである特許請求の範囲第2項記
載の方法。 5 前記蒸発濃縮工程からの水蒸気凝縮水を前記
生物処理水の予熱に利用する特許請求の範囲第1
項、第2項又は第3項記載の方法。 6 前記生物処理工程が、生物学的硝化脱窒素工
程である特許請求の範囲第1項、第2項、第3項
又は第4項記載の方法。 7 前記生物処理工程が、し尿系汚水を、これに
希釈水を加えることなく行なわれるものである特
許請求の範囲第6項記載の方法。
[Claims] 1. Organic wastewater is subjected to biological treatment in a biological treatment process in which a biological nitrification reaction is carried out without being subjected to digestion treatment, and the biologically treated water is concentrated in an evaporation concentration process. 1. A method for treating organic wastewater, comprising treating the concentrated liquid through a post-treatment process including an incineration process. 2. The method according to claim 1, wherein the post-treatment step comprises an evaporation drying step as a first step and an incineration step as a second step. 3. The method according to claim 2, wherein the evaporation drying step evaporates the concentrated liquid to dryness. 4. The method according to claim 2, wherein at least one of the evaporative concentration step and the evaporative drying step is performed using incineration waste heat from an incineration step. 5. Claim 1 in which the steam condensed water from the evaporation concentration step is used to preheat the biologically treated water.
3. The method described in Section 2, Section 2, or Section 3. 6. The method according to claim 1, 2, 3, or 4, wherein the biological treatment step is a biological nitrification and denitrification step. 7. The method according to claim 6, wherein the biological treatment step is performed on human waste wastewater without adding dilution water thereto.
JP57106707A 1982-06-23 1982-06-23 Treatment of organic waste water Granted JPS58223498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57106707A JPS58223498A (en) 1982-06-23 1982-06-23 Treatment of organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57106707A JPS58223498A (en) 1982-06-23 1982-06-23 Treatment of organic waste water

Publications (2)

Publication Number Publication Date
JPS58223498A JPS58223498A (en) 1983-12-26
JPH0114834B2 true JPH0114834B2 (en) 1989-03-14

Family

ID=14440451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57106707A Granted JPS58223498A (en) 1982-06-23 1982-06-23 Treatment of organic waste water

Country Status (1)

Country Link
JP (1) JPS58223498A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60139398A (en) * 1983-12-28 1985-07-24 Nishihara Environ Sanit Res Corp Treatment of high concentration waste water

Also Published As

Publication number Publication date
JPS58223498A (en) 1983-12-26

Similar Documents

Publication Publication Date Title
US3342731A (en) Method for dewatering sludges
US5702572A (en) Method for treating exhaust gases and foul water
CN104609632B (en) Zero-discharge treating process for coking wastewater
JP3477526B2 (en) Wastewater recovery equipment
CN105016577A (en) Advanced treatment system for process sewage and advanced treatment method for sewage
CN111960590A (en) Membrane concentrate treatment system of waste incineration power plant
KR102083441B1 (en) Waste water treatment method containing organic solvent
JPH0114836B2 (en)
JPH0114834B2 (en)
JPH0125640B2 (en)
JPH0114833B2 (en)
JPS5919598A (en) Treatment of organic liquid waste
JPH0114832B2 (en)
JPH0135719B2 (en)
CN112851048A (en) Semi-coke wastewater treatment method
JPH09290249A (en) Treatment of organic waste liquid
JPS6366593B2 (en)
JPH0114835B2 (en)
CN110902886A (en) Method for directly curing cutting waste liquid
JPH0114838B2 (en)
JPH0114839B2 (en)
JP3672175B2 (en) Organic wastewater treatment method and treatment apparatus
Maeda Re-use of treated laboratory effluents by a treatment system incorporating the'sirotherm'desalination process
JPH0373360B2 (en)
JPS5830399A (en) Treatment of organic sludge