JPH01138736A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01138736A
JPH01138736A JP29825887A JP29825887A JPH01138736A JP H01138736 A JPH01138736 A JP H01138736A JP 29825887 A JP29825887 A JP 29825887A JP 29825887 A JP29825887 A JP 29825887A JP H01138736 A JPH01138736 A JP H01138736A
Authority
JP
Japan
Prior art keywords
film
wiring layer
bpsg
psg
bpsg film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29825887A
Other languages
Japanese (ja)
Inventor
Haruo Amano
天野 陽夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29825887A priority Critical patent/JPH01138736A/en
Publication of JPH01138736A publication Critical patent/JPH01138736A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the photoetching process of upper wiring layer by enabling an interlayer insulating film to be flattened by a method wherein a BPSG film is deposited on the first wiring layer formed on the surface of a semiconductor substrate and then phosphorus is diffused on overall surface of a PSG film in high concentration formed on the surface of the BPSG film to substitute the BPSG film on the wiring layer successively for the PSG film. CONSTITUTION:A BPSG film 3 is deposited on the first wiring layer 2 formed on a substrate 1 and then a PSG film 6 in high concentration is grown on the surface of the BPSG film 3. Next, phosphorus is diffused on overall surface so that the PSG film in high concentration may be fluidized to be concentrated in lower parts forming thick layers. The BPSG film 3 at the swelled part on the first wiring layer 2 is successively substituted for the PSG film 6 in proportion to the process of phosphorus diffusion to form an interlayer insulating film composed of the two layer structure comprising the fluidized BPSG film 3 and the fluidized PSG film 6. Consequently, when the second wiring layer is formed, the interlayer insulating film thus formed is flattened enabling the photoetching process to be performed easily.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に平坦性のき
わめて良好な眉間絶縁膜の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming a glabellar insulating film with extremely good flatness.

〔従来の技術〕[Conventional technology]

半導体集積回路装置を製造する際の層間絶縁膜材料には
、熱処理温度が低くできることからBPSG膜が最近広
く用いられている。しかしながら、更に微細構造の半導
体集積回路装置を得ようとする場合ではBPSG膜の流
動の仕方はよりなだらかにはなるが、BPSG膜自身の
表面張力の強さにより段差部の高い所がより厚くなるの
で、比較的角度のついた形状の眉間絶縁膜が形成され易
い。
BACKGROUND ART Recently, BPSG films have been widely used as interlayer insulating film materials for manufacturing semiconductor integrated circuit devices because they can be heated at low temperatures. However, when trying to obtain a semiconductor integrated circuit device with an even finer structure, the flow of the BPSG film becomes gentler, but the high surface tension of the BPSG film itself causes it to become thicker at the higher parts. Therefore, a glabellar insulating film having a relatively angular shape is likely to be formed.

第3図および第4図はそれぞれ従来の製造方法によって
形成された層間絶縁膜の形状を示す半導体集積回路装置
の断面図である。すなわち、第3図は半導体基板1上に
、例えば約0.7μmの厚さの約1μmの幅の多結晶シ
リコン膜からなる第1層目の配線層2が形成されている
場合を示すものであるが、厚さ約0.5μmのBPSG
膜3をCVD法により第1層目の配線層2上に堆積して
温度900 ’C程度の熱処理をすると、第1層目の配
線層2の上部は盛り上り傾斜はきつくなる。この形状を
解決するためこの全面にP S G膜を堆積し、更にり
(P)を拡散して流動化したPSGi4を形成したもの
が第4図に示す構造のものである。この方法によると層
間絶縁膜の形状はより平坦化されるが、この場合には、
表面にBPSG膜およびPSG膜とは全く成分の違うB
PO系物質5から成る非流動物が形成される。この物質
はリン(P)拡散工程の際形成されるBPSG膜とリン
(P)との反応物であると言われているが、眉間絶縁膜
表面に凹凸を作るので好ましくない。
FIGS. 3 and 4 are cross-sectional views of a semiconductor integrated circuit device, each showing the shape of an interlayer insulating film formed by a conventional manufacturing method. That is, FIG. 3 shows a case where a first wiring layer 2 made of a polycrystalline silicon film having a thickness of about 0.7 μm and a width of about 1 μm is formed on a semiconductor substrate 1. However, BPSG with a thickness of about 0.5 μm
When the film 3 is deposited on the first wiring layer 2 by the CVD method and subjected to heat treatment at a temperature of about 900'C, the upper part of the first wiring layer 2 rises and has a steep slope. In order to solve this problem, a PSG film was deposited on the entire surface, and PSGi4 was further diffused to form a fluidized PSGi4, resulting in the structure shown in FIG. According to this method, the shape of the interlayer insulating film becomes more flat, but in this case,
BPSG film on the surface and B with completely different composition from PSG film
A non-fluid body consisting of PO-based substances 5 is formed. This substance is said to be a reaction product of phosphorus (P) and the BPSG film formed during the phosphorus (P) diffusion process, but it is not preferable because it creates irregularities on the surface of the glabella insulating film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上述べたように、従来の製造方法ではより平坦な層間
絶縁膜が形成できないので、第2層目以降の配線層の形
成に重大な支障をもたらしている。この問題点は配線層
の幅がサブミクロン時代の半導体集積回路装置の製造に
とってますます重大な意味を持つものである。
As described above, the conventional manufacturing method cannot form a flatter interlayer insulating film, which poses a serious problem in the formation of the second and subsequent wiring layers. This problem has increasingly important implications for the manufacture of semiconductor integrated circuit devices in the era of submicron wiring layer widths.

本発明の目的は、上記の情況に鑑み、線幅がサブミクロ
ン配線層の段差をきわめて有効に平坦化し得る層間絶縁
膜形成工程を備えた半導体装置の製造方法を提供するこ
とである。
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a method for manufacturing a semiconductor device including an interlayer insulating film forming step that can extremely effectively flatten steps in wiring layers having submicron line widths.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、半導体装置の製造方法は、半導体基板
表面に第1層目の配線層を形成する工程と、前記第1層
目の配線層上にBPSG膜を堆積する工程と、前記BP
SG膜を流動化させる熱処理工程と、前記流動化したB
PSG膜上に、高濃度のPSG膜を形成する工程と、前
記高濃度PSG膜の全面にリンを拡散し前記第1層目の
配線層上のBPSGIliを順次PSG膜に置換する前
記高濃度PSG膜の平坦化工程とを含む眉間絶縁膜の形
成工程を備えることを含む。
According to the present invention, a method for manufacturing a semiconductor device includes a step of forming a first wiring layer on a surface of a semiconductor substrate, a step of depositing a BPSG film on the first wiring layer, and a step of depositing a BPSG film on the first wiring layer.
A heat treatment step for fluidizing the SG film and the fluidized B
forming a high concentration PSG film on the PSG film; and diffusing phosphorus over the entire surface of the high concentration PSG film and sequentially replacing BPSGIli on the first wiring layer with the PSG film. and a step of forming a glabellar insulating film.

〔実施例〕〔Example〕

以下図面を参照して本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.

第1図(a)および(b)は本発明の一実施例を示す眉
間絶縁膜の形成工程図である。
FIGS. 1(a) and 1(b) are process diagrams for forming an insulating film between the eyebrows, showing an embodiment of the present invention.

本実施例によれば、半導体基板1上には従来法と同様に
厚さ約0.7μm9幅約1μmの多結晶シリコン膜から
なる第1層目の配線層2が形成され、ついでその上に厚
さ約0.5μmのBPSG膜3がCVD法により成長さ
れた後、熱処理により流動される。この熱処理はスチー
ム雰囲気で行った方がより平坦になり、また、BPSG
膜中のボロン(B)の安定化の為にも有効である。その
後CVD法を用いて厚さ約0.3μmの高濃度(例えば
12モル%のリン濃度)のPSGSeO2長される。〔
第1図(a)参照〕。
According to this embodiment, a first wiring layer 2 made of a polycrystalline silicon film with a thickness of about 0.7 μm and a width of about 1 μm is formed on a semiconductor substrate 1, as in the conventional method, and then A BPSG film 3 having a thickness of about 0.5 μm is grown by CVD and then flowed by heat treatment. It is better to perform this heat treatment in a steam atmosphere, and the BPSG
It is also effective for stabilizing boron (B) in the film. Thereafter, a length of PSGSeO2 with a high concentration (for example, 12 mol % phosphorus concentration) of approximately 0.3 μm in thickness is formed using the CVD method. [
See Figure 1(a)].

その後、全面にリン(P)を拡散させることにより、高
濃度PSGWA6を流動化させ低い箇所に厚く集まるよ
う導く。この際、リン(P)拡散が進むにつれて第1層
目の配線層2上の盛り上った箇所のBPSG膜3は順次
PSG膜6にとって代わられ、全体的に非常に平坦な、
すなわち、流動したBPSG膜3と流動したPSGSe
O2層構造から成る眉間絶縁膜を得ることができる〔第
1図(b)参照〕。
Thereafter, by diffusing phosphorus (P) over the entire surface, the highly concentrated PSGWA 6 is fluidized and guided to thickly gather at low points. At this time, as the phosphorus (P) diffusion progresses, the BPSG film 3 in the raised portions on the first wiring layer 2 is sequentially replaced by the PSG film 6, resulting in a very flat surface as a whole.
That is, the fluidized BPSG film 3 and the fluidized PSGSe
A glabellar insulating film having an O2 layer structure can be obtained [see FIG. 1(b)].

従って、第2層目の配線層を形成する際は、得られた眉
間絶縁膜が非常に平坦なので、支障なくフォトエツチン
グを行うことができる。
Therefore, when forming the second wiring layer, the obtained glabellar insulating film is so flat that photoetching can be carried out without any problem.

第2図(a)〜(c)は本発明の他の実施例を示す層間
絶縁膜の形成工程図である。本実施例によれば、前実施
例と同じく半導体基板1の面上に堆積されたBPSG膜
3の表面に高濃度のPSGSeO2成される。ついで半
導体基板1の裏面を被う酸化膜を除去して裏面を露出さ
せる〔第2図(a)参照〕。
FIGS. 2(a) to 2(c) are process diagrams for forming an interlayer insulating film showing another embodiment of the present invention. According to this embodiment, a high concentration of PSGSeO2 is formed on the surface of the BPSG film 3 deposited on the surface of the semiconductor substrate 1, as in the previous embodiment. Next, the oxide film covering the back surface of the semiconductor substrate 1 is removed to expose the back surface (see FIG. 2(a)).

その後前実施例と全く同じ手法によるリン(P)の全面
拡散により、流動したBPSG膜3と流動した高濃度の
PSGSeO2層構造から成る層間絶縁膜を形成する。
Thereafter, an interlayer insulating film consisting of a fluidized BPSG film 3 and a fluidized high-concentration PSGSeO2 layer structure is formed by diffusion of phosphorus (P) over the entire surface using the same method as in the previous embodiment.

この際、裏面にもリン(P)が同時に拡散され、裏面に
リンの拡散層7およびリン拡散によって得られたPSG
膜8がそれぞれ形成される〔第2図(b)参照〕。
At this time, phosphorus (P) is also diffused on the back surface at the same time, and a phosphorus diffusion layer 7 and a PSG layer obtained by phosphorus diffusion are formed on the back surface.
A film 8 is formed respectively (see FIG. 2(b)).

この裏面へのリン拡散はリン(P)によるゲッタリング
を0行う為であり、半導体装置のリーク電流の低減に効
果がある。
This phosphorus diffusion to the back surface is for zero gettering due to phosphorus (P), and is effective in reducing leakage current of the semiconductor device.

その後、例えばフッ酸系のバッファ液を用いて裏面のリ
ン拡散によって得られたPSG膜8および表面の高濃度
PSG膜6をそれぞれ除去する。
Thereafter, the PSG film 8 obtained by phosphorus diffusion on the back surface and the high concentration PSG film 6 on the front surface are removed using, for example, a hydrofluoric acid buffer solution.

〔第2図(c)参照〕。[See Figure 2(c)].

高濃度PSGM6とBPSG膜3とはエツチング・レイ
トが違うので、時間を適正に設定すればBPSG膜3を
殆どエツチングせずに流動した形で残すことができる。
Since the high concentration PSGM 6 and the BPSG film 3 have different etching rates, if the time is set appropriately, the BPSG film 3 can be left in a fluidized form without being etched much.

また、バッチ型の等方性のプラズマエツチングを用いて
もエツチング・レイトの差が利用できるので厳密な制御
を必要とすることなく、PSG膜のみを容易にエツチン
グ除去し得る。このように得られた眉間絶縁膜の形状は
、当初の単一層BPSG膜に比べより平坦化されている
ばかりでなく、併せてリーク電流を低減し得る構造も同
時に実現される。
Further, even if batch type isotropic plasma etching is used, the difference in etching rate can be utilized, so that only the PSG film can be easily etched away without requiring strict control. The shape of the glabellar insulating film thus obtained is not only flatter than the original single-layer BPSG film, but also a structure capable of reducing leakage current is simultaneously realized.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によれば、特に高価
な装置を使うことなく層間絶縁膜がより平坦化できるの
で、上部配線層のフォトエツチングを容易に行うことが
できる。特に配線幅がサブミクロン時代の半導体集積回
路装置の製造に実施した場合の効果はきわめて顕著であ
る。
As described in detail above, according to the present invention, the interlayer insulating film can be further planarized without using particularly expensive equipment, so that photoetching of the upper wiring layer can be easily performed. The effect is particularly significant when applied to the manufacture of semiconductor integrated circuit devices in the era of submicron wiring widths.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)および(b)は本発明の一実施例を示す層
間絶縁膜の形成工程図、第2図(a)〜(c)は本発明
の他の実施例を示す層間絶縁膜の形成工程図、第3図お
よび第4図はそれぞれ従来の製造方法によって形成され
た層間絶縁膜の形状を示す半導体集積回路装置の断面図
である。 1・・・半導体基板、2・・・第1層目の配線層、3・
・・BPSG膜、6・・・高濃度のPSG膜、7・・・
裏面のリン拡散層、8・・・裏面のリンの拡散に得られ
たPSG膜。
FIGS. 1(a) and (b) are process diagrams for forming an interlayer insulating film showing one embodiment of the present invention, and FIGS. 2(a) to (c) are interlayer insulating films showing another embodiment of the present invention. FIGS. 3 and 4 are cross-sectional views of a semiconductor integrated circuit device showing the shape of an interlayer insulating film formed by a conventional manufacturing method, respectively. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... First wiring layer, 3...
...BPSG film, 6... High concentration PSG film, 7...
Phosphorus diffusion layer on the back surface, 8... PSG film obtained by diffusion of phosphorus on the back surface.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板表面に第1層目の配線層を形成する工程と
、前記第1層目の配線層上にBPSG膜を堆積する工程
と、前記BPSG膜を流動化させる熱処理工程と、前記
流動化したBPSG膜上に高濃度のPSG膜を形成する
工程と、前記高濃度PSG膜の全面にリンを拡散し前記
第1層目の配線層上のBPSG膜を順次PSG膜に置換
する前記高濃度PSG膜の平坦化工程とを含む層間絶縁
膜の形成工程を備えることを特徴とする半導体装置の製
造方法。
a step of forming a first wiring layer on the surface of the semiconductor substrate; a step of depositing a BPSG film on the first wiring layer; a heat treatment step of fluidizing the BPSG film; forming a highly concentrated PSG film on the BPSG film; and diffusing phosphorus over the entire surface of the highly concentrated PSG film and sequentially replacing the BPSG film on the first wiring layer with a PSG film. 1. A method of manufacturing a semiconductor device, comprising a step of forming an interlayer insulating film including a step of flattening the film.
JP29825887A 1987-11-25 1987-11-25 Manufacture of semiconductor device Pending JPH01138736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29825887A JPH01138736A (en) 1987-11-25 1987-11-25 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29825887A JPH01138736A (en) 1987-11-25 1987-11-25 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01138736A true JPH01138736A (en) 1989-05-31

Family

ID=17857296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29825887A Pending JPH01138736A (en) 1987-11-25 1987-11-25 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01138736A (en)

Similar Documents

Publication Publication Date Title
JPH01138736A (en) Manufacture of semiconductor device
JPS5842254A (en) Manufacture of semiconductor device
JPS6022502B2 (en) Manufacturing method of semiconductor device
JPH05275424A (en) Manufacture of semiconductor device
JPS6373539A (en) Manufacture of semiconductor device
JP2739593B2 (en) Semiconductor device manufacturing method
JPS59191354A (en) Manufacture of semiconductor device
JPH0334322A (en) Manufacture of semiconductor device
JPS5928358A (en) Manufacture of semiconductor device
JPS63293948A (en) Forming method for interlayer insulating film
JPH0336751A (en) Manufacture of semiconductor device
JPH0373137B2 (en)
JPS6034065A (en) Manufacture of mos type semiconductor device
JPS582069A (en) Manufacture of semiconductor device
JPS6118348B2 (en)
JPH03237744A (en) Manufacture of semiconductor device
JPS6387742A (en) Manufacture of semiconductor device
JPS63292632A (en) Forming method for insulating film of semiconductor device
JPS61147550A (en) Manufacture of semiconductor device
JPH0616537B2 (en) Method for manufacturing semiconductor substrate
JPS6218041A (en) Manufacture of semiconductor device
JPH06302682A (en) Manufacture of semiconductor device
JPS6074615A (en) Manufacture of semiconductor device
JPH0324066B2 (en)
JPH0237750A (en) Manufacture of semiconductor element