JPH0113731B2 - - Google Patents

Info

Publication number
JPH0113731B2
JPH0113731B2 JP58042419A JP4241983A JPH0113731B2 JP H0113731 B2 JPH0113731 B2 JP H0113731B2 JP 58042419 A JP58042419 A JP 58042419A JP 4241983 A JP4241983 A JP 4241983A JP H0113731 B2 JPH0113731 B2 JP H0113731B2
Authority
JP
Japan
Prior art keywords
weight
conductive
ethylene
sulfur
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58042419A
Other languages
Japanese (ja)
Other versions
JPS59168051A (en
Inventor
Toshiharu Sakaguchi
Tadayuki Uematsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4241983A priority Critical patent/JPS59168051A/en
Publication of JPS59168051A publication Critical patent/JPS59168051A/en
Publication of JPH0113731B2 publication Critical patent/JPH0113731B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、耐熱性を改善した特に鉛との接着性
のよい導電性樹脂組成物に関するものである。 従来、例えば、高電圧用ゴム、プラスチツク絶
縁電力ケーブルは、第1図に示す如く導体1上
に、内部導電層2、ポリエチレン、エチレンプロ
ピレンゴム等による絶縁体層3、外部半導電層
4、銅テープあるいは銅線等による金属遮蔽層
5、及び塩化ビニル等の保護シート6が、これら
の順に設けられた基本構成を有している。 このようなゴム、プラスチツク絶縁電力ケーブ
ルにおいて、何等かの事由により、外部からケー
ブル内部に水が浸入すると、絶縁体、各半導電層
等にいわゆる水トリーが発生し、絶縁性能の低下
等、電力ケーブルの諸特性の低下を招く重大な原
因になる。又、ケーブルの製造時、同保管時、ケ
ーブル引込作業時等に、該ケーブル端末部又はジ
ヨイント部等から導体を伝わつて水分が浸入し、
導体側から内部半導電層、更には、絶縁体層に水
浸入による水トリーの発生原因を生じさせること
がよく知られている。 このように、ゴム、プラスチツク絶縁電力ケー
ブルでは、(イ)外部からの水分浸入防止と、(ロ)導体
からの水分浸入防止とが強く要求されている。 かかる要望に応じて出願人は、10〜200μm厚
の鉛箔テープの片面あるいは両面に導電性プラス
チツク薄葉体を積層させたラミネートテープを導
体上、あるいは、絶縁体と金属遮蔽層間に設ける
遮水ケーブル構造を提案してきた。 一方、本発明者等は、特願昭56―152119号に
て、金属箔テープに積層する導電性プラスチツク
薄葉体を得るに好適な導電性組成物として、エチ
レン―アクリル酸共重合体を主材とし、これにポ
リエチレン、EVA、EEA、無極性ポリオレフイ
ン系結晶性樹脂の群から選ばれたポリオレフイン
樹脂を混和した樹脂混和物に導電性カーボンブラ
ツクを配合した樹脂組成物を提案した。 しかしながら、上記樹脂組成物から成る薄葉体
を特に鉛箔と積層し高温で長時間使用すると、酸
化による劣化が進行して鉛箔と導電性薄葉体との
接着部より、剥離が生じたり、導電性薄葉体その
ものにクラツクが生じたりして長期に亘る品質保
持の点で問題があつた。 ポリオレフイン系重合体の酸化劣化を防止する
ために、酸化防止剤を添加することが従来行なわ
れているが、前記の導電性組成物に対して、長期
に亘つて安定した酸化防止特性を有する酸化防止
剤を見出すのは困難であつた。 本発明は、以上の点に鑑み、鋭意検討した結果
高温、例えば、50〜90℃で、長期に亘つて使用し
ても、導電性薄葉体の酸化劣化が進まず、かつ導
電性薄葉体に割れが発生することなく、又鉛箔テ
ープとの接着部の剥離強度も低下しない鉛箔と接
着性が極めてよい導電性樹脂組成物を開発し得た
ものである。 即ち、本発明者等は鋭意研究の結果、前記の導
電性組成物に対して、分子中に硫黄原子を持つ化
合物で、ラジカル抑制とペルオキシド分解などの
作用を行う硫黄系として分類されている各種市販
の硫黄系酸化防止剤、例えばビス〔2―メチル―
4―(3―n―アルキルC12―C14)チオプロピオ
ニルオキシ)―5―t―ブチルフエニル〕スルフ
イド(アデカ社商品名Mark AO―23)、ジラウ
リル―3,3′チオジプロピオン酸エステル(シプ
ロ化成社商品名Seenox DL)、ジトリデシル―
3,3′チオジプロピオン酸エステル(住友化学社
商品名Sumilizer TL)、ジミリスチル―3,3′―
チオジプロピオン酸エステル(シプロ化成社商品
名Seenox DM)、ジステアリル―3,3′―チオジ
プロピオン酸エステル(住友化学社商品名
Sumilizer TPS)、ラウリルステアリル―3,
3′チオジプロピオン酸エステル(吉富社商品名
LSTPヨシトミ)、2―メルカプトベンズイミダ
ゾール、テトラメチルチウラムモノサルフアイド
等の群から選ばれる化合物が使用できるが、中で
もアデカ社商品名Mark AO―23は、成型した際
にブリードすることがないので好適に使用でき
る。これら硫黄系酸化防止剤はEAAを主体とす
る導電性組成物に対して、著しく耐熱性を向上す
る大きな効果を有し、しかも鉛との接着力を安定
させるとを見出し、本発明の完成に導いたのであ
る。 即ち、本発明の導電性樹脂組成物は (a) エチレン―アクリル酸共重合体(以下EAA
と略称する)の60重量%以下の量をポリエチレ
ン、エチレン―酢酸ビニル共重合体、(以下
EVAと略称する)エチレン―エチルアクリル
レート共重合体、(以下EEAと略称する)無極
性ポリオレフイン系結晶性樹脂の群から選ばれ
た1種又は2種以上のポリオレフインで置き換
えた混合物100重量部に対して、 (b) カーボンブラツク、カーボンフアイバー黒鉛
の群から選ばれた物質の1種又は2種以上を5
〜140重量部と、 (c) 硫黄系酸化防止剤0.1〜5重量部とを均一に
混合してなるもので、該組成物はこれを薄膜化
し、鉛箔テープと熱融着したラミネートテープ
は水分の存在下において、ケーブル使用時の温
度条件で長期に亘つて使用しても、オリジナル
の特性(接着力、機械的強度等)を著しく損う
ことがないものである。 本発明にて用いる前記EAAとしては、アクリ
ル酸の含有率が1〜20重量%となるように高圧法
又は高圧下のエマルジヨン重合法等の常法により
製造された各種のものが使用できるが、好ましく
は、アクリル酸の含有率が3〜15重量%のものを
使用する。 本発明にて用いる前記のポリエチレンとして
は、高密度ポリエチレン、低密度ポリエチレン
(以下LDPEと略称する)が使用できる。 又、前記のエチレン―酢酸ビニル共重合体
(EVA)としては、酢酸ビニルの含有率が5〜48
重量%のものが好ましく、そのアセトオキシ基の
70%以上が水酸基に加水分解されたものを使用し
てもよい。 又、前記のEEAとしては、エチルアクリレー
トの含有率が5〜25重量%のものを使用するのが
好ましい。 前記の無極性ポリオレフイン系結晶性樹脂とし
ては、塩素、酢酸基、二重結合等の極性基を殆ん
ど含まないポリオレフイン系の樹脂であり、破断
点伸びが400〜1000%もあるよう弾性を有するも
のが好ましく、例えば、無極性のエチレンα―オ
レフイン共重合体であるタフマーAシリーズ(三
井石油化学工業株式会社製商品名)が好適に使用
できる。又、これら樹脂類内の2種以上の混合物
を用いてもよい。 前記カーボンブラツクとしては、各種のアセチ
レンブラツク、フアーネスブラツク等が使用でき
るが、ケツチエンブラツク(AKZO社製商品名)
のように導電性の特に優れたものが最適である。 本発明において酸化防止剤として、特に硫黄系
酸化防止剤と特定した理由は、硫黄系酸化防止剤
以外の酸化防止剤では上述の如き効果がないため
である。この理由については詳細は不明である
が、酸化防止剤の硫黄が鉛と導電性薄葉体の界面
に存在すると、PbSとなり、これが導電性薄葉体
との接着性をより強固にし、安定したものとする
と共に、導電性薄葉体そのものの耐熱性を高め、
これらの重畳効果によるものと推考される。 次に、本発明における前記の各成分の配合量の
割合については、(a)EAAを主成分とした樹脂分
100重量部に対する前記(b)導電性材料が140重量部
を越えると、フイルムの成膜性、柔軟性をはじせ
機械的性質が悪くなり、逆に5重量部未満では1
〜107Ω―cmの抵抗という必要な電気特性が得ら
れない。 さらに、(c)硫黄系酸化防止剤が、0.1重量部未
満では、本発明導電性組成物の耐熱性向上に効果
がない。逆に、5重量部を越えると、本発明導電
性組成物の機械的性質が損われるので不可であ
る。 さらに又、本発明において、前記(a)EAAの一
部置換樹脂として用いることが可能なポリエチレ
ン、エチレン―酢酸ビニル共重合体、エチレン―
エチルアクリレート共重合体、無極性ポリオレフ
イン系結晶性樹脂などのポリオレフインの配合割
合を60重量%以下と限定した理由はこれらの樹脂
の配合量が全樹脂量の60%を越えると得られた組
成物はフイルムの成膜性、柔軟性、及び鉛箔テー
プとの接着性が低下するためである。 なお、本発明の導電性樹脂組成物は、前記の各
必須成分の他、さらに所望により種々の添加剤、
例えば、各種安定剤、滑剤、難燃剤、補強剤等を
適宜添加してもよい。 以下本発明をさらに実施例につき比較例と対比
しつつ説明する。 実施例1〜12比較例1〜10 表1に示す本発明の導電性樹脂組成物及び比較
例の導電性樹脂組成物から成る0.1mm厚のフイル
ムを50μ厚の鉛箔テープの両面に温度160℃、圧
力5Kg/cm2で1分間熱圧着させて、耐薬品性、遮
水電気ケーブル用薄葉体を作製した。 上記試料の体積固有抵抗、鉛箔との接着強度、
引張特性を測定後、80℃温水中に1カ月浸漬後、
鉛箔との接着強度、引張特性を測定した。得られ
た結果を表1に併記した。 上記試験以外に、試料を120℃ギヤーオーブン
中で1カ月加熱処理を行なつた後、引張試験を行
なつた。得られた結果を表1に併記した。 なお、実施例及び比較例に使用した各種原料の
うち、LDPEはMI=7のものを、EVAは酢酸ビ
ニル含有率19%のものを、EEAはエチルアクリ
ルレート含有率12%のものを、タフマーは三井石
油化学工業株式会社製商品名A4085でMI=4の
ものを、カーボンブラツクはAKZO社製商品名
ケツチエンブラツクECをそれぞれ使用した。 硫黄系酸化防止剤は、実施例1,2,3,4,
5は、ジラウリル―3,3′―チオジプロピオン酸
エステル(シプロ化成社商品名Seenox DL)を、
実施例6,7,8,9,10,11は、ビス〔2―メ
チル―4―(3―n―アルキル(C12―C14)チオ
プロピオニルオキシ)―5―t―ブチルフエニ
ル〕スルフイド(アデカ社商品名Mark AO―
23)を、比較例1,2は、トリフエニルフオスフ
アイトを、比較例3,4は、2,2′―メチレンビ
ス(4メチル―6―ターシヤリブチルフエノー
ル)を、比較例5,6は、2,6―ジ―第三ブチ
ルp―クレゾール(BHT)を、比較例7,8は、
2,6―ジ―ターシヤリ―ブチル―4―エチルフ
エノールを、比較例9,10は、N,N′―ジフエ
ニル―p―フエニレンジアミンを使用した。 以上、実施例から明らかなように本発明の導電
性組成物を用いた鉛―導電性組成物薄葉体は水分
の存在下においてケーブル使用時の温度条件で長
期に亘つて使用しても鉛箔フイルムとの接着力が
劣ることなく、導電性ゴムプラスチツク薄葉体の
酸化劣化も防止でき、実用上極めて優れた耐薬品
性、遮水電気ケーブル用導電性薄葉体となし得
る。
The present invention relates to a conductive resin composition with improved heat resistance and particularly good adhesion to lead. Conventionally, for example, a high voltage rubber or plastic insulated power cable has a conductor 1, an inner conductive layer 2, an insulator layer 3 made of polyethylene or ethylene propylene rubber, an outer semiconducting layer 4, copper, etc., as shown in FIG. The basic configuration includes a metal shielding layer 5 made of tape or copper wire, and a protective sheet 6 made of vinyl chloride or the like, provided in this order. If water intrudes into the cable from the outside for some reason in such rubber or plastic insulated power cables, so-called water trees will occur in the insulator, each semiconducting layer, etc., resulting in a decline in insulation performance, etc. This becomes a serious cause of deterioration of various characteristics of the cable. In addition, during cable manufacturing, storage, cable pulling work, etc., moisture may infiltrate through the conductor from the cable terminal or joint, etc.
It is well known that water intrusion from the conductor side into the internal semiconducting layer and further into the insulating layer causes water trees. As described above, rubber and plastic insulated power cables are strongly required to (a) prevent water from entering from the outside and (b) prevent water from entering from the conductor. In response to such requests, the applicant has developed a water-shielding cable in which a laminate tape made by laminating a conductive plastic thin film on one or both sides of a lead foil tape with a thickness of 10 to 200 μm is installed on the conductor or between the insulator and the metal shielding layer. I have proposed a structure. On the other hand, the present inventors have disclosed in Japanese Patent Application No. 152,119/1986 that an ethylene-acrylic acid copolymer is used as a conductive composition suitable for obtaining a conductive plastic thin film to be laminated on a metal foil tape. We proposed a resin composition in which electrically conductive carbon black is blended into a resin mixture in which a polyolefin resin selected from the group of polyethylene, EVA, EEA, and non-polar polyolefin crystalline resins is mixed. However, when a thin film made of the above resin composition is laminated with lead foil and used for a long time at high temperatures, deterioration due to oxidation progresses, and peeling occurs at the bond between the lead foil and the conductive thin film. There were problems in maintaining quality over a long period of time as cracks occurred in the thin thallus itself. In order to prevent oxidative deterioration of polyolefin polymers, it has conventionally been done to add antioxidants. It has been difficult to find inhibitors. In view of the above points, and as a result of intensive studies, the present invention has been developed to prevent oxidative deterioration of the conductive thin film material even when used for a long period of time at high temperatures, e.g., 50 to 90°C, It has been possible to develop a conductive resin composition that exhibits extremely good adhesion to lead foil without cracking and without deteriorating the peel strength of the bonded portion with the lead foil tape. That is, as a result of intensive research, the present inventors have found that various types of sulfur-based compounds, which have sulfur atoms in their molecules and are classified as sulfur-based compounds that have functions such as radical suppression and peroxide decomposition, have been found in the conductive composition described above. Commercially available sulfur-based antioxidants, such as bis[2-methyl-
4-(3-n-alkylC 12 -C 14 )thiopropionyloxy)-5-t-butylphenyl] sulfide (trade name Mark AO-23, manufactured by Adeka), dilauryl-3,3'thiodipropionic acid ester (cypropionyloxy)-5-t-butylphenyl] Kaseisha product name: Seenox DL), ditridecyl-
3,3' thiodipropionic acid ester (Sumitomo Chemical Co., Ltd. trade name: Sumilizer TL), dimyristyl-3,3'-
Thiodipropionic acid ester (Cipro Kasei Co., Ltd. trade name: Seenox DM), distearyl-3,3'-thiodipropionic acid ester (Sumitomo Chemical Co., Ltd. trade name)
Sumilizer TPS), lauryl stearyl-3,
3′thiodipropionic acid ester (Yoshitomisha brand name)
Compounds selected from the group such as LSTP Yoshitomi), 2-mercaptobenzimidazole, and tetramethylthiuram monosulfide can be used, but Adeka's Mark AO-23 is particularly suitable because it does not bleed when molded. Can be used for It was discovered that these sulfur-based antioxidants have a great effect of significantly improving the heat resistance of conductive compositions mainly composed of EAA, and also stabilize the adhesive strength with lead, and this led to the completion of the present invention. He guided it. That is, the conductive resin composition of the present invention comprises (a) an ethylene-acrylic acid copolymer (hereinafter referred to as EAA).
polyethylene, ethylene-vinyl acetate copolymer, (hereinafter referred to as
100 parts by weight of a mixture substituted with one or more polyolefins selected from the group of ethylene-ethyl acrylate copolymer (hereinafter abbreviated as EVA) and non-polar polyolefin crystalline resins (hereinafter abbreviated as EEA). (b) one or more substances selected from the group of carbon black and carbon fiber graphite.
~140 parts by weight and (c) 0.1 to 5 parts by weight of a sulfur-based antioxidant are uniformly mixed. Even if the cable is used for a long period of time in the presence of moisture and at the same temperature as the cable is used, the original properties (adhesive strength, mechanical strength, etc.) will not be significantly impaired. As the EAA used in the present invention, various kinds of EAAs manufactured by conventional methods such as high pressure method or emulsion polymerization method under high pressure can be used so that the content of acrylic acid is 1 to 20% by weight. Preferably, one having an acrylic acid content of 3 to 15% by weight is used. As the polyethylene used in the present invention, high density polyethylene and low density polyethylene (hereinafter abbreviated as LDPE) can be used. In addition, the above-mentioned ethylene-vinyl acetate copolymer (EVA) has a vinyl acetate content of 5 to 48
% by weight is preferable, and the acetoxy group is
You may use one in which 70% or more is hydrolyzed to hydroxyl groups. Further, as the above-mentioned EEA, it is preferable to use one having an ethyl acrylate content of 5 to 25% by weight. The above-mentioned non-polar polyolefin crystalline resin is a polyolefin resin that contains almost no polar groups such as chlorine, acetate groups, or double bonds, and is made with elasticity so that the elongation at break is 400 to 1000%. For example, Tafmer A series (trade name, manufactured by Mitsui Petrochemical Industries, Ltd.), which is a nonpolar ethylene α-olefin copolymer, can be suitably used. Also, a mixture of two or more of these resins may be used. As the carbon black, various acetylene blacks, furnace blacks, etc. can be used, but Kettien black (trade name manufactured by AKZO) is used.
A material with particularly excellent conductivity, such as , is most suitable. The reason why a sulfur-based antioxidant is specifically specified as an antioxidant in the present invention is that antioxidants other than sulfur-based antioxidants do not have the above-mentioned effect. Although the details of the reason for this are unknown, when the antioxidant sulfur exists at the interface between lead and the conductive thin film, it becomes PbS, which strengthens the adhesion with the conductive thin film and makes it stable. At the same time, the heat resistance of the conductive thin film itself is increased,
It is thought that this is due to these superimposed effects. Next, regarding the proportions of the above-mentioned components in the present invention, (a) the resin containing EAA as the main component;
If the amount of the conductive material (b) exceeds 140 parts by weight per 100 parts by weight, the film formability and flexibility will deteriorate and the mechanical properties will deteriorate;
The required electrical properties of ~10 7 Ω-cm resistance cannot be obtained. Furthermore, if the sulfur-based antioxidant (c) is less than 0.1 part by weight, it is ineffective in improving the heat resistance of the conductive composition of the present invention. On the other hand, if it exceeds 5 parts by weight, the mechanical properties of the electrically conductive composition of the present invention will be impaired. Furthermore, in the present invention, polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl acetate copolymer, ethylene-
The reason for limiting the blending ratio of polyolefins such as ethyl acrylate copolymer and non-polar polyolefin crystalline resin to 60% by weight or less is that if the blending ratio of these resins exceeds 60% of the total resin amount, the resulting composition This is because the film formability, flexibility, and adhesion to the lead foil tape deteriorate. The conductive resin composition of the present invention may further contain various additives, if desired, in addition to the above-mentioned essential components.
For example, various stabilizers, lubricants, flame retardants, reinforcing agents, etc. may be added as appropriate. The present invention will be further explained below with reference to Examples and comparison with Comparative Examples. Examples 1 to 12 Comparative Examples 1 to 10 A 0.1 mm thick film consisting of the conductive resin composition of the present invention and the conductive resin composition of the comparative example shown in Table 1 was placed on both sides of a 50 μ thick lead foil tape at a temperature of 160°C. ℃ and a pressure of 5 kg/cm 2 for 1 minute to produce a chemical-resistant, water-shielding thin film for electrical cables. Volume resistivity of the above sample, adhesive strength with lead foil,
After measuring the tensile properties, immersed in 80℃ warm water for one month,
The adhesive strength and tensile properties with lead foil were measured. The obtained results are also listed in Table 1. In addition to the above tests, the samples were heat treated in a gear oven at 120°C for one month and then subjected to a tensile test. The obtained results are also listed in Table 1. Of the various raw materials used in the Examples and Comparative Examples, LDPE was used with MI=7, EVA was used with a vinyl acetate content of 19%, EEA was used with an ethyl acrylate content of 12%, and Toughmer was used with an ethyl acrylate content of 12%. The carbon black used was A4085 (trade name) manufactured by Mitsui Petrochemical Industries, Ltd. and had an MI of 4, and the carbon black was manufactured by AKZO Co., Ltd. (trade name) KETSUCHEN BLACK EC. The sulfur-based antioxidants are Examples 1, 2, 3, 4,
5 is dilauryl-3,3'-thiodipropionic acid ester (Cipro Kasei Co., Ltd. trade name: Seenox DL),
Examples 6, 7, 8, 9, 10, and 11 are bis[2-methyl-4-(3-n-alkyl (C 12 -C 14 ) thiopropionyloxy)-5-t-butylphenyl] sulfide (ADEKA Company product name Mark AO―
23), Comparative Examples 1 and 2 are triphenyl phosphorite, Comparative Examples 3 and 4 are 2,2′-methylenebis(4methyl-6-tertiarybutylphenol), and Comparative Examples 5 and 6 are 2,6-di-tert-butyl p-cresol (BHT), Comparative Examples 7 and 8 were
2,6-di-tertiary-butyl-4-ethylphenol was used, and in Comparative Examples 9 and 10, N,N'-diphenyl-p-phenylenediamine was used. As is clear from the examples above, the lead-conductive composition thin film using the conductive composition of the present invention can be used for a long period of time under the temperature conditions used for cables in the presence of moisture. It can prevent oxidative deterioration of the conductive rubber plastic thin film without deteriorating its adhesion to the film, and can be made into a conductive thin film for use in water-shielding electric cables with extremely excellent chemical resistance in practical use.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は高電圧用ゴム、プラスチツク絶縁電力
ケーブルの基本構造を示す断面図である。 1…導体、2…内部導電層、3…絶縁体層、4
…外部導電層、5…金属遮蔽層、6…防食層。
FIG. 1 is a sectional view showing the basic structure of a high voltage rubber/plastic insulated power cable. DESCRIPTION OF SYMBOLS 1...Conductor, 2...Inner conductive layer, 3...Insulator layer, 4
...outer conductive layer, 5...metal shielding layer, 6...corrosion protection layer.

Claims (1)

【特許請求の範囲】 1 (a) エチレン―アクリル酸共重合体の60重量
%以下の量をポリエチレン、エチレン―酢酸ビ
ニル共重合体、エチレン―エチルアクリレート
共重合体、無極性ポリオレフイン系結晶性の樹
脂群から選ばれた1種又は2種以上のポリオレ
フインで置き換えた混合物100重量部に対して、 (b) カーボンブラツク、カーボンフアイバー、黒
鉛の群から選ばれた物質の1種又は2種以上を
5〜140重量部と、さらに、 (c) 硫黄系酸化防止剤0.1〜5重量部とを均一に
混合して成ることを特徴とする導電性樹脂組成
物。
[Scope of Claims] 1 (a) Up to 60% by weight of the ethylene-acrylic acid copolymer is added to polyethylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, non-polar polyolefin-based crystalline (b) one or more substances selected from the group of carbon black, carbon fiber, and graphite per 100 parts by weight of the mixture substituted with one or more polyolefins selected from the group of resins; 5 to 140 parts by weight, and (c) 0.1 to 5 parts by weight of a sulfur-based antioxidant are uniformly mixed.
JP4241983A 1983-03-16 1983-03-16 Electrically conductive resin composition Granted JPS59168051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4241983A JPS59168051A (en) 1983-03-16 1983-03-16 Electrically conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4241983A JPS59168051A (en) 1983-03-16 1983-03-16 Electrically conductive resin composition

Publications (2)

Publication Number Publication Date
JPS59168051A JPS59168051A (en) 1984-09-21
JPH0113731B2 true JPH0113731B2 (en) 1989-03-08

Family

ID=12635540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4241983A Granted JPS59168051A (en) 1983-03-16 1983-03-16 Electrically conductive resin composition

Country Status (1)

Country Link
JP (1) JPS59168051A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103764597A (en) * 2011-08-30 2014-04-30 住友电气工业株式会社 Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031548A (en) * 1983-07-29 1985-02-18 Toshiba Corp Electrically conductive organic composition having ptc characteristics
JPS6031539A (en) * 1983-07-29 1985-02-18 Toshiba Corp Electrically conductive organic composition having ptc characteristics
KR900002983B1 (en) * 1985-04-11 1990-05-03 Furukawa Electric Co Ltd Lead alloy foil for laminated tape
JPH0277442A (en) * 1988-09-14 1990-03-16 Showa Denko Kk Electrically conductive thermoplastic resin composition
KR920701991A (en) * 1990-04-03 1992-08-12 도모마쓰 겐고 Semiconductive resin composition and rubber / plastic insulated power cable using the same
JP2003035345A (en) * 2001-07-23 2003-02-07 Bando Chem Ind Ltd Automatic tensioner
JP5288695B2 (en) * 2006-09-11 2013-09-11 三井・デュポンポリケミカル株式会社 Thermoplastic resin composition and use thereof
JP5923063B2 (en) * 2013-07-08 2016-05-24 株式会社フジクラ Conductive thermoplastic resin composition for cable and cable
CN109206729B (en) * 2017-07-05 2021-02-26 上海宏胜电线电缆有限公司 Special cable for long-service-life ultraviolet-resistant and corrosion-resistant photovoltaic system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103764597A (en) * 2011-08-30 2014-04-30 住友电气工业株式会社 Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
US9416304B2 (en) 2011-08-30 2016-08-16 Sumitomo Electric Industries, Ltd. Cubic boron nitride complex polycrystal and manufacturing method therefor, and cutting tool, wire-drawing die and grinding tool

Also Published As

Publication number Publication date
JPS59168051A (en) 1984-09-21

Similar Documents

Publication Publication Date Title
US4286023A (en) Article of manufacture, the cross-linked product of a semi-conductive composition bonded to a crosslinked polyolefin substrate
EP0129617B1 (en) Semiconducting compositions and wires and cables using the same
US4246142A (en) Vulcanizable semi-conductive compositions
US6972099B2 (en) Strippable cable shield compositions
US4451536A (en) Heat distortion-resistant thermoplastic semi-conductive composition
JPH0113731B2 (en)
EP0012014B1 (en) A process for producing a crosslinked polyethylene insulated cable and an insulated cable so produced
US3719769A (en) Insulated electric cable having an external semiconductive layer
CN86102490A (en) Lead alloy-foil that covering cable is used and the lead laminated strip made from this paper tinsel
JPS64767B2 (en)
JPS63146302A (en) Rubber resin insulated power cable
JPS59175506A (en) Crosslinked polyethylene insulated high voltage cable
KR100192125B1 (en) Resin compositions for controlling ion penetration
JPS6224887Y2 (en)
JPS6332205B2 (en)
JPS63256682A (en) Water-intercepting filler for watertight cable
JPS63268753A (en) Electrically semiconductive composition
JPS5998403A (en) Semiconductive composition
JP2648870B2 (en) Flame retardant resin composition
JP2000040419A (en) High voltage power cable
JPH0520931A (en) Water shielding tape
JPH0562521A (en) Polyolefin insulating material
JPH03137147A (en) Insulating resin composition having excellent water resistance
JPS6280908A (en) Vulcanized ep rubber insulated power cable
JPS63301414A (en) Rubber plastic insulated power cable