JPH01140556A - Cadmium negative electrode for alkaline storage battery - Google Patents

Cadmium negative electrode for alkaline storage battery

Info

Publication number
JPH01140556A
JPH01140556A JP62296581A JP29658187A JPH01140556A JP H01140556 A JPH01140556 A JP H01140556A JP 62296581 A JP62296581 A JP 62296581A JP 29658187 A JP29658187 A JP 29658187A JP H01140556 A JPH01140556 A JP H01140556A
Authority
JP
Japan
Prior art keywords
negative electrode
compound
oxygen gas
active substance
cadmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62296581A
Other languages
Japanese (ja)
Inventor
Shoichi Ikeyama
正一 池山
Kazutaka Iwasaki
和隆 岩崎
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62296581A priority Critical patent/JPH01140556A/en
Publication of JPH01140556A publication Critical patent/JPH01140556A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • H01M10/526Removing gases inside the secondary cell, e.g. by absorption by gas recombination on the electrode surface or by structuring the electrode surface to improve gas recombination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the oxygen gas absorption capability of a negative electrode plate by including the powder of a magnecium compound and an indium compound in an active substance. CONSTITUTION:In a nonsitering type Cd negative electrode composed by holding an active substance mainly of a Cd oxide or a Cd hydroxide in a conductive core material, the powders of a Mg compound and an In compound are included in the active substance layer. In the Cd negative electrode of such a composition, the Mg compound suppresses the generation of coarse crystals of the Cd active substance particles generated by the repeated charge and discharge. As a result, as well as the reduction of the specific surface area of the active substance is suppressed, the In compound which is effective for oxygen gas absorption is never taken in the Cd active substance. Consequently, the catalystic function of the In compound in the oxygen gas absorption reaction of the negative electrode can be exercised sufficiently, and the oxygen gas absorption capability of the Cd negative electrode is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアルカリ蓄電池用カドミウム負極、とくにカド
ミウム活物質を導電性の支持体に塗着するか、または支
持体の内部に充填してなる非焼結式カドミウム負極に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a cadmium negative electrode for alkaline storage batteries, particularly a non-sintered cadmium negative electrode formed by coating a cadmium active material on a conductive support or filling the inside of the support. The formula relates to cadmium negative electrodes.

従来の技術 従来、この種のカドミウム負極として広く用いられてい
るペースト式カドミウム負極は、一般に酸化カドミウム
あるいは水酸化カドミウムを主活物質とし、これに導電
材、結着剤、溶媒等を加えて混練したペーストを導電性
芯材に塗着、乾燥してなるものである。この極板は焼結
式カドミウム負極板に比べて製法が簡単で低置であり、
かつ単位体積当りの活物質量も多くできる等の長所を有
している。しかしながらこの負極板は、密閉形電池での
過充電時に正極より発生する酸素ガスの吸収能力が、焼
結式に比べて低く、1/3Cm人程度の充電電流が限度
とされていた。一方、ポータプル機器等の用途面からは
高率充電(急速充電)が可能な電池が求められてきて、
負極の酸素ガス吸収能を向上させる手段が次に述べるよ
うにいくつか提案されてきた。
Conventional technology Paste-type cadmium negative electrodes, which have been widely used as this type of cadmium negative electrode, generally have cadmium oxide or cadmium hydroxide as the main active material, which is mixed with a conductive material, a binder, a solvent, etc. The paste is applied to a conductive core material and dried. Compared to sintered cadmium negative electrode plates, this electrode plate is easier to manufacture and can be placed lower.
It also has the advantage of being able to increase the amount of active material per unit volume. However, this negative electrode plate has a lower ability to absorb oxygen gas generated from the positive electrode during overcharging in a sealed battery than a sintered type, and the charging current is limited to about 1/3 Cm. On the other hand, batteries that can be charged at a high rate (quick charging) are required for applications such as portable devices.
Several means for improving the oxygen gas absorption ability of the negative electrode have been proposed as described below.

(1)負極活物質中にマグネシウムまたはマグネシウム
化合物を添加し、充電時に生成するカドミウム活物質を
微細化して酸素ガスのと反応面積を増加させる(特公昭
43−28679号公報)。
(1) Magnesium or a magnesium compound is added to the negative electrode active material to make the cadmium active material produced during charging fine and increase the reaction area with oxygen gas (Japanese Patent Publication No. 43-28679).

(2)負極の表面に炭素粉末等の導電材を配し、極板表
面の電導性を高めて、酸素ガスに接触しやすい負極表面
附近に金属カドミウムが形成されやすくする(特開昭e
○−63875号公報)。
(2) Placing a conductive material such as carbon powder on the surface of the negative electrode increases the conductivity of the surface of the electrode plate, making it easier for metal cadmium to form near the surface of the negative electrode, which is likely to come into contact with oxygen gas (Japanese Patent Application Laid-Open No.
○-63875 Publication).

発明が解決しようとする問題点 しかしながら、従来の構成では次に述べるような問題点
があった。前記(1)の方法は活物質利用率の向上には
有効であるが、10mA  程度の高率充電での酸素ガ
スの吸収能が不十分である。また(2)の方法は、酸素
ガスの吸収能を向上できるが、新たな問題点を生ずる。
Problems to be Solved by the Invention However, the conventional configuration has the following problems. Although the method (1) is effective in improving the active material utilization rate, the ability to absorb oxygen gas at high rate charging of about 10 mA is insufficient. Further, although the method (2) can improve the oxygen gas absorption ability, it causes new problems.

すなわち、極板表面を充放電反応に寄与しない物質で被
覆するため、ペースト式負極の特徴である高エネルギー
密度を充分に発揮できなくなることである。
That is, since the surface of the electrode plate is coated with a substance that does not contribute to charge/discharge reactions, the high energy density characteristic of paste-type negative electrodes cannot be fully demonstrated.

本発明はこのような問題点を解決するもので、極板のエ
ネルギー密度を低下させることなく、良好な酸素ガス吸
収能を有するカドミウム負極を提供することを目的とす
るものである。
The present invention solves these problems, and aims to provide a cadmium negative electrode that has good oxygen gas absorption ability without reducing the energy density of the electrode plate.

問題点を解決するだめの手段 この問題点を解決するため本発明は、酸化カドミウムも
しくは水酸化カドミウムを主とする活物質層を導電性芯
材に支持させてなる非焼結式カドミウム負極において、
前記活物質層にマグネシウム化合物とインジウム化合物
とを粉末で含有したものである。そして好ましくは全活
物質量に対してマグネシウム化合物が0.6〜2.5 
wt%、インジウム化合物がQ、1〜2.0 wt%の
範囲であることを特徴とするものである。
Means for solving the problem In order to solve this problem, the present invention provides a non-sintered cadmium negative electrode in which an active material layer mainly composed of cadmium oxide or cadmium hydroxide is supported by a conductive core material.
The active material layer contains a magnesium compound and an indium compound in powder form. Preferably, the amount of magnesium compound is 0.6 to 2.5 with respect to the total amount of active material.
wt%, and the indium compound is Q in a range of 1 to 2.0 wt%.

作用 この構成によるカドミウム負極は、マグネシウム化合物
が充放電の繰り返しにより生ずるカドミウム活物質粒子
の結晶の粗大化を抑制する。次の結果、活物質の比表面
積の減少が抑制できるとともに、酸素ガス吸収に効果的
なインジウム化合物がカドミウム活物質中にとり込まれ
ることがない。
Function: In the cadmium negative electrode having this configuration, the magnesium compound suppresses crystal coarsening of the cadmium active material particles caused by repeated charging and discharging. As a result, the decrease in the specific surface area of the active material can be suppressed, and the indium compound, which is effective in absorbing oxygen gas, is not incorporated into the cadmium active material.

したがって、負極の酸素ガスの吸収反応におけるインジ
ウム化合物の触媒的作用が充分に発揮できるので、カド
ミウム負極の酸素ガスの吸収能力が向上することとなる
Therefore, the catalytic action of the indium compound in the oxygen gas absorption reaction of the negative electrode can be fully exerted, so that the oxygen gas absorption ability of the cadmium negative electrode is improved.

実施例 酸化カドミウム粉末96.2 wt4  に対して、酸
化マグネシウム(MgO)粉末2.5 wt% 、酸化
インジウム(In205)粉末1 wt%および樹脂繊
維0.3 wt%  の混合物をポリビニルアルコール
のエチレングリコール溶液でペースト状に混練する。
Example: A mixture of 96.2 wt4 cadmium oxide powder, 2.5 wt% magnesium oxide (MgO) powder, 1 wt% indium oxide (In205) powder, and 0.3 wt% resin fiber was added to ethylene glycol of polyvinyl alcohol. Knead the solution into a paste.

このペーストをニッケルメッキしだ開孔鉄板に塗着、乾
燥後、公知の方法で化成処理を行なって厚さ約0.6朋
の極板を作製した。この本発明品の極板を人とする。
This paste was applied to a nickel-plated perforated iron plate, dried, and then subjected to a chemical conversion treatment using a known method to produce an electrode plate with a thickness of about 0.6 mm. Let us assume that the electrode plate of this invention is a person.

次に比較例の極板を酸化マグネシウム粉末と酸化インジ
ウム粉末を第1表に示す割合で酸化カドミウム粉末と混
合して、前記本発明の実施例と同じ工程により、厚さ約
0.6Mの極板B 、0 、Dを作製した。さらにまた
、極板りを日本黒鉛工業■製溝電性塗料バニー・・イ)
BP−333に浸漬した後乾燥して、極板表面全体に炭
素粉末層を形成した極板Eを作製した。この極板の厚み
は約0.66朋である。
Next, the electrode plate of the comparative example was prepared by mixing magnesium oxide powder and indium oxide powder with cadmium oxide powder in the proportions shown in Table 1, and using the same process as the example of the present invention, a electrode plate with a thickness of about 0.6M was prepared. Plates B, 0, and D were produced. Furthermore, the electrode plate is made by Nippon Graphite Industries Ltd. Groove electric paint bunny (i)
Plate E was prepared by immersing it in BP-333 and drying it to form a carbon powder layer on the entire surface of the plate. The thickness of this electrode plate is approximately 0.66 mm.

このようにして作製した極板A、B、C,D。Electrode plates A, B, C, and D were produced in this way.

Eは39X80MMの大きさに切断し、公知の構成方法
によって汎用のニッケル正極と組み合せて公称容量60
0 mAh  の単3形の密閉形ニッケルーカドミウム
蓄電池ムr 、 B7 、 C7、Dr 、 E′を各
6ケづつ試作し、過充電時の酸素ガス吸収能を評価する
電池内圧試験を行なった。この結果を第1図に示す。第
1図は周囲温度o℃において種々の充電電流での過充電
時における電池内圧の平衡圧を示したものである。同図
から明らかなように本発明の酸化マグネシウムと酸化イ
ンジウムを混合添加した負極板人を用いた電池人′はい
ずれの充電率においても、比較電池B’ 、C’ 、D
’ 、E’よりも低い電池内圧の値を示した。とくに充
電率が1Cm人 の急速充電時の酸素ガス吸収能力が大
幅に向上していることが認められる。この理由はカドミ
ウム負極の酸素ガス吸収反応における酸化インジウムの
触媒的な作用を酸化マグネシウムを併用添加することに
より促進させることができた相乗作用の効果によるもの
と推察することができる。また、比較電池E′の電池内
圧が充電率が犬きくなるに従って、本発明電池A′より
も大幅に高くなるのは、負極板表面の炭素粉末層が酸素
ガスの極板への拡散を阻害し、酸素ガス吸収が遅れるた
めと考えられる。
E is cut into a size of 39 x 80 mm and combined with a general-purpose nickel positive electrode using a known construction method to achieve a nominal capacity of 60 mm.
Six 0 mAh AA sealed nickel-cadmium storage batteries M, B7, C7, Dr, and E' were prototyped, and a battery internal pressure test was conducted to evaluate their ability to absorb oxygen gas during overcharging. The results are shown in FIG. FIG. 1 shows the equilibrium pressure within the battery during overcharging at various charging currents at an ambient temperature of 0.degree. As is clear from the figure, the battery ' using the negative electrode plate to which magnesium oxide and indium oxide of the present invention were mixed was compared to comparative batteries B', C', and D at any charging rate.
', showed a lower battery internal pressure value than E'. In particular, it is recognized that the oxygen gas absorption capacity during rapid charging of a person with a charging rate of 1Cm has significantly improved. The reason for this can be inferred to be that the catalytic action of indium oxide in the oxygen gas absorption reaction of the cadmium negative electrode is promoted by the synergistic effect of the combined addition of magnesium oxide. Furthermore, as the charging rate increases, the internal pressure of comparative battery E' becomes significantly higher than that of battery A' of the present invention, because the carbon powder layer on the surface of the negative electrode plate inhibits the diffusion of oxygen gas to the electrode plate. This is thought to be due to a delay in oxygen gas absorption.

また、極板人、D、Eは39X8C1lffの大きさに
切断し、力性カリ水溶液中で120mAの電流で、16
時間充電、同一電流で単極電位で酸化水銀電極に対して
−750mVまでの放電という充放電サイクルを6サイ
クル行ない。6サイクル目の放電容量密度を比較した。
In addition, the electrode plates D and E were cut into a size of 39 x 8 C1lff, and heated at a current of 120 mA in a potassium aqueous solution.
Six charge/discharge cycles were performed, including time charging and discharging to -750 mV with respect to the mercury oxide electrode at the same current and unipolar potential. The discharge capacity densities at the 6th cycle were compared.

その結果を第2表に示す。The results are shown in Table 2.

第2表 第2表からも明らかなように本発明のカドミウム負極は
単位体積当りのカドミウム活物質量は減少するが、酸化
マグネシウムの添加により活物質利用率を向上できるの
で高容量密度を維持できることが判明した。
As is clear from Table 2, although the amount of cadmium active material per unit volume of the cadmium negative electrode of the present invention decreases, the active material utilization rate can be improved by adding magnesium oxide, so that high capacity density can be maintained. There was found.

第2図は酸化マグネシウムの含有量を2.5 wt%に
固定して、酸化インジウムの含有量と周囲温度0℃にお
ける充電率1Cm人 での過充電時の電池内圧の平衡圧
との関係を示す。酸化インジウムの含有量としては0.
1 wt%以上加えると酸素ガスの吸収能が向上し、含
有量の増加とともにさらに向上する傾向を認められる。
Figure 2 shows the relationship between the content of indium oxide and the equilibrium pressure within the battery during overcharging at an ambient temperature of 0°C and a charge rate of 1 Cm, with the content of magnesium oxide fixed at 2.5 wt%. show. The content of indium oxide is 0.
When 1 wt% or more is added, the oxygen gas absorption ability improves, and there is a tendency for it to further improve as the content increases.

しかし、2wt% 以上では酸素ガスの吸収能がほぼ平
坦性を示すことから、酸化インジウムの含有量は0.1
〜2wt%の範囲が適量である。
However, at 2wt% or more, the oxygen gas absorption capacity shows almost flatness, so the content of indium oxide is 0.1
A suitable amount is in the range of ~2 wt%.

第3図は酸化インジウムの含有量を1wt% に固定し
て酸化マグネシウムの含有量と周囲温度0℃における充
電率10mA での過充電時の電池内圧の平衡圧との関
係を示す。同図から酸化マグネシウムはo、swt% 
以上含有すれば、カドミウム負極の酸素ガスの吸収能が
向上効果が認められる。
FIG. 3 shows the relationship between the magnesium oxide content and the equilibrium pressure inside the battery during overcharging at an ambient temperature of 0° C. and a charging rate of 10 mA, with the indium oxide content fixed at 1 wt%. From the same figure, magnesium oxide is o, swt%
If the content is above, the effect of improving the oxygen gas absorption ability of the cadmium negative electrode is recognized.

まだ、電極板には充放電反応に直接寄与しない添加物の
滑を最小限に抑えることが、高容量密度を確保するため
に望ましい。したがって酸化マグネシウムの含有量は0
.5〜2.5 wt%が適量である。
However, in order to ensure high capacity density, it is desirable to minimize the slippage of additives that do not directly contribute to charge/discharge reactions in the electrode plates. Therefore, the content of magnesium oxide is 0
.. A suitable amount is 5 to 2.5 wt%.

なお、前記実施例では、インジウム化合物として酸化イ
ンジウム(工n203)、マグネシウム化合物として酸
化マグネシウム(MgO)を用いたが、各々酸化インジ
ウム(工n20.In、O)、水酸化インジウム(In
203XH20)、水酸化マグネシウム(Mg(OH)
2)等の粉末でも同様の効果が得られる。
In the above examples, indium oxide (In, O) and indium hydroxide (In, O) were used as the indium compound and magnesium oxide (MgO) as the magnesium compound, respectively.
203XH20), magnesium hydroxide (Mg(OH)
Similar effects can be obtained with powders such as 2).

発明の効果 以上のように本発明によれば、非焼結式カドミウム負極
にインジウム化合物とマグネシウム化合物とを含有させ
ることにより、負極板の酸素ガスの吸収能を向上できる
効果が得られる。また、これらの添加剤を粉末の形で極
板に含有させることは、負極板の製造工程を単純化でき
る工業的価値も犬である。
Effects of the Invention As described above, according to the present invention, by containing an indium compound and a magnesium compound in a non-sintered cadmium negative electrode, the effect of improving the oxygen gas absorption capacity of the negative electrode plate can be obtained. Furthermore, incorporating these additives in the form of powder into the electrode plate has industrial value as it can simplify the manufacturing process of the negative electrode plate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における充電率と電池内圧の関
係を示す図、第2図は酸化マグネシウム量を2.5 W
t1%にしたときの本発明の極板の酸化インジウム(工
n203)含有量と電池内圧との関係を示す図、第3図
は酸化インジウム(工n203)量を1 wt%  に
したときの本発明の極板の酸化マグネシウムの含有量と
電池内圧の関係を示す図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 8          0.5          1
.0充  電  宇 ((:’mA ) 第2図 0 0.5  r、o  1.5 2.0 2.t;J
ut’3の含1t(Lut−/−) 第3図 MgOの含有量(wt″/、)
Fig. 1 is a diagram showing the relationship between charging rate and battery internal pressure in an example of the present invention, and Fig. 2 is a diagram showing the relationship between the charging rate and battery internal pressure in an example of the present invention.
Figure 3 shows the relationship between the indium oxide (N203) content of the electrode plate of the present invention and the battery internal pressure when the amount of indium oxide (N203) is 1 wt%. FIG. 3 is a diagram showing the relationship between the content of magnesium oxide in the electrode plate of the invention and the internal pressure of the battery. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 8 0.5 1
.. 0 charge ((:'mA) Fig. 2 0 0.5 r, o 1.5 2.0 2.t; J
Content of ut'3 1t (Lut-/-) Figure 3 Content of MgO (wt''/,)

Claims (2)

【特許請求の範囲】[Claims] (1)酸化カドミウムもしくは水酸化カドミウムを主と
する活物質層を導電性芯材に支持させてなる非焼結式カ
ドミウム負極において、前記活物質層がマグネシウム化
合物とインジウム化合物の粉末を含有することを特徴と
するアルカリ蓄電池用カドミウム負極。
(1) In a non-sintered cadmium negative electrode in which an active material layer mainly composed of cadmium oxide or cadmium hydroxide is supported by a conductive core material, the active material layer contains powder of a magnesium compound and an indium compound. Cadmium negative electrode for alkaline storage batteries.
(2)全活物質量に対して、マグネシウム化合物が0.
5〜25wt%、インジウム化合物が0.1〜2.0w
t%の範囲である特許請求の範囲第1項記載のアルカリ
蓄電池用カドミウム負極。
(2) The amount of magnesium compound is 0.0% with respect to the total amount of active materials.
5-25wt%, indium compound 0.1-2.0w
The cadmium negative electrode for an alkaline storage battery according to claim 1, wherein the cadmium negative electrode is in the range of t%.
JP62296581A 1987-11-25 1987-11-25 Cadmium negative electrode for alkaline storage battery Pending JPH01140556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62296581A JPH01140556A (en) 1987-11-25 1987-11-25 Cadmium negative electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62296581A JPH01140556A (en) 1987-11-25 1987-11-25 Cadmium negative electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH01140556A true JPH01140556A (en) 1989-06-01

Family

ID=17835398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62296581A Pending JPH01140556A (en) 1987-11-25 1987-11-25 Cadmium negative electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH01140556A (en)

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JPH11176436A (en) Alkaline storage battery
JPS62287568A (en) Manufacture of alkaline storage battery
JPH01140556A (en) Cadmium negative electrode for alkaline storage battery
JPS61208755A (en) Pasted negative cadmium plate for sealed alkaline storage battery
JPH1173957A (en) Alkaline storage battery and manufacture of nickel positive pole plate thereof
JPS63164162A (en) Cadmium negative electrode for alkaline storage battery
JPH0298047A (en) Cadmium negative electrode for alkaline storage battery
JP2968813B2 (en) Method for producing cadmium negative electrode for alkaline storage battery
JP3082341B2 (en) Hydrogen storage electrode
JPH012257A (en) Cadmium negative electrode for alkaline storage batteries
JP2994850B2 (en) Paste cadmium negative electrode for alkaline storage batteries
JPH01267960A (en) Hydrogen absorption alloy electrode and its manufacture
JPH01130467A (en) Hydrogen occlusive alloy electrode
JPH09147906A (en) Alkaline storage battery
JP2792913B2 (en) Non-sintered cadmium negative electrode plate for alkaline storage batteries
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH0992279A (en) Alkaline storage battery
JPS63158761A (en) Solid hydrogen battery
JPS63221558A (en) Cadmium negative electrode for alkaline storage battery
JPS62119864A (en) Enclosed-type alkaline storage battery
JPH01130469A (en) Cadmium negative electrode for alkaline storage battery
JPH03159064A (en) Nickel-cadmium storage battery
JPS61264668A (en) Cadmium negative electrode for alkaline storage battery
JPH01267958A (en) Cadmium negative electrode for alkaline storage battery and its manufacture