JPH01138175A - Calcination of aln - Google Patents

Calcination of aln

Info

Publication number
JPH01138175A
JPH01138175A JP62297222A JP29722287A JPH01138175A JP H01138175 A JPH01138175 A JP H01138175A JP 62297222 A JP62297222 A JP 62297222A JP 29722287 A JP29722287 A JP 29722287A JP H01138175 A JPH01138175 A JP H01138175A
Authority
JP
Japan
Prior art keywords
sintering
raw material
aln
firing temperature
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62297222A
Other languages
Japanese (ja)
Inventor
Yutaka Takeshima
裕 竹島
Yasunobu Yoneda
康信 米田
Yukio Sakabe
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP62297222A priority Critical patent/JPH01138175A/en
Publication of JPH01138175A publication Critical patent/JPH01138175A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain AlN having a little impurity in granules and high thermal conductivity, by heating a raw material to a temperature to form a liquid-phase component by an auxiliary to cause an impurity trap and then heating the raw material to a temperature higher than the first calcination temperature to discharge the liquid phase. CONSTITUTION:An AlN sintering raw material containing a sintering auxiliary is heated and maintained at the first calcination temperature to cause a liquid- phase component and an impurity trap is formed. Then, the raw material is heated and maintained at a temperature higher than the first calcination temperature to discharge the liquid phase. Impurity oxygen concentration and impurities in granules are lessened to give AlN having high thermal conductivity.

Description

【発明の詳細な説明】 皮業上皇丑■分匪 本発明は焼結助剤を添加したAIN焼結原料を焼成する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for firing an AIN sintering raw material to which a sintering aid has been added.

従米勿孜素 IC用基板としてAβN焼結体が使用されている。これ
は集積度が高くなると放熱が重要課題となり、このため
には熱伝導率の高いA6Nが有効であるからである。
An AβN sintered body is used as a substrate for an IC. This is because heat dissipation becomes an important issue as the degree of integration increases, and A6N, which has high thermal conductivity, is effective for this purpose.

ところでAffNは焼結により製造されるが、AIN焼
結原料中、特に表面に存在する酸素等の不純物がA1、
Nと反応すると熱電導性の良くないA7!−0−N化合
物が生成する。従って、この生成を抑制して良好な熱電
導性を確保すべく、酸化カルシウム(CaO)、酸化イ
ツトリウム(Yz03)等の焼結助剤を添加したANN
焼結原料を用いて非酸化雰囲気下で焼成していた。
By the way, AffN is manufactured by sintering, but impurities such as oxygen present in the AIN sintering raw material, especially on the surface, cause A1,
A7 has poor thermal conductivity when it reacts with N! -0-N compound is produced. Therefore, in order to suppress this generation and ensure good thermal conductivity, ANN added with sintering aids such as calcium oxide (CaO) and yttrium oxide (Yz03)
Sintering raw materials were used and fired in a non-oxidizing atmosphere.

この焼結助剤を添加する理由は、焼結助剤が焼結過程で
AAN焼結原料中の不純物酸素や金属と反応して(以下
不純物トラップという)液相を形成し、焼結を促進する
からである。またこの液相は焼結中に外部へ排出するた
め、結晶粒界に存在する液相が少なくなり、かつ粒内へ
の不純物酸素の固溶を妨げることにより粒内の不純物酸
素濃度を下げる作用があることに依る。
The reason for adding this sintering aid is that during the sintering process, the sintering aid reacts with the impurity oxygen and metal in the AAN sintering raw material to form a liquid phase (hereinafter referred to as an impurity trap), promoting sintering. Because it does. In addition, since this liquid phase is discharged to the outside during sintering, the amount of liquid phase existing at the grain boundaries decreases, and by preventing impurity oxygen from dissolving inside the grains, it has the effect of lowering the impurity oxygen concentration within the grains. It depends on there being.

■ <lしよ゛と る口 占 さて、従来の焼成方法では所定の焼成温度に一定に保持
した状態で焼結を行なうため、不純物トラップと液相の
排出とが同時的に進行する。このとき、不純物トラップ
が余り行われていない液相が排出されることがあり、こ
の結果、粒内に不純物酸素が未反応のまま残留して熱伝
導率が低下するという問題点があった。
■<l<<<1><<1> In the conventional sintering method, sintering is carried out while keeping a predetermined sintering temperature constant, so impurity trapping and liquid phase discharge proceed simultaneously. At this time, a liquid phase in which impurity trapping is not performed may be discharged, and as a result, impurity oxygen remains unreacted within the grains, resulting in a decrease in thermal conductivity.

本発明は斯かる問題点を解決すべくなされたものであり
、不純物の少ない高熱伝導率のAIN焼結体を製造し得
るAAN焼成方法を提供することを目的とする。
The present invention was made to solve these problems, and an object of the present invention is to provide an AAN sintering method that can produce an AIN sintered body with few impurities and high thermal conductivity.

。 占を”ン るための 本発明に係るANN焼成方法は、焼結助剤を添加したA
lN焼結原料を焼成する方法において、前記焼結助剤に
より液相成分が生成する第1の焼成温度にAlN焼結原
料を加熱保持し、然る後、第1の焼成温度よりも高い第
2の焼成温度に前記A72N焼結原料を加熱保持して焼
成することを特徴としている。
. The ANN firing method according to the present invention for obtaining a
In a method of firing an IN sintering raw material, the AlN sintering raw material is heated and maintained at a first firing temperature at which a liquid phase component is generated by the sintering aid, and then a second firing temperature higher than the first firing temperature is heated. The method is characterized in that the A72N sintering raw material is heated and held at the firing temperature of 2.

詐−一一一井一 本発明にあっては、第1の焼成温度での加熱保持の際に
主として不純物トラップが起こり、その後の第2の焼成
温度での加熱保持の際に主とじて液相の排出が生じる。
In the present invention, impurity traps mainly occur during heating and holding at the first firing temperature, and liquid traps mainly occur during heating and holding at the subsequent second firing temperature. Phase discharge occurs.

実−施一玉 以下、本発明方法を具体的に説明する。implementation - implementation The method of the present invention will be specifically explained below.

まず、AAN焼結体用の主原料(粉末)に焼結助剤、例
えばY2O,、CaO等の粉末を添加し、これを有機溶
媒、例えばキシレン中でボールミルを用いて混合してス
ラリーを得る。然る後、スラリーを脱水、乾燥する。こ
れにより、有機溶媒が除去され、粉末が得られる。
First, a sintering aid such as Y2O, CaO, etc. powder is added to the main raw material (powder) for the AAN sintered body, and this is mixed in an organic solvent such as xylene using a ball mill to obtain a slurry. . After that, the slurry is dehydrated and dried. This removes the organic solvent and yields a powder.

得られた粉末に有機バインダー、例えばパラフィンを添
加して整粒し、これを直径:12龍φ、厚み:4mmt
の円板状に、金型を用いて1乃至l。
An organic binder, such as paraffin, is added to the obtained powder, which is then sized to form a powder with a diameter of 12 mm and a thickness of 4 mm.
1 to 1 liter using a mold into a disc shape.

5t/cIItの圧力でプレス成形したのち、大気中で
脱バインダー処理を行ない、その後、非酸化雰囲気、例
えばN2雰囲気下で焼成する。
After press-molding at a pressure of 5t/cIIt, the binder is removed in the air, and then fired in a non-oxidizing atmosphere, for example, an N2 atmosphere.

この焼成は、図に示す如く、焼結助剤により液相成分が
生成する1500℃乃至1700℃の第1の焼成温度A
に、AlN焼結原料を加熱保持し、次いで、第1の焼成
温度Aよりも高い通常の焼成温度である1750℃乃至
1950℃の第2の焼成温度BにAlN焼結原料を加熱
保持して行なう。
As shown in the figure, this firing is carried out at a first firing temperature A of 1500°C to 1700°C at which a liquid phase component is generated by the sintering aid.
The AlN sintering raw material is heated and held, and then the AlN sintering raw material is heated and held at a second firing temperature B of 1750°C to 1950°C, which is a normal firing temperature higher than the first firing temperature A. Let's do it.

なお、第1.第2の焼成温度A及びBの最適値は添加す
る焼結助剤により異なるが、夫々1500乃至1700
℃、1750乃至1950℃の範囲で選択使用するのが
好ましい。
In addition, 1. The optimal values of the second firing temperatures A and B vary depending on the sintering aid added, but are 1500 to 1700, respectively.
It is preferable to select and use the temperature within the range of 1750 to 1950°C.

第1の焼成温度Aを1500℃乃至1700℃とするこ
とについては次の理由による。即ち、1500℃未満で
は液相状態を作りにくく、また1700℃を越えると不
純物トラップと液相の排出とが同時に進行し、従来と変
わらない焼結が行われるようになるからである。
The reason for setting the first firing temperature A to 1500°C to 1700°C is as follows. That is, if the temperature is lower than 1500°C, it is difficult to create a liquid phase state, and if the temperature exceeds 1700°C, trapping of impurities and discharge of the liquid phase proceed at the same time, resulting in sintering that is no different from conventional sintering.

表は、焼結助剤としてY2O3を使用し、これを1wt
%と3wt%との2レベルで添加した2種類のAβN焼
結原料夫々を、第1の焼成温度Aを1500.1600
.17QO°Cの3レベルで変えて5時間加熱保持した
のち、1850℃に一定に保った第2の焼成温度で5時
間加熱保持して計6個のA6N焼結体を得、それぞれに
ついてレーザーフラッシュ法により熱伝導率を測定した
結果をまとめた表である。なお、比較のために第1の焼
成を行わない場合と、第1の焼成温度Aを1450℃、
1750℃とした場合に得たAIN焼結体の熱伝導率の
測定結果を併せて示している。
The table shows that Y2O3 is used as a sintering aid, and 1wt of this is used as a sintering aid.
Two types of AβN sintering raw materials added at two levels of % and 3wt% were added at a first firing temperature A of 1500.1600
.. After heating and holding for 5 hours at 3 levels of 17QO°C, heating and holding for 5 hours at the second firing temperature kept constant at 1850°C to obtain a total of 6 A6N sintered bodies, each of which was heated with a laser flash. This is a table summarizing the results of measuring thermal conductivity using the method. For comparison, the case where the first firing was not performed and the case where the first firing temperature A was 1450°C,
The measurement results of the thermal conductivity of the AIN sintered body obtained at 1750°C are also shown.

表 この表より理解される如く、従来同様に第2の焼成温度
Bのみで焼成、即ち焼成温度を変えずルベルで焼成した
場合(比較例1)には熱伝導率が120と低いが、2レ
ベルで焼成温度を変える場合(実施例1,3.5)には
それを190以上と高くすることができる。Y2O3の
添加量を増加した場合でも前同様の効果があり(実施例
2゜4.6、比較例2)、またその結果得られる熱伝導
率はYzO:+の添加目的からして当然であるが、Y2
O3の添加量の増量により向上する。第1の焼成温度A
が低い場合(比較例3,4)には不純物トラップが起こ
りに<<、従来方法(比較例1゜2)の熱伝導率より少
し良くなるが余り変わらない。逆に第1の焼成温度Aが
高い場合(比較例5゜6)には不純物トラップと液相の
排出とが同時に進行するため、従来と、殆ど変わらない
結果となる。
Table As can be understood from this table, the thermal conductivity is as low as 120 when firing only at the second firing temperature B, that is, when firing at Lebel without changing the firing temperature (Comparative Example 1), as in the conventional case. When the firing temperature is changed by level (Example 1, 3.5), it can be increased to 190 or higher. Even when the amount of Y2O3 added was increased, the same effect as before was obtained (Example 2゜4.6, Comparative Example 2), and the resulting thermal conductivity was natural considering the purpose of adding YzO:+. However, Y2
This can be improved by increasing the amount of O3 added. First firing temperature A
When the thermal conductivity is low (Comparative Examples 3 and 4), impurity traps occur, and the thermal conductivity is slightly better than that of the conventional method (Comparative Example 1°2), but not significantly different. On the other hand, when the first firing temperature A is high (Comparative Example 5°6), impurity trapping and liquid phase discharge proceed simultaneously, resulting in almost the same results as before.

光里■四且 以上詳述した如く本発明による場合には第1の焼成温度
での加熱保持の際に主として不純物トラップが起こり、
その後の第2の焼成温度での加熱保持の際に主として液
相の排出が生じるため、粒内の不純物酸素濃度および不
純物の少ない高熱伝導率のAlxが製造できるという優
れた効果を奏する。
As detailed above, in the case of the present invention, impurity traps mainly occur during heating and holding at the first firing temperature,
Since the liquid phase is mainly discharged during subsequent heating and holding at the second firing temperature, an excellent effect is produced in that Alx with high thermal conductivity and low impurity oxygen concentration in the grains can be produced.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明方法による場合の焼成温度の説明図である
The drawing is an explanatory diagram of the firing temperature in the case of the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)焼結助剤を添加したAlN焼結原料を焼成する方
法において、 前記焼結助剤により液相成分が生成する第1の焼成温度
にAlN焼結原料を加熱保持し、然る後、第1の焼成温
度よりも高い第2の焼成温度に前記AlN焼結原料を加
熱保持して焼成することを特徴とするAlN焼成方法。
(1) In a method of firing an AlN sintering raw material to which a sintering aid has been added, the AlN sintering raw material is heated and maintained at a first firing temperature at which a liquid phase component is generated by the sintering aid, and then An AlN firing method, characterized in that the AlN sintering raw material is heated and held at a second firing temperature higher than the first firing temperature.
JP62297222A 1987-11-25 1987-11-25 Calcination of aln Pending JPH01138175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62297222A JPH01138175A (en) 1987-11-25 1987-11-25 Calcination of aln

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62297222A JPH01138175A (en) 1987-11-25 1987-11-25 Calcination of aln

Publications (1)

Publication Number Publication Date
JPH01138175A true JPH01138175A (en) 1989-05-31

Family

ID=17843755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62297222A Pending JPH01138175A (en) 1987-11-25 1987-11-25 Calcination of aln

Country Status (1)

Country Link
JP (1) JPH01138175A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022210517A1 (en) * 2021-03-31 2022-10-06

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022210517A1 (en) * 2021-03-31 2022-10-06
WO2022210517A1 (en) * 2021-03-31 2022-10-06 デンカ株式会社 Aluminium nitride sintered body, production method for same, circuit board, and laminated substrate

Similar Documents

Publication Publication Date Title
JPH06135771A (en) High heat conductivity silicon nitride sintered compact and its production
JPH01138175A (en) Calcination of aln
US4798764A (en) Arsenate dopant sources and method of making the sources
JP2578113B2 (en) Method for producing high thermal conductive aluminum nitride sintered body
JP2578114B2 (en) Method for producing high thermal conductive aluminum nitride sintered body
JPH05147910A (en) Aluminum nitride-based powder and its production
JPH0567593B2 (en)
CN109320258A (en) A kind of polycrystalline silicon ingot casting silicon nitride kiln furniture material and preparation method thereof
JPS62252374A (en) Manufacture of aluminum nitride sintered body
JPH02233560A (en) High-strength calcined sialon-based compact
JPH06116039A (en) Aluminum nitride sintered compact
JPS62167208A (en) Production of aluminum nitride powder
JPH04124064A (en) Production of highly heat-conductive silicon carbide
JP3834930B2 (en) Magnesium siliconitride sintered body and method for producing the same
JP2671539B2 (en) Method for producing silicon nitride sintered body
JPH0459609A (en) Production of aluminum nitride powder
JPH0321500B2 (en)
JPH02116678A (en) Production of sintered silicon carbide body
JP2704194B2 (en) Black aluminum nitride sintered body
JP2577155B2 (en) Silicon nitride sintered body
JPH04951B2 (en)
JPH01138174A (en) Production of sintered aluminum nitride
JPH0686332B2 (en) Manufacturing method of sialon-based ceramic tool for cutting cast iron
JPH06247772A (en) Production of aluminum nitride sintered compact
JPS63277571A (en) Production of sintered aluminum nitride having high thermal conductivity