JPH0135719B2 - - Google Patents

Info

Publication number
JPH0135719B2
JPH0135719B2 JP57169896A JP16989682A JPH0135719B2 JP H0135719 B2 JPH0135719 B2 JP H0135719B2 JP 57169896 A JP57169896 A JP 57169896A JP 16989682 A JP16989682 A JP 16989682A JP H0135719 B2 JPH0135719 B2 JP H0135719B2
Authority
JP
Japan
Prior art keywords
water
ammonia
sludge
human waste
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57169896A
Other languages
Japanese (ja)
Other versions
JPS5962396A (en
Inventor
Katsuyuki Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP57169896A priority Critical patent/JPS5962396A/en
Publication of JPS5962396A publication Critical patent/JPS5962396A/en
Publication of JPH0135719B2 publication Critical patent/JPH0135719B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/008Driving elements, brakes, couplings, transmissions specially adapted for rotary or oscillating-piston machines or engines

Description

【発明の詳細な説明】 本発明はし尿、各種産業廃水などアンモニア含
有有機性廃水の処理方法に関するものである。 従来のし尿処理において最も進歩したプロセス
として評価され、実施例が激増しているプロセス
は、例えばし尿に希釈水(10倍量程度)を添加し
て生物学的硝化脱窒処理したのち処理水を凝集沈
殿、砂過し、さらにオゾン処理、活性炭吸着
後、滅菌処理するという方法である。 このプロセスは現在秀れたプロセスとして評価
されているが、厳しい視点から技術評価すると、
次のような重大欠点が本質的に内在していること
を本発明者は認識するに至つた。 すなわち、 数多くの単位操作を直列的に並べているた
め、プロセスが複雑で維持管理性も悪い。 凝集沈殿又は凝集浮上工程に多量の無機凝集
剤の添加を必要とし、資源多消費であるほか難
脱水性の凝集沈殿汚泥が発生し、その処理・処
分が難点となると同時に多大の経費を要する。
また、凝集汚泥の存在はコンポスト製品の品質
を低下させる。 オゾン発生電力に約25KWH/Kg−O3という
多量の電力を必要とし、また活性炭処理に500
〜600円/Kl−し尿という高額の経費を要する。 本発明者は、このような現状に強い疑問を持
ち、上記従来プロセスの諸欠点を解消し得る方法
を開発するべく検討を進め本発明を完成した。 本発明の効果は驚くべきものと言つてよく、従
来の凝集沈殿、砂過、オゾン処理、活性炭吸
着、滅菌処理の各工程が全く不要になり、しかも
処理水質は著しく向上する。さらに、生物処理工
程の運転管理も容易になり、所要容積も節減され
る。 すなわち本発明は、アンモニア含有有機性廃水
を生物処理したのち、該生物処理水を蒸発濃縮処
理し、該蒸発水蒸気の凝縮水をさらにアンモニア
ストリツピング工程に供給し、該工程流出水を前
記有機性廃水の高度処理水となすことを特徴とす
るアンモニア含有有機性廃水の処理方法である。 以下に、本発明の一実施態様を図面を参照しな
がら説明する。 除渣したし尿(浄化槽汚泥が混入している場合
が多い)1を、これに希釈水を添加することなく
生物学的硝化脱窒素法又は生物学的硝化法による
生物処理工程2に流入せしめ主としてBOD、
NH3−Nなどの窒素成分を大部分除去する。生
物処理工程2に希釈水を多量に添加することは、
水温の低下を招くばかりでなく蒸発濃縮対象液量
が増加するので極めて好ましくない。 しかして、生物処理工程2から流出する活性汚
泥スラリー3は、遠心濃縮機などを使用する固液
分離工程4において固液分離され、分離汚泥5の
大部分は返送汚泥5′として生物処理工程2にリ
サイクルされ、余剰活性汚泥6はフイルタプレ
ス、スクリュープレスなどの汚泥脱水工程(図示
せず)で処理される。 生物処理水7は、BOD、窒素成分は良好に除
去されているが非生物分解性COD、リン酸、色
度、有機性窒素が多量に残留し、またアンモニア
性窒素もかなり残留している。このため、従来プ
ロセスでは生物処理水7に対し凝集沈殿、砂
過、オゾン処理、活性炭処理を行ないCOD、色
度、リン酸、有機性窒素を除去しているのである
が、本発明はこのような問題点の多い常套手段は
採用しない。 すなわち、生物処理水7を熱交換器8にて予熱
したのち、蒸発濃縮工程9の蒸発缶9′に供給し
蒸発水蒸気10を蒸気圧縮機11によつて圧縮昇
温したのち、蒸発缶9′内の間接加熱部12に導
き、水蒸気の凝縮潜熱を蒸発用加熱源として再利
用する。 凝縮水13はアンモニアのストリツピング工程
14に流入したのち熱交換器8を経由し高度処理
水15となる。凝縮水13は蒸留水であるから無
色透明でCOD、BOD、リン酸、SSは痕跡量であ
り、し尿の無希釈処理水として従来プロセスでは
望むべくもない最高級の水質を示すが、生物処理
水7中のアンモニア性窒素は蒸発しやすいため、
凝縮水13中に含まれてくるのでストリツピング
工程14によりアンモニアを除去する。アンモニ
アは温度が高いほど放散されやすいが、本発明で
は凝縮水13の温度は約100℃(蒸発缶9′内の圧
力はほぼ常圧)と高いので、非常に効率的にアン
モニアがストリツピング除去される。 一方、アンモニア含有水蒸気18は、硫酸など
によるアンモニア吸収工程、燃焼によるアンモニ
ア分解工程(いずれも図示せず)などで処分され
る。 次に、この実施態様には重要概念の一つとし
て、次の点が含まれる。すなわち、し尿1を生物
処理する際に発生する微生物酸化熱(本発明者の
実測によれば30000〜40000Kcal/Kl−し尿の発
熱量がある)によつて、生物処理槽内液温、した
がつて、生物処理水7の温度が、流入するし尿1
の温度よりも20〜30℃上昇する効果に着目し、微
生物酸化熱によつて温度上昇されたものを蒸発濃
縮することが重要概念となつている。このことに
より、蒸発用の外部熱エネルギーが節約できる。 しかして、少量の蒸発濃縮液16は噴霧燃焼、
蒸発乾固などの任意の処分工程17にて処分され
る。 以上のような実施態様では、蒸発濃縮工程9と
して蒸気圧縮法によるものを採用した場合を説明
したが、多重効用法又は蒸気圧縮法と多重効用法
の併用によるものとしても効果的であることは言
うまでもない。 以上の如き本発明の重要効果は、下記のとおり
である。 アンモニアなどの窒素成分が非常に合理的に
除去されるほか、従来プロセスでは望むべくも
ない最高級の処理水質が得られると同時に、プ
ロセスも著しく簡略化される。 凝集剤、オゾン発生電力、活性炭、滅菌剤、
活性炭の再生用エネルギーのすべてが不要にな
る。 難脱水性汚泥として周知の凝集汚泥(Al
(OH)3、Fe(OH)3を主体とする)が全く発生
しないので、処理すべき汚泥は余剰生物汚泥だ
けですみ汚泥処理・処分経費が著しく節減でき
る。 アンモニアの完全な除去を生物処理工程のみ
で達成する必要がなく、アンモニアストリツピ
ング工程で補助するので、生物処理工程の運転
管理が容易であるほか、生物処理工程の所要容
積も大幅に節減できる。 脱水ケーキ中に難脱水性無機凝集汚泥が混入
していないので、脱水ケーキの発熱量が約
4000Kcal/Kg−D.S.と高く、含水率も65%以
下にすることが容易であるため燃料的性状に秀
れている。従つて、自燃するので重油などの補
助燃料を必要としない。この効果が省エネルギ
ーに大きく寄与する。 蒸発対象水は、生物処理水であり、し尿を直
接蒸発処理するのではないから臭気発生、アン
モニア、揮発性有機酸の飛散がなく、しかも、
し尿中の高濃度のSS成分による蒸発缶内の目
詰まり、および液の流動不能トラブルも起きな
い。 従来のし尿処理水の塩素イオン濃度は300〜
3000mg/程度と高いため山林・田畑のかんが
い用水にすることは塩類障害のため困難である
が、本発明の処理水塩素イオンは0〜1mg/
程度であるため、容易にかんがい用水に再利用
できる。 さらに、し尿を直接蒸発処理すると、し尿中
に存在する硫化物、有機酸のため蒸発缶の腐蝕
の可能性が大きいが、本発明は、生物処理によ
つて硫化物及び有機酸を除去してあるので、上
記の問題は解消される。 次に、本発明の実施例について記す。 実施例 神奈川県某し尿処理場に搬入されるし尿(浄化
槽汚泥10%混入)をロータリスクリーンによつて
除渣したのち、し尿処理量1Kl/日の規模で硝化
液循環型の生物学的硝化脱窒素工程により無希釈
処理した。生物学的硝化脱窒素工程のMLSSは
18000〜20000mg/、滞留日数3日間とした。生
物処理槽内の水温は微生物酸化熱のため33〜42℃
となつた。 生物処理槽流出スラリーの固液分離には無薬注
型遠心濃縮機(巴工業製品)を使用し、濃縮汚泥
(濃度5〜6%)の大部分を脱窒槽にリサイクル
させ、一部を余剰汚泥として脱水工程に供給し
た。 脱水機には全自動フイルタプレスを採用した。
脱水ケーキの含水率は63〜64%であり、ケーキ発
熱量は4000Kcal/Kg−D.S.であり、流動層焼却
炉で容易に自燃した。 しかして、遠心濃縮分離水(SS100〜120mg/
)を蒸気圧縮蒸発缶に供給して濃縮比50倍に濃
縮し、20/日の濃縮液と180/日の水蒸気凝
縮水を得て、次にスチームによるアンモニアスト
リツピング工程にて残留アンモニアを除去した。 除渣し尿、生物学的硝化脱窒素処理水、凝縮水
およびストリツピング工程流出水の水質は次表の
とおりであつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating ammonia-containing organic wastewater such as human waste and various industrial wastewaters. A process that has been evaluated as the most advanced in conventional human waste treatment, and the number of examples of which has been rapidly increasing, involves, for example, adding diluted water (approximately 10 times the volume) to human waste, performing biological nitrification and denitrification treatment, and then discharging the treated water. This method involves coagulation sedimentation, sand filtration, ozone treatment, activated carbon adsorption, and sterilization. This process is currently being evaluated as an excellent process, but when the technology is evaluated from a strict perspective,
The present inventor has come to realize that the following serious drawbacks are inherently inherent. In other words, because many unit operations are arranged in series, the process is complex and maintenance is poor. It is necessary to add a large amount of inorganic flocculant to the coagulation-sedimentation or coagulation-floating process, which consumes a large amount of resources, and generates coagulation-sedimentation sludge that is difficult to dewater, and its treatment and disposal are difficult and require a large amount of expense.
Also, the presence of flocculated sludge reduces the quality of the compost product. A large amount of electricity is required for ozone generation, approximately 25KWH/Kg- O3 , and 500KWH is required for activated carbon treatment.
~600 yen/Kl - The high cost of human waste is required. The present inventor has strong doubts about the current state of affairs, and has completed the present invention by proceeding with studies to develop a method that can eliminate the various drawbacks of the above-mentioned conventional processes. The effects of the present invention can be said to be surprising; the conventional steps of coagulation and sedimentation, sand filtration, ozone treatment, activated carbon adsorption, and sterilization are completely unnecessary, and the quality of treated water is significantly improved. Furthermore, operational management of the biological treatment process becomes easier and the required volume is reduced. That is, in the present invention, after biologically treating ammonia-containing organic wastewater, the biologically treated water is subjected to evaporative concentration treatment, the condensed water of the evaporated steam is further supplied to an ammonia stripping process, and the effluent of the process is treated with the organic wastewater. This is a method for treating ammonia-containing organic wastewater, which is characterized in that the water is highly treated. An embodiment of the present invention will be described below with reference to the drawings. Mainly, the filtered human waste (often contaminated with septic tank sludge) 1 is allowed to flow into the biological treatment process 2 by biological nitrification and denitrification method or biological nitrification method without adding dilution water. BOD,
Most of the nitrogen components such as NH 3 -N are removed. Adding a large amount of dilution water to biological treatment step 2
This is extremely undesirable because it not only causes a decrease in water temperature but also increases the amount of liquid to be evaporated and concentrated. The activated sludge slurry 3 flowing out from the biological treatment process 2 is subjected to solid-liquid separation in a solid-liquid separation process 4 using a centrifugal concentrator, and most of the separated sludge 5 is returned to the biological treatment process 2 as return sludge 5'. The surplus activated sludge 6 is processed in a sludge dewatering process (not shown) using a filter press, screw press, or the like. In the biologically treated water 7, BOD and nitrogen components were successfully removed, but large amounts of non-biodegradable COD, phosphoric acid, chromaticity, and organic nitrogen remained, as well as a considerable amount of ammonia nitrogen. For this reason, in the conventional process, the biologically treated water 7 is subjected to coagulation sedimentation, sand filtration, ozone treatment, and activated carbon treatment to remove COD, chromaticity, phosphoric acid, and organic nitrogen. Do not use conventional methods that have many problems. That is, the biologically treated water 7 is preheated by the heat exchanger 8, and then supplied to the evaporator 9' of the evaporation concentration step 9, and the evaporated water vapor 10 is compressed and heated by the vapor compressor 11, and then transferred to the evaporator 9'. The latent heat of condensation of water vapor is reused as a heat source for evaporation. Condensed water 13 flows into an ammonia stripping step 14 and then passes through a heat exchanger 8 to become highly treated water 15. Since condensed water 13 is distilled water, it is clear and colorless, and contains only trace amounts of COD, BOD, phosphoric acid, and SS, and exhibits the highest quality water that could not be expected with conventional processes as undiluted human waste water. Ammonia nitrogen in water 7 evaporates easily, so
Since ammonia is contained in the condensed water 13, it is removed in a stripping step 14. Ammonia is more easily dissipated as the temperature increases, but in the present invention, since the temperature of the condensed water 13 is as high as approximately 100°C (the pressure inside the evaporator 9' is approximately normal pressure), ammonia can be stripped and removed very efficiently. Ru. On the other hand, the ammonia-containing steam 18 is disposed of through an ammonia absorption step using sulfuric acid or the like, an ammonia decomposition step through combustion (none of which are shown), or the like. Next, this embodiment includes the following points as one of the important concepts. That is, due to the microbial oxidation heat generated when human waste 1 is biologically treated (according to the inventor's actual measurements, the calorific value of human waste is 30,000 to 40,000 Kcal/Kl), the temperature of the liquid in the biological treatment tank increases. Therefore, the temperature of the biologically treated water 7 changes to the temperature of the inflowing human waste 1.
Focusing on the effect of raising the temperature by 20 to 30 degrees Celsius above the temperature of , the important concept is to evaporate and concentrate the material whose temperature has been raised by microbial oxidation heat. This saves external thermal energy for evaporation. Therefore, a small amount of evaporative concentrate 16 is spray-combusted,
It is disposed of in an optional disposal step 17 such as evaporation to dryness. In the embodiments described above, the vapor compression method is used as the evaporation concentration step 9, but it is also effective to use the multiple effect method or a combination of the vapor compression method and the multiple effect method. Needless to say. The important effects of the present invention as described above are as follows. In addition to removing nitrogen components such as ammonia in a very efficient manner, the process is also significantly simplified while providing the highest quality treated water that could not be achieved using conventional processes. Coagulant, ozone generation power, activated carbon, sterilizer,
All of the energy for activated carbon regeneration is no longer required. Coagulated sludge (Al
Since no sludge (mainly consisting of (OH) 3 and Fe(OH) 3 ) is generated, the only sludge that needs to be treated is surplus biological sludge, resulting in significant savings in sludge treatment and disposal costs. Complete removal of ammonia does not need to be achieved through the biological treatment process alone; it is assisted by the ammonia stripping process, which not only simplifies the operational management of the biological treatment process, but also greatly reduces the volume required for the biological treatment process. . Since the dewatered cake does not contain inorganic flocculated sludge that is difficult to dehydrate, the calorific value of the dehydrated cake is approximately
It has excellent fuel properties because it has a high 4000Kcal/Kg-DS and the water content can be easily reduced to 65% or less. Therefore, since it self-combusts, it does not require auxiliary fuel such as heavy oil. This effect greatly contributes to energy saving. The water to be evaporated is biologically treated water, and human waste is not directly evaporated, so there is no odor, ammonia, or volatile organic acids are scattered.
There will be no clogging of the evaporator due to the high concentration of SS components in the human waste, and there will be no problems with the liquid not being able to flow. The chloride ion concentration of conventional human waste water is 300~
The chlorine ions in the treated water of the present invention are as high as 3000mg/1, making it difficult to use as water for irrigation in forests and fields due to salt damage.
Since the amount of water is small, it can be easily reused for irrigation water. Furthermore, if human waste is directly evaporated, there is a high possibility that the evaporator will be corroded due to the sulfides and organic acids present in the human waste, but the present invention removes sulfides and organic acids through biological treatment. Therefore, the above problem is solved. Next, examples of the present invention will be described. Example: Human waste (containing 10% septic tank sludge) delivered to a certain human waste treatment plant in Kanagawa Prefecture is removed using a rotary screen, and then subjected to biological nitrification and denitrification using a nitrifying solution circulation system with a human waste treatment capacity of 1Kl/day. It was treated undiluted by a nitrogen step. MLSS of biological nitrification and denitrification process is
The dose was 18,000 to 20,000 mg/distance and the residence time was 3 days. The water temperature in the biological treatment tank is 33-42℃ due to the heat of microbial oxidation.
It became. A chemical-free centrifugal concentrator (Tomoe Kogyo products) is used for solid-liquid separation of the slurry flowing out of the biological treatment tank, and most of the thickened sludge (concentration 5-6%) is recycled to the denitrification tank, with some remaining as surplus. It was supplied to the dewatering process as sludge. A fully automatic filter press was used for the dehydrator.
The moisture content of the dehydrated cake was 63-64%, the cake calorific value was 4000 Kcal/Kg-DS, and it easily self-combusted in a fluidized bed incinerator. However, centrifugal concentrated separated water (SS100~120mg/
) is fed to a vapor compression evaporator and concentrated to a concentration ratio of 50 times to obtain a 20/day concentrated liquid and 180/day steam condensate.Then, residual ammonia is removed in an ammonia stripping process using steam. Removed. The water quality of the filtered human waste, biological nitrification and denitrification treated water, condensed water, and stripping process effluent was as shown in the table below. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の実施態様を示すフローシート
である。 1……し尿、2……生物処理工程、3……活性
汚泥スラリー、4……固液分離工程、5……分離
汚泥、5′……返送汚泥、6……余剰活性汚泥、
7……生物処理水、8……熱交換器、9……蒸発
濃縮工程、9′……蒸発缶、10……蒸発水蒸気、
11……蒸気圧縮機、12……間接加熱部、13
……凝縮水、14……ストリツピング工程、15
……高度処理水、16……蒸発濃縮液、17……
処分工程、18……アンモニア含有水蒸気。
The drawings are flow sheets illustrating embodiments of the invention. 1... Human waste, 2... Biological treatment process, 3... Activated sludge slurry, 4... Solid-liquid separation process, 5... Separated sludge, 5'... Returned sludge, 6... Excess activated sludge,
7... Biological treatment water, 8... Heat exchanger, 9... Evaporation concentration step, 9'... Evaporator, 10... Evaporation steam,
11... Vapor compressor, 12... Indirect heating section, 13
... Condensed water, 14 ... Stripping process, 15
...Highly treated water, 16...Evaporation concentrate, 17...
Disposal step, 18...Ammonia-containing steam.

Claims (1)

【特許請求の範囲】 1 アンモニア含有有機性廃水を生物処理したの
ち、該生物処理水を蒸発濃縮処理し、該蒸発水蒸
気の凝縮水をさらにアンモニアストリツピング工
程に供給し、該工程流出水を前記有機性廃水の高
度処理水となすことを特徴とするアンモニア含有
有機性廃水の処理方法。 2 前記生物処理工程が、少なくとも生物学的硝
化反応が生起する工程である特許請求の範囲第1
項記載の方法。 3 前記蒸発濃縮工程が、間接加熱型のものであ
る特許請求の範囲第1項又は第2項記載の方法。
[Claims] 1. After biologically treating ammonia-containing organic wastewater, the biologically treated water is subjected to evaporative concentration treatment, the condensed water of the evaporated steam is further supplied to an ammonia stripping process, and the effluent of the process is A method for treating ammonia-containing organic wastewater, which is characterized in that the organic wastewater is treated as highly treated water. 2. Claim 1, wherein the biological treatment step is a step in which at least a biological nitrification reaction occurs.
The method described in section. 3. The method according to claim 1 or 2, wherein the evaporation concentration step is of an indirect heating type.
JP57169896A 1982-09-30 1982-09-30 Treatment of organic waste water containing ammonia Granted JPS5962396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57169896A JPS5962396A (en) 1982-09-30 1982-09-30 Treatment of organic waste water containing ammonia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57169896A JPS5962396A (en) 1982-09-30 1982-09-30 Treatment of organic waste water containing ammonia

Publications (2)

Publication Number Publication Date
JPS5962396A JPS5962396A (en) 1984-04-09
JPH0135719B2 true JPH0135719B2 (en) 1989-07-26

Family

ID=15894968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57169896A Granted JPS5962396A (en) 1982-09-30 1982-09-30 Treatment of organic waste water containing ammonia

Country Status (1)

Country Link
JP (1) JPS5962396A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59160597A (en) * 1983-03-04 1984-09-11 Ebara Infilco Co Ltd Process for disposing night soil
WO2001032561A1 (en) * 1999-11-02 2001-05-10 Shell Internationale Research Maatschappij B.V. Process for the purification of industrial waste water from a propylene oxide production process
KR100449417B1 (en) * 2002-09-12 2004-09-22 주식회사 세화엔스텍 Combined treatment for removal of nitrogen from mixed wastewater
CN1321070C (en) * 2005-02-03 2007-06-13 刘德沛 Waste water treating method and multi-effect evaporator for propylene oxide production

Also Published As

Publication number Publication date
JPS5962396A (en) 1984-04-09

Similar Documents

Publication Publication Date Title
US5702572A (en) Method for treating exhaust gases and foul water
JP3477526B2 (en) Wastewater recovery equipment
JPS63302996A (en) Treatment of organic sewage
JPH0135719B2 (en)
JPH0124558B2 (en)
JPH0114836B2 (en)
JPH0114839B2 (en)
CN211972063U (en) Flameless torch device
JPH0114833B2 (en)
JPS6320600B2 (en)
JPS6366593B2 (en)
JPS5919598A (en) Treatment of organic liquid waste
JPH0135720B2 (en)
JPH0114835B2 (en)
JPS5962391A (en) Treatment of organic waste water
JPH0114838B2 (en)
JPH0114832B2 (en)
JPH0114834B2 (en)
JPH0114840B2 (en)
CA2114583C (en) Waste activated sludge treatment system
JPH0141399B2 (en)
RU2234463C1 (en) Method for purifying of high-concentrated alkaline sewage water
JPS6121792A (en) Treatment of organic waste water
JPH0310396B2 (en)
JPS637840B2 (en)