JPH0114836B2 - - Google Patents

Info

Publication number
JPH0114836B2
JPH0114836B2 JP57108395A JP10839582A JPH0114836B2 JP H0114836 B2 JPH0114836 B2 JP H0114836B2 JP 57108395 A JP57108395 A JP 57108395A JP 10839582 A JP10839582 A JP 10839582A JP H0114836 B2 JPH0114836 B2 JP H0114836B2
Authority
JP
Japan
Prior art keywords
water
sludge
treatment
oil
biological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57108395A
Other languages
Japanese (ja)
Other versions
JPS59392A (en
Inventor
Katsuyuki Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP57108395A priority Critical patent/JPS59392A/en
Publication of JPS59392A publication Critical patent/JPS59392A/en
Publication of JPH0114836B2 publication Critical patent/JPH0114836B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は有機性廃液、特にし尿などの濃厚有機
性廃液を極めて簡潔なプロセスにより、かつ省資
源的・省エネルギー的に処理できる方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for processing organic waste liquids, particularly concentrated organic waste liquids such as human waste, through an extremely simple process and in a resource- and energy-saving manner.

以下、本発明の詳細を、代表廃液としてし尿処
理を例にとつて説明する。
Hereinafter, the details of the present invention will be explained by taking human waste treatment as a typical waste liquid as an example.

従来のし尿処理において最も進歩したプロセス
として評価され最も実施例の多いプロセスは、し
尿に希釈水を10倍程度添加して生物処理(活性汚
泥処理が最も一般的)したのち、活性汚泥を沈殿
池で固液分離し、上澄水を凝集沈殿及び砂過
し、さらに色度、CODを除去するためにオゾン
処理、活性炭処理を行なう一方、汚泥を脱水・乾
燥・焼却するという方法である(以下、これを従
来プロセスと呼ぶ)。
The process that has been evaluated as the most advanced in conventional human waste treatment and has the most examples is to add about 10 times as much diluted water to the human waste, perform biological treatment (activated sludge treatment is the most common), and then transfer the activated sludge to a settling tank. In this method, the supernatant water is subjected to coagulation sedimentation and sand filtration, and ozone treatment and activated carbon treatment are performed to remove chromaticity and COD, while the sludge is dehydrated, dried, and incinerated (hereinafter referred to as This is called the conventional process).

この従来プロセスは一見合理的にみえるが、厳
しい視点から技術評価すると、次のような重大な
問題点が本質的に内在されていることを、本発明
者は認識するに到つた。
Although this conventional process appears to be reasonable at first glance, upon evaluating the technology from a strict viewpoint, the present inventors have come to realize that it inherently contains the following serious problems.

即ち、 数多くの単位操作を直列的に並べているた
め、プロセスが複雑であり維持管理性も悪い。
That is, since many unit operations are arranged in series, the process is complex and maintenance is poor.

凝集沈殿工程などの凝集固液分離工程に凝集
剤を多量に必要とする。また、汚泥の脱水工程
にも多量の脱水助剤の添加を必要とする。従つ
て、資源多量消費型プロセスとなつている。
A large amount of flocculant is required in the coagulation solid-liquid separation process such as the coagulation-sedimentation process. Furthermore, the sludge dewatering process also requires the addition of a large amount of dewatering aid. Therefore, it is a resource-intensive process.

オゾン処理にはオゾン発生のための多量の電
力を必要とし、活性炭処理にも高価な活性炭を
多量に必要とする。また、活性炭の再生に多量
の熱エネルギーを必要とするなど、エネルギー
多量消費型プロセスである。
Ozone treatment requires a large amount of electricity to generate ozone, and activated carbon treatment also requires a large amount of expensive activated carbon. Furthermore, it is an energy-intensive process, as it requires a large amount of thermal energy to regenerate activated carbon.

生物処理工程から発生する余剰生物汚泥およ
び凝集沈殿工程から発生する凝集汚泥の脱水処
理にカチオンポリマー、塩化第2鉄、消石灰な
どの脱水助剤を多量に必要とするほか、脱水ケ
ーキの含水率が80%程度と高いため、脱水ケー
キの乾燥焼却工程に重油などのエネルギーを多
量(200〜300/ton−D・S)に消費する。
したがつて上記、項とあいまつて、資源・
エネルギーの消費量が非常に多いプロセスであ
る。
In addition to requiring large amounts of dehydration aids such as cationic polymers, ferric chloride, and slaked lime to dehydrate excess biological sludge generated from the biological treatment process and flocculated sludge generated from the coagulation-sedimentation process, the water content of the dehydrated cake is As it is as high as 80%, a large amount of energy such as heavy oil is consumed in the drying and incineration process of the dehydrated cake (200-300/ton-D.S.).
Therefore, in conjunction with the above section, resources and
It is a very energy intensive process.

このような本発明者が指摘した問題点は、極め
て重大なものであるにも拘らず、従来は有機性廃
水を高度に処理し、水域環境の汚染を防止するた
めには、ある程度やむ得ないと考えられがちであ
つたが、本発明者は、このような現状の技術レベ
ルに強い疑問をもち、前記の従来プロセスの諸欠
点を合理的に解決できるプロセスを実現するため
に検討を進め、本発明を完成するに到つたもので
ある。
Although the problems pointed out by the present inventor are extremely serious, conventional methods have been unavoidable to some extent in order to highly treat organic wastewater and prevent pollution of the aquatic environment. However, the present inventor has strong doubts about the current level of technology, and has conducted studies to realize a process that can rationally solve the drawbacks of the conventional process. The present invention has now been completed.

本発明の効果は、驚くべきものといつてよく、
従来プロセスの凝集沈殿、砂過、オゾン処理、
活性炭吸着、滅菌の各工程および汚泥の機械脱水
工程、脱水助剤の添加工程のすべてが不要にな
り、しかもその処理水質は従来プロセスより格段
に秀れており、運転経費も著しく低減することが
できる。
The effects of the present invention can be said to be surprising,
Conventional processes such as coagulation sedimentation, sand filtration, ozone treatment,
The processes of activated carbon adsorption, sterilization, mechanical dewatering of sludge, and addition of dehydration aids are all eliminated, and the quality of the treated water is far superior to that of conventional processes, and operating costs can be significantly reduced. can.

すなわち本発明は、有機性廃液を生物処理した
のち、該生物処理水を蒸気圧縮法および/または
多重効用法による間接加熱式蒸発処理し、該蒸発
水蒸気の凝縮水を前記有機性廃液の処理水となす
と共に、少なくとも前記生物処理工程から発生す
る余剰活性汚泥に水より高沸点の油を添加混合し
て蒸発乾燥処理したのち、該乾燥汚泥を焼却処理
することを特徴とする有機性廃液の処理方法であ
る。
That is, in the present invention, after biologically treating an organic waste liquid, the biologically treated water is subjected to indirect heating evaporation treatment using a vapor compression method and/or a multiple effect method, and the condensed water of the evaporated water vapor is converted into the treated water of the organic waste liquid. In addition, at least the surplus activated sludge generated from the biological treatment process is mixed with an oil having a boiling point higher than that of water, and after being evaporated and dried, the dried sludge is incinerated. It's a method.

以下に、本発明の実施例を図面を参照しながら
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

除渣し尿1をこれに希釈水を添加することなく
生物学的硝化脱窒素工程2(硝化工程、又は脱窒
素工程としてもよい)に流入せしめBOD、窒素
成分などを除去する。生物学的硝化脱窒素工程2
としては、し尿中のBOD成分を脱窒素菌のため
の有機炭素源として利用する硝化液循環方式、ス
テツプ流入方式、好気性脱窒素方式、回分処理方
式などを採用することができる。
The removed human waste 1 is allowed to flow into a biological nitrification and denitrification process 2 (which may also be a nitrification process or a denitrification process) without adding dilution water to remove BOD, nitrogen components, and the like. Biological nitrification and denitrification process 2
Examples of methods that can be used include a nitrifying solution circulation method, a step inflow method, an aerobic denitrification method, and a batch treatment method, which use BOD components in human waste as an organic carbon source for denitrifying bacteria.

しかして、生物学的硝化脱窒素工程2から流出
する活性汚泥スラリー3は遠心濃縮機などの固液
分離工程4において固液分離され、分離汚泥5の
大部分は返送汚泥6として生物学的硝化脱窒素工
程2にリサイクルされる。一方、固液分離工程4
からの分離液7は蒸気圧縮法による蒸発工程8に
流入する。
The activated sludge slurry 3 flowing out from the biological nitrification and denitrification process 2 is subjected to solid-liquid separation in a solid-liquid separation process 4 such as a centrifugal thickener, and most of the separated sludge 5 is biologically nitrified as return sludge 6. Recycled to denitrification step 2. On the other hand, solid-liquid separation step 4
The separated liquid 7 flows into an evaporation step 8 using a vapor compression method.

なお、生物学的硝化脱窒素工程2ではし尿を無
希釈で処理するので、し尿中のBOD、アンモニ
ア性窒素などを生物学的に酸化する際に発生する
微生物酸化反応生成熱(通常30000〜40000Kcal/
Kl−し尿)によつて生物学的硝化脱窒素工程2内
の活性汚泥スラリー3の水温が上昇し40℃以上に
なる。従つて、蒸発工程8への流入液すなわち上
記分離液7も40℃程度となるので、蒸発温度(通
常100℃になるように蒸発缶8′内の圧力を設定す
る)にまで加熱するのに必要な熱量が節減できる
という重要な効果が得られる。このことは微生物
酸化反応生成熱を間接的に蒸発工程8に利用する
という重要な技術的概念を意味する。
In addition, in biological nitrification and denitrification process 2, human waste is treated without dilution, so the microbial oxidation reaction generated heat (usually 30,000 to 40,000 Kcal) is generated when biologically oxidizing BOD, ammonia nitrogen, etc. in human waste. /
Kl - human waste) causes the water temperature of the activated sludge slurry 3 in the biological nitrification and denitrification process 2 to rise to 40°C or higher. Therefore, the liquid flowing into the evaporation step 8, that is, the separated liquid 7, is also at a temperature of about 40°C, so it takes a while to heat it to the evaporation temperature (usually the pressure inside the evaporator 8' is set to 100°C). This has the important effect of reducing the amount of heat required. This means the important technical concept of indirectly utilizing the heat generated by the microbial oxidation reaction in the evaporation step 8.

しかして、上記流入液は熱交換器9にて、水蒸
気の凝縮水(これが、し尿の高度処理水である)
12′によつて温度80℃程度に予熱されたのち、
蒸発工程8に流入して蒸発濃縮され、濃縮液11
として排出される。一方、蒸発工程8にて蒸発し
た水蒸気12は、機械的圧縮機又はサーモンコン
プレツサーによる蒸気圧縮機13において圧縮昇
温されたのち再び蒸発工程8の間接加熱部14に
流入し加熱源として再利用される。間接加熱部1
4にて水蒸気は凝縮し、上記凝縮水12′となつ
て、熱交換器9を経由したのち、処理水15とな
つて放流される。処理水15は蒸留水とほぼ同等
の無色、透明で水質は極めて良好であり、し尿処
理水として最高度の水質を示す。なお、16は蒸
発工程8のスタートアツプ用の水蒸気である。蒸
発工程8としては、図示例の蒸気圧縮法によるも
ののほか、多重効用蒸発法あるいは蒸気圧縮法と
多重効用蒸発法との併用法によるものとしてもよ
い。
Therefore, the inflow liquid is treated as water vapor condensed water (this is highly treated human waste water) in the heat exchanger 9.
After being preheated to a temperature of about 80℃ by 12',
It flows into the evaporation step 8 and is evaporated and concentrated, resulting in a concentrated liquid 11
It is discharged as. On the other hand, the water vapor 12 evaporated in the evaporation step 8 is compressed and heated in a vapor compressor 13 using a mechanical compressor or a salmon compressor, and then flows into the indirect heating section 14 of the evaporation step 8 again to be used as a heating source. used. Indirect heating section 1
At step 4, the water vapor is condensed, becomes the condensed water 12', passes through the heat exchanger 9, and is then discharged as treated water 15. The treated water 15 is colorless and transparent, almost equivalent to distilled water, and has extremely good water quality, exhibiting the highest quality as human waste treated water. Note that 16 is water vapor for starting up the evaporation step 8. In addition to the vapor compression method shown in the illustrated example, the evaporation step 8 may be a multiple effect evaporation method or a combination of a vapor compression method and a multiple effect evaporation method.

しかして、上記濃縮液11は上記流入液の流量
の1/40〜1/50に濃縮されており、極めて濃い褐色
を示す高COD濃度の液となつており、これを蒸
発乾燥処理、又は液中燃焼焼却などの焼却処理に
よつて処分する。
Therefore, the concentrated liquid 11 is concentrated to 1/40 to 1/50 of the flow rate of the inflow liquid, and is an extremely dark brown liquid with a high COD concentration. Dispose of by incineration such as medium combustion incineration.

一方、生物学的硝化脱窒素工程2から発生する
余剰活性汚泥17は、混和槽18にて重油、廃油
など水より高沸点の油19が添加され、汚泥と油
との混合スラリー20となる。混合スラリー20
は、多重効用蒸発缶21,21′,21″を備えた
蒸発乾燥工程10の1号缶21に流入する。ボイ
ラ22から水蒸気23を1号缶21内の間接加熱
部24に供給し混合スラリー20中の水分を蒸発
せしめ、蒸発水蒸気25を2号缶21′内の間接
加熱部24′に流入せしめるとともに、水分の減
少した混合スラリー20′を1号缶21から2号
缶21′にポンプ移送し、蒸発水蒸気25の凝縮
潜熱を利用して混合スラリー20′中の水分をさ
らに蒸発せしめる。2号缶21′からの混合スラ
リー20″も同様の方法で蒸発乾燥される。
On the other hand, surplus activated sludge 17 generated from the biological nitrification and denitrification process 2 is mixed with oil 19 having a boiling point higher than water, such as heavy oil or waste oil, in a mixing tank 18 to form a mixed slurry 20 of sludge and oil. Mixed slurry 20
The water vapor flows into the No. 1 can 21 of the evaporative drying process 10 equipped with multiple-effect evaporators 21, 21', and 21''. Steam 23 is supplied from the boiler 22 to the indirect heating section 24 in the No. 1 can 21 to form a mixed slurry. The water in the slurry 20 is evaporated, and the evaporated steam 25 is caused to flow into the indirect heating section 24' in the No. 2 can 21', and the mixed slurry 20' with reduced moisture is pumped from the No. 1 can 21 to the No. 2 can 21'. The water in the mixed slurry 20' is further evaporated using the latent heat of condensation of the evaporated water vapor 25. The mixed slurry 20'' from the No. 2 can 21' is also evaporated and dried in the same manner.

しかして、3号缶21″からの蒸発水蒸気2
5″はコンデンサ(凝縮器)26にて凝縮し2号
缶21′、3号缶21″からの凝縮水27′,2
7″とともに図示されていない油分離工程(コア
レツサー)を経由して処理水15に合流される。
なお、24″は間接加熱部、25′は蒸発水蒸気、
27は凝縮水、28は非凝縮性ガス排出用の真空
ポンプ、34は別途供給するボイラ給水であり、
凝縮水27はボイラ22を経由して上記水蒸気2
3となる。
However, the evaporated steam 2 from the No. 3 can 21″
5'' is condensed in a condenser (condenser) 26 and condensed water 27', 2 from can 2 21' and can 3 21''
7'' and is combined with the treated water 15 via an oil separation process (coalexer) not shown.
In addition, 24'' is an indirect heating part, 25' is evaporated steam,
27 is condensed water, 28 is a vacuum pump for discharging non-condensable gas, 34 is separately supplied boiler water supply,
The condensed water 27 passes through the boiler 22 and becomes the steam 2.
It becomes 3.

さて、3号缶21″から排出される混合スラリ
ー29は水分が大部分蒸発除去され含水率10%程
度となつた油と汚泥との混合スラリーになつてい
るので、スクリユープレスなどの搾油機30にて
混合スラリー29中の油と汚泥と分離し、分離油
31を混和槽18にリサイクルする。一方、脱油
された汚泥32をボイラ22にて焼却し水蒸気2
3を回収する。なお、し渣・ゴミなどをボイラ2
2にて混焼してもよい。33は焼却残渣である。
Now, the mixed slurry 29 discharged from the No. 3 can 21'' is a mixed slurry of oil and sludge with a moisture content of about 10%, with most of the moisture removed by evaporation, so it can be extracted using an oil extractor such as a screw press. 30, the oil and sludge in the mixed slurry 29 are separated, and the separated oil 31 is recycled to the mixing tank 18.Meanwhile, the deoiled sludge 32 is incinerated in the boiler 22, and steam 2
Collect 3. In addition, sludge, garbage, etc. should be removed from boiler 2.
Co-firing may be performed in step 2. 33 is incineration residue.

上記蒸発工程8から排出される濃縮液11の処
分については、ドラムドライヤーなどの蒸発乾固
機にて処理したのち乾固物をボイラ22にて焼却
するか、直接噴霧燃焼させたりしてもよいが、蒸
発乾固せずに流動性を保持する程度まで濃縮した
のち、図示例のように余剰活性汚泥17に混合し
て、油を媒体とする上記蒸発乾燥工程10にて処
理するのが最も好適である。この方法によれば、
濃縮液11の別個の処理工程が不要になるからで
ある。
Regarding the disposal of the concentrated liquid 11 discharged from the evaporation step 8, the dried substance may be incinerated in the boiler 22 after being treated with an evaporator such as a drum dryer, or it may be directly sprayed and burned. However, it is best to concentrate it to the extent that it maintains its fluidity without being evaporated to dryness, then mix it with the surplus activated sludge 17 as shown in the example shown in the figure, and process it in the evaporation drying step 10 using oil as a medium. suitable. According to this method,
This is because a separate processing step for the concentrated liquid 11 becomes unnecessary.

さらに、ボイラ22にて発生した上記水蒸気2
3の量は上記多重効用蒸発缶で必要とする水蒸気
量より多量となることが多いので、残部の水蒸気
23′を蒸発工程8、熱交換器9用の加熱源、管
理棟の暖房などに供給するのがよい。また、し尿
から除去されたし渣を搾油機30に供給すると搾
油効率が向上する。
Furthermore, the water vapor 2 generated in the boiler 22
Since the amount of water vapor 3 is often larger than the amount of water vapor required in the multi-effect evaporator, the remaining water vapor 23' is supplied to the evaporation process 8, the heating source for the heat exchanger 9, the heating of the administration building, etc. It is better to do so. Moreover, if the human waste removed from human waste is supplied to the oil extractor 30, the oil extraction efficiency will be improved.

なお、ボイラ22の排ガスの保有熱を直接又は
これにより温水を調製して熱交換器9、蒸気圧縮
機13、混和槽18、搾油機30などの熱源に利
用したり、し尿処理場にゴミ焼却場が隣接してい
る場合は、ゴミ焼却場からの余熱を蒸発工程8、
上記多重効用蒸発缶などに利用してもよいことは
申すまでもない。
In addition, the heat retained in the exhaust gas of the boiler 22 can be used directly or used to prepare hot water and used as a heat source for the heat exchanger 9, vapor compressor 13, mixing tank 18, oil extractor 30, etc., or can be used for incineration of waste at a human waste treatment plant. If the waste incineration plant is adjacent to the waste incineration plant, the residual heat from the waste incineration plant is used in the evaporation process 8.
Needless to say, it may also be used in the multi-effect evaporator mentioned above.

さらに、図示はしないが、蒸発乾燥工程10を
蒸気圧縮法、もしくはこれと多重効用蒸発法との
併用法により行なつてもよく、本発明の効果を充
分発揮できることは言うまでもない。また、蒸発
工程8への流入法をあらかじめ逆浸透膜、限外
過膜などによつて濃縮する方法も採用可能であ
る。
Furthermore, although not shown, the evaporative drying step 10 may be performed by a vapor compression method or a combination of this and a multiple effect evaporation method, and it goes without saying that the effects of the present invention can be fully exhibited. Furthermore, a method of concentrating the water in advance using a reverse osmosis membrane, an ultrafiltration membrane, etc. before entering the evaporation step 8 can also be adopted.

以上述べたような本発明によれば、次のような
数多くの重要な効果が得られ、従来プロセスの諸
欠点を根本的に解決することができる。
According to the present invention as described above, many important effects as described below can be obtained, and various drawbacks of conventional processes can be fundamentally solved.

従来プロセスで不可欠となつていた生物処理
液の凝集沈殿(又は浮上)、砂過、オゾン処
理、活性炭吸着、滅菌処理のすべての工程が不
要になり、しかも従来プロセスよりもはるかに
秀れた処理水質を得ることができる。
All of the steps that were essential in conventional processes, such as flocculation and sedimentation (or flotation) of biological treatment liquid, sand filtration, ozone treatment, activated carbon adsorption, and sterilization, are no longer necessary, and the process is far superior to conventional processes. water quality can be obtained.

従つて、環境汚染防止上著しい効果が得られ
るほか、プロセスも極めて簡略化され、さらに
凝集剤、オゾン発生電力、活性炭の補給、活性
炭再生エネルギーのすべてが不要になり、大き
な省資源・省エネルギー効果が得られる。
Therefore, in addition to being highly effective in preventing environmental pollution, the process is also extremely simplified, and there is no need for flocculants, ozone generation power, activated carbon replenishment, and activated carbon regeneration energy, resulting in significant resource and energy savings. can get.

また、従来プロセスにおいて不可欠となつて
いた余剰活性汚泥と凝集沈殿(浮上)汚泥の機
械脱水機による脱水工程を不要にできると同時
に、カチオンポリマーなどの脱水助剤の添加も
不要になるので、省資源効果が大きい。
In addition, the process of dewatering excess activated sludge and coagulated sedimentation (floating) sludge using a mechanical dehydrator, which was essential in conventional processes, can be eliminated, and at the same time, the addition of dewatering aids such as cationic polymers is no longer necessary. Great resource effect.

し尿などの濃厚有機性廃液中には、多量のア
ンモニアと有機酸、臭気成分及びSSが含まれ
ているため、本発明プロセスによらず原液を直
接蒸発処理すると、発生水蒸気中に多量のアン
モニア、揮発性有機酸、臭気成分が含まれ、ま
たスケール生成もはげしい。従つて、蒸発槽か
らの臭気のリーク対策に細心の注意を要するほ
か、発生水蒸気の凝縮水を本発明のように処理
水として放流することはできない。
Concentrated organic waste liquids such as human waste contain large amounts of ammonia, organic acids, odor components, and SS, so if the raw liquid is directly evaporated without using the process of the present invention, a large amount of ammonia, ammonia, and It contains volatile organic acids and odor components, and is also prone to scale formation. Therefore, careful attention must be paid to prevent odor from leaking from the evaporation tank, and condensed water of generated steam cannot be discharged as treated water as in the present invention.

これに対し本発明によれば、あらかじめ生物
学的硝化又は硝化脱窒素処理などの生物処理に
よつて生物的に揮発性有機成分、アンモニア、
臭気成分、硫化物などのスケール生成成分を除
去したのち蒸気圧縮法などによる蒸発濃縮・乾
燥処理を行なうのでスケール生成もほとんどな
く、発生水蒸気およびこれの凝縮水中にBOD
成分、アンモニア性窒素、臭気成分がなく無色
透明の蒸留水なみの水質が得られる。また、蒸
発槽からの悪臭成分のリークがない。
On the other hand, according to the present invention, volatile organic components, ammonia,
After removing odor components and scale-forming components such as sulfides, we perform evaporation concentration and drying treatment using vapor compression, etc., so there is almost no scale formation, and BOD is contained in the generated water vapor and its condensed water.
The water quality is clear, colorless and comparable to distilled water, with no ammonia nitrogen or odor components. In addition, there is no leakage of malodorous components from the evaporation tank.

凝集沈殿(浮上)処理を行なえば必ず凝集汚
泥が発生し、その処理・処分が必然的に必要に
なるが、凝集汚泥は脱水性が非常に悪く大きな
問題になつている。これに対し本発明では、凝
集処理工程が全く不要なため凝集汚泥そのもの
が発生しないので、このような問題は起り得な
い。
If coagulation and sedimentation (floating) treatment is performed, flocculated sludge is inevitably generated, and its treatment and disposal are inevitably required, but flocculated sludge has very poor dewatering properties and has become a major problem. On the other hand, in the present invention, such a problem cannot occur because no flocculation treatment step is required and no flocculated sludge itself is generated.

従来プロセスにおいては処理水のCOD、色
度成分は凝集処理工程では完全に除去すること
ができず、そのためオゾン処理、活性炭処理工
程が、不可欠となり、活性炭処理によつて
CODを数mg/にするにはランニングコストが
著しく高くなる(500〜600円/Kl−し尿)が、
本発明では生物処理液を蒸発処理するので処理
水は完全に無色で、CODも0〜0.5mg/と極め
て少ない。
In conventional processes, COD and chromaticity components of treated water cannot be completely removed in the coagulation treatment process, so ozone treatment and activated carbon treatment processes are essential.
Running costs become extremely high (500 to 600 yen/Kl - human waste) to reduce COD to several mg/, but
In the present invention, since the biological treatment liquid is evaporated, the treated water is completely colorless and has an extremely low COD of 0 to 0.5 mg/.

従来プロセスの汚泥処理工程は、余剰活性汚
泥と凝集沈殿汚泥との混合汚泥に、カチオンポ
リマーなどの脱水助剤を添加してベルトプレス
などの機械脱水機で脱水しているため、脱水ケ
ーキの含水率が80〜85%程度と極めて高く、ま
た脱水ケーキ中に水酸化アルミニウムなどの無
機物が共存するので、脱水ケーキの発熱量が低
い。従つて、脱水ケーキの乾燥・焼却に多量
(通常200〜300/ton−D・S)の補助燃料
を必要とする。
In the conventional sludge treatment process, a dehydration aid such as a cationic polymer is added to the mixed sludge of surplus activated sludge and flocculated sedimentation sludge, and the water is dehydrated using a mechanical dehydrator such as a belt press. The dehydrated cake has a very high rate of about 80 to 85%, and since inorganic substances such as aluminum hydroxide coexist in the dehydrated cake, the calorific value of the dehydrated cake is low. Therefore, a large amount (usually 200 to 300/ton-D.S.) of auxiliary fuel is required for drying and incinerating the dehydrated cake.

これに対し本発明では、凝集沈殿汚泥が発生
しないこと及び機械脱水工程が不要なので、乾
燥物の水分を容易に低下させることができ自然
領域にある乾燥物を得ることができる。
On the other hand, in the present invention, since coagulation and sedimentation sludge is not generated and no mechanical dehydration step is required, the moisture content of the dried product can be easily lowered and a dried product that is found in natural areas can be obtained.

従来法によるし尿処理水の塩素イオン濃度は
300〜3000mg/と高いため山林・田畑のかんが
い用水にすることは困難であつたが、本発明に
よる処理水は蒸留水に近いため塩素イオン濃度
は数ppm程度にすぎない。したがつて、かんが
い用水、山林散布用水として使用することがで
きる。
The chloride ion concentration of human waste treated water using the conventional method is
Since the chlorine ion concentration is as high as 300 to 3000 mg/ml, it has been difficult to use it as irrigation water for forests and fields, but since the water treated by the present invention is close to distilled water, the chlorine ion concentration is only about a few ppm. Therefore, it can be used as irrigation water and forest spraying water.

余剰活性汚泥に重油などの油を添加して蒸発
処理するため水分蒸発によつても流動性が失な
われないので、容易に蒸発缶にて水分を蒸発缶
できるし、添加した油も大部分が回収再利用さ
れるので、重油所要量も非常に少なくてすむ。
Since oil such as heavy oil is added to surplus activated sludge and evaporated, fluidity is not lost even when water evaporates, so water can be easily evaporated in an evaporator, and most of the added oil can be removed. Since the oil is recovered and reused, the amount of heavy oil required is also extremely small.

次に、本発明の実施例について記す。 Next, examples of the present invention will be described.

実施例 神奈川県逗子市し尿処理場に搬入されるし尿
(浄化槽汚泥10%混入)を除渣したのち、処理量
100/minの規模で硝化液循環生物学的脱窒素工
程により無希釈処理した。無希釈処理の結果硝化
槽の発泡が激しかつたが、消泡用水を添加するこ
とは蒸発対象水量の増加と水温の低下を招くため
好ましくないので行なわなかつた。発泡対策とし
ては硝化槽液面上の泡沫層に消泡機(インペラを
回転させて泡を破泡するもの)を設置した。
Example: After removing the residue from human waste (containing 10% septic tank sludge) delivered to the human waste treatment plant in Zushi City, Kanagawa Prefecture, the amount of waste processed is
No-dilution treatment was carried out by biological denitrification process with nitrification fluid circulation at a scale of 100/min. As a result of non-dilution treatment, foaming in the nitrification tank was severe, but adding antifoaming water was not desirable as it would increase the amount of water to be evaporated and lower the water temperature. As a countermeasure against foaming, a defoamer (which rotates an impeller to break the foam) was installed in the foam layer above the liquid surface of the nitrification tank.

生物学的脱窒素工程のMLVSSは20000〜21000
mg/、滞留日数は7日間とした。生物処理槽内
の水温は微生物の酸化反応生成熱によつて夏期は
42゜〜45℃、冬期は33゜〜35℃に維持された。
MLVSS of biological denitrification process is 20000-21000
mg/, and the residence time was 7 days. The water temperature in the biological treatment tank decreases in summer due to the heat produced by the oxidation reaction of microorganisms.
The temperature was maintained between 42° and 45°C, and between 33° and 35°C during the winter.

生物処理槽流出スラリーの固液分離には無薬注
型遠心濃縮機(スクリユーデカンター型)を使用
し、濃縮汚泥の大部分を生物処理槽へリサイクル
させ、一部を余剰生物汚泥として排出した。遠心
濃縮分離液中の残留SSを沈殿又は過機によつ
て充分除去したのち自己蒸気圧縮式蒸発缶に供給
し、濃縮比40倍以上に濃縮せしめた。
A chemical-free centrifugal thickener (screw decanter type) was used for solid-liquid separation of the slurry flowing out of the biological treatment tank, and most of the thickened sludge was recycled to the biological treatment tank, with a portion being discharged as surplus biological sludge. . After the residual SS in the centrifugal concentrated separation liquid was sufficiently removed by precipitation or filtration, it was fed to a self-vapor compression evaporator and concentrated to a concentration ratio of more than 40 times.

この蒸発缶流入液の水質は水温40゜〜42℃、PH
7.0〜7.2、アンモニア性窒素5mg/以下、溶解
性BOD10mg/以下、溶解性リン酸550〜680mg/
、溶解性COD430〜520mg/、色度2500〜3000
度、塩素イオン3000〜3200mg/であつた。
The water quality of this evaporator inflow liquid is water temperature 40° to 42°C, pH
7.0-7.2, ammonia nitrogen 5mg/or less, soluble BOD 10mg/or less, soluble phosphoric acid 550-680mg/
, Soluble COD 430~520mg/, Chromaticity 2500~3000
The concentration of chloride ions was 3,000 to 3,200 mg/day.

上記蒸発缶には小型実験規模の流下液膜式を、
蒸気圧縮機にはルーツ式をそれぞれ用いた。蒸発
水蒸気の凝縮水(これがし尿の無希釈高度処理水
となる)の水質はPH7.0、SSなし、色度なし、
COD0〜0.5mg/、BOD1〜3mg/、リン酸検出
せず、NH3−N5mg/以下と極めて良好であつ
た。
The above evaporator is a small experimental scale falling liquid film type.
Roots type steam compressors were used in each case. The water quality of the condensed water of evaporated water vapor (this becomes highly processed water with no dilution of human waste) is PH7.0, no SS, no color,
The results were very good, with COD 0-0.5 mg/, BOD 1-3 mg/, phosphoric acid not detected, and NH 3 -N 5 mg/ or less.

一方、上記蒸発缶からの濃縮液と無希釈生物学
的硝化脱窒素工程から発生する余剰汚泥(5.5Kg
−D・S/Kl−し尿)との混合スラリーにA重油
を加え、荏原インフイルコ(株)社製品CGプロセス
に従い多重効用蒸発缶にて乾燥後、焼却処理し
た。このCGプロセスで必要とした油の補給量は
CGプロセスに供給する混合スラリー中の固形物
1Kgあたり0.15と極めて少量であつた。すなわ
ち、し尿1Kg処理するのに必要な重油コストは82
円/Kg−し尿であつた。
On the other hand, the concentrate from the evaporator and excess sludge (5.5Kg) generated from the non-dilution biological nitrification and denitrification process
Heavy oil A was added to the mixed slurry of the slurry (-D・S/Kl- human waste), dried in a multi-effect evaporator according to the CG process manufactured by Ebara Infilco Corporation, and then incinerated. The amount of oil required for this CG process is
The amount was extremely small at 0.15 per kg of solids in the mixed slurry supplied to the CG process. In other words, the heavy oil cost required to treat 1 kg of human waste is 82
Yen/Kg - It was human waste.

また、生物処理水を蒸気圧縮法で蒸発するに要
するコストは、生物処理水1m3あたり25KWHす
なわち375円/Kl−し尿と安価であつた。さらに、
生物学的硝化脱窒素工程で必要とするエアレーシ
ヨンブロワーの動力コストは約300円/Kl−し尿
となり、プロセス全体の運転経費は種々のポンプ
などの電力代を含めて約1000〜1100円/Kl−し尿
であり、従来の低希釈二段活性汚泥法で必要とさ
れる維持管理費の実績3500〜4000円/Kl−し尿と
比較すると、本発明は運転経費が格段に安価で、
しかも従来プロセスより圧倒的に秀れた処理水質
であつた。
In addition, the cost required to evaporate biologically treated water using the vapor compression method was as low as 25 KWH per cubic meter of biologically treated water, or 375 yen/Kl of human waste. moreover,
The power cost of the aeration blower required for the biological nitrification and denitrification process is approximately 300 yen/Kl - human waste, and the operating cost of the entire process is approximately 1,000 to 1,100 yen/Kl including electricity costs for various pumps, etc. Compared to Kl-human waste, which requires maintenance and management costs of 3,500 to 4,000 yen/Kl-human waste in the conventional low dilution two-stage activated sludge method, the operating costs of the present invention are much lower.
Moreover, the treated water quality was overwhelmingly superior to that of conventional processes.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の一実施態様を示すフローシー
トである。 1…除渣し尿、2…生物学的硝化脱窒素工程、
3…活性汚泥スラリー、4…固液分離工程、5…
分離汚泥、6…返送汚泥、7…分離液、8…蒸発
工程、8′…蒸発缶、9…熱交換器、10…蒸発
乾燥工程、11…濃縮液、12,16,23,2
3′…水蒸気、12′,27,27′,27″…凝縮
水、13…蒸気圧縮機、14,24,24′,2
4″…間接加熱部、15…処理水、17…余剰活
性汚泥、18…混和槽、19…油、20,20′,
20″,29…混合スラリー、21…1号缶、2
1′…2号缶、21″…3号缶、22…ボイラ、2
5,25′,25″…蒸発水蒸気、26…コンデン
サ、28…真空ポンプ、30…搾油機、31…分
離油、32…汚泥、33…焼却残渣、34…ボイ
ラ給水。
The drawing is a flow sheet illustrating one embodiment of the invention. 1... Sludge removal human waste, 2... Biological nitrification and denitrification process,
3...Activated sludge slurry, 4...Solid-liquid separation step, 5...
Separated sludge, 6... Returned sludge, 7... Separated liquid, 8... Evaporation process, 8'... Evaporator, 9... Heat exchanger, 10... Evaporation drying process, 11... Concentrated liquid, 12, 16, 23, 2
3'... Steam, 12', 27, 27', 27''... Condensed water, 13... Vapor compressor, 14, 24, 24', 2
4″... Indirect heating section, 15... Treated water, 17... Excess activated sludge, 18... Mixing tank, 19... Oil, 20, 20',
20″, 29…Mixed slurry, 21…No. 1 can, 2
1'...No. 2 can, 21''...No. 3 can, 22...Boiler, 2
5, 25', 25''... Evaporated steam, 26... Condenser, 28... Vacuum pump, 30... Oil extractor, 31... Separated oil, 32... Sludge, 33... Incineration residue, 34... Boiler feed water.

Claims (1)

【特許請求の範囲】 1 有機性廃液を生物処理したのち、該生物処理
水を蒸気圧縮法および/または多重効用法による
間接加熱式蒸発処理し、該蒸発水蒸気の凝縮水を
前記有機性廃液の処理水となすと共に、少なくと
も前記生物処理工程から発生する余剰活性汚泥に
水より高沸点の油を添加混合して蒸発乾燥処理し
たのち、該乾燥汚泥を焼却処理することを特徴と
する有機性廃液の処理方法。 2 前記余剰活性汚泥に前記間接加熱式蒸発処理
して得られた濃縮液を混合し、これに前記油を添
加混合して蒸発乾燥処理する特許請求の範囲第1
項記載の方法。 3 前記生物処理工程が、少なくとも生物学的硝
化反応が生起する工程である特許請求の範囲第1
項又は第2項記載の方法。 4 前記生物処理工程が、希釈水を添加すること
なく行なわれるものである特許請求の範囲第1
項、第2項又は第3項記載の方法。
[Scope of Claims] 1. After biologically treating the organic waste liquid, the biologically treated water is subjected to indirect heating evaporation treatment using a vapor compression method and/or a multiple effect method, and the condensed water of the evaporated water vapor is converted into the organic waste liquid. An organic waste liquid characterized by adding and mixing an oil having a boiling point higher than that of water to the surplus activated sludge generated from at least the above-mentioned biological treatment process, evaporating and drying the treated water, and then incinerating the dried sludge. processing method. 2 The concentrated liquid obtained by the indirect heating evaporation treatment is mixed with the surplus activated sludge, and the oil is added and mixed to the mixture, and the evaporation drying treatment is performed.
The method described in section. 3. Claim 1, wherein the biological treatment step is a step in which at least a biological nitrification reaction occurs.
or the method described in paragraph 2. 4. Claim 1, wherein the biological treatment step is carried out without adding dilution water.
3. The method described in Section 2, Section 2, or Section 3.
JP57108395A 1982-06-25 1982-06-25 Treatment of organic waste liquor Granted JPS59392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57108395A JPS59392A (en) 1982-06-25 1982-06-25 Treatment of organic waste liquor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57108395A JPS59392A (en) 1982-06-25 1982-06-25 Treatment of organic waste liquor

Publications (2)

Publication Number Publication Date
JPS59392A JPS59392A (en) 1984-01-05
JPH0114836B2 true JPH0114836B2 (en) 1989-03-14

Family

ID=14483668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57108395A Granted JPS59392A (en) 1982-06-25 1982-06-25 Treatment of organic waste liquor

Country Status (1)

Country Link
JP (1) JPS59392A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125493U (en) * 1984-02-01 1985-08-23 サンデン株式会社 case
JPS6111999U (en) * 1984-06-25 1986-01-24 荏原インフイルコ株式会社 Human waste wastewater treatment equipment
JPS6112000U (en) * 1984-06-28 1986-01-24 荏原インフイルコ株式会社 Human waste wastewater treatment equipment
JPH03199A (en) * 1989-05-25 1991-01-07 Ebara Infilco Co Ltd Methane fermentation treatment
JP2010284134A (en) * 2009-06-15 2010-12-24 Nippon Rensui Co Ltd Method for producing purified sugar solution
ES2609734B1 (en) * 2015-10-15 2018-01-31 Anna María PORTELL HIELO Installation and procedure for purification of organic waste with presence of water
JP7226731B2 (en) * 2018-10-19 2023-02-21 Dowaテクノロジー株式会社 Processing method of the object to be processed

Also Published As

Publication number Publication date
JPS59392A (en) 1984-01-05

Similar Documents

Publication Publication Date Title
CN101734820B (en) Method for treating high slat-containing wastewater
CN105016577A (en) Advanced treatment system for process sewage and advanced treatment method for sewage
CN102976543A (en) Garbage leachate disposal method and system
CN101549938A (en) Method for treating waste water containing high concentration of organosilicon
CN111960590A (en) Membrane concentrate treatment system of waste incineration power plant
CN105800909B (en) Sludge condensation and deep dehydration medicament and its sludge condensation and deep dehydration method
JPH0114836B2 (en)
JPS6210720B2 (en)
CN107540161A (en) High pure and ultra-fine modified calcium carbonate produces the processing method and processing system of waste water
CN115818880A (en) Method for treating high-salt high-organic matter high-hardness wastewater
JPH0114833B2 (en)
JPH0114832B2 (en)
JPH0135720B2 (en)
JPH0114837B2 (en)
JPS5962396A (en) Treatment of organic waste water containing ammonia
KR100523338B1 (en) Method for treating and reusing high-strength organic wastewater
JPH0114835B2 (en)
JPS58223498A (en) Treatment of organic waste water
JPS6366593B2 (en)
CN116947266B (en) Treatment process for comprehensive sewage and high-salt wastewater
JPH0114839B2 (en)
JPH0114838B2 (en)
KR960001397Y1 (en) Waste water treatment apparatus
JPH0114840B2 (en)
JPS5962391A (en) Treatment of organic waste water