JPS6332205B2 - - Google Patents

Info

Publication number
JPS6332205B2
JPS6332205B2 JP56020737A JP2073781A JPS6332205B2 JP S6332205 B2 JPS6332205 B2 JP S6332205B2 JP 56020737 A JP56020737 A JP 56020737A JP 2073781 A JP2073781 A JP 2073781A JP S6332205 B2 JPS6332205 B2 JP S6332205B2
Authority
JP
Japan
Prior art keywords
cable
parts
graftomer
semiconducting layer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56020737A
Other languages
Japanese (ja)
Other versions
JPS57134807A (en
Inventor
Fumio Aida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP2073781A priority Critical patent/JPS57134807A/en
Publication of JPS57134807A publication Critical patent/JPS57134807A/en
Publication of JPS6332205B2 publication Critical patent/JPS6332205B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は剥離容易性の外部半導電層を有する架
橋ポリエチレン電力ケーブル、特に耐水トリ−性
の優れた架橋ポリエチレン電力ケーブルに関す
る。 近時、架橋ポリエチレンケーブル等の電力ケー
ブルの端末処理作業や接続作業を簡略化し、時間
を短縮するため、外部半導電層が容易に絶縁体か
らはがれるタイプの、いわゆるイージーストリツ
ピングタイプのケーブルが広範囲に普及しはじめ
ている。この外部半導電層は特公昭48−27111号
公報や特公昭55−35806号公報にみられるように
塩素系ポリマーを主成分とする組成物で形成され
ることが多い。このうちエチレン・酢酸ビニル共
重合体−ポリ塩化ビニルグラフトマー(EVA−
PVCグラフトマーと略称する。)は剥離性にすぐ
れ、施行作業性の良い外部半導電層を与えるので
最も広く使用されている。しかしながらこの
EVA−PVCグラフトマーは熱安定性が、ポリエ
チレン、エチレン・酢酸ビニル共重合体、エチレ
ン・エチルアクリレート共重合体等のポリマーに
比較して極めて悪く、200℃以上の高温では分解
してしまうため、ポリエチレンの架橋温度を高く
することができなかつた。すなわち架橋ポリエチ
レン電力ケーブルの製造においては、ポリエチレ
ンを架橋させるため通常200℃程度の高圧水蒸気
のパイプ中を通過させるのであるが、このときケ
ーブルの外部半導電層は最も苛酷な熱履歴を受け
ることになり、熱安定性の悪いEVA−PVCグラ
フトマーを含む組成物で形成された外部半導電層
は劣化しやすくなるため、自ずと架橋温度に制限
があり、線速を大きくして生産性を高めるという
ことができなかつたのである。 而してEVA−PVCグラフトマーの熱安定性の
改良については、特公昭51−32394号公報にみら
れるように、酸化マグネシウム、酸化亜鉛、酸化
カルシウム等の無機物を適切に配合することによ
り、ある程度達成されており、架橋温度を従来よ
り高く、約230℃以上でも可能となつた。 しかしながら、これらの無機物を配合して成る
EVA−PVCグラフトマーで外部半導電層を形成
すると、無機物がポリマーの分解過程で生じる酢
酸や塩化水素をトラツプして、水溶性の酢酸塩や
塩化物となるため、架橋後の外部半導電層は著し
く吸湿性となり、かつイオン性の物質を多量に含
むことになる。 本発明者らは、このように半導電層にイオン性
物質が多量に含まれるとケーブル絶縁体中に、絶
縁性能の低下の原因となる水トリーが発生して、
ケーブルの長期信頼性に影響を及ぼすことを確認
した。 本発明者らは、このような問題のない、EVA
−PVCグラフトマーの熱安定性の改良について
鋭意研究を進めた結果、化学式Mg4Al2
(OH)12CO3・3H2Oで表わされるハイドロタルサ
イトに類似の無機化合物に配合するとEVA−
PVCの耐熱性が大巾に向上し、しかも酢酸や塩
化水素をトラツプしても水溶性の塩を形成しない
ためイオン性物質を生成することがなく、その結
果絶縁体中に水トリーが発生して絶縁性能を低下
させるという問題が回避できることがわかつた。 本発明はこのような知見のもとになされたもの
で、絶縁体上に押出被覆された外部半導電層が
EVA−PVCグラフトマーを含む樹脂と導電性カ
ーボンブラツクを主成分とする組成物で形成され
た架橋ポリエチレン電力ケーブルにおいて、前記
組成物には化学式Mg4Al2(OH)12CO3・3H2Oで
表わされる無機化合物が樹脂100重量部あたり0.5
〜20重量部配合されていることを特徴とする剥離
容易性の外部半導電層を有する、耐水トリー性の
良好な架橋ポリエチレン電力ケーブルを提供する
ものである。 本発明に使用されるEVA−PVCグラフトマー
としては住友化学社製スミグラフトGE、GF、
GFL等があり、EVAあるいはポリエチレン、エ
チレン・エチルアクリレート共重合体等と併用す
るのが望ましい。EVA−PVCグラフトマーのポ
リマー中に占める割合は10〜50%が適切で、これ
より多いと耐熱性が低下し、これより少ないと剥
離性が低下する。 本発明に使用される導電性カーボンブラツクと
してはアセチレンブラツク等があり、必要な導電
度を得るのに樹脂100重量部あたり10〜100重量部
添加される。 本発明に使用される、化学式Mg4Al2
(OH)12CO3・3H2Oで表わされる無機化合物は、
ハイドロタルサイト類似化合物として協和化学社
からDHT−4Aの商品名で市販されており、制酸
剤や難燃剤として使用され、又ポリ塩化ビニルの
安定剤としても使用されているものであるが、本
発明のように外部半導電層に使用して耐水トリー
性への影響を検討した例は今だかつてない。 このものの配合量はEVA−PVCグラフトマー
の量に応じて調整すべきであるが、樹脂100重量
部に対して0.5〜20重量部好ましくは2〜10重量
部とする。これより少ないとEVA−PVCグラフ
トマーの熱安定化効果が殆んどなく、これより多
いと物性、特に引き裂き強度の低下が著しくな
る。 本発明においては上記成分の他に4・4′−チオ
ビス6−tブチルフエノール等の抗酸化剤やエポ
キシ樹脂系安定剤を添加するのが望ましく、又有
機過酸化物を添加して架橋することもできる。 これらの成分は常法により混練され、絶縁体上
に押出被覆されて本発明に係るケーブルが得られ
る。 次に実施例について説明する。 まず第1表に示す各成分をバンバリーミキサー
にて混練し、得られた半導電組成物を1mm厚のシ
ートにプレス成型した。これに、架橋剤としてジ
クミルパーオキサイドを2PHR配合した2mm厚の
ポリエチレンシートを重ね、200℃で20分間のプ
レス架橋を行なつたものについてシヨツパー引張
試験機により剥離強度を測定した。又熱重量分析
により、200℃又は250℃で30分間放置した場合の
重量減少率を求め、熱安定性の目安とした。試験
結果を、引き裂き強度及び吸水率の試験結果と合
わせて第2表にした。 なお試料番号7〜9は比較のため示した。
The present invention relates to a crosslinked polyethylene power cable having an easily peelable outer semiconductive layer, and particularly to a crosslinked polyethylene power cable with excellent water resistance. Recently, in order to simplify the terminal processing and connection work of cross-linked polyethylene cables and other power cables, and to shorten the time, so-called easy-stripping type cables, in which the outer semiconducting layer can be easily peeled off from the insulator, have been developed. It is beginning to become widespread. This external semiconductive layer is often formed of a composition containing a chlorine-based polymer as a main component, as shown in Japanese Patent Publication No. 48-27111 and Japanese Patent Publication No. 55-35806. Of these, ethylene/vinyl acetate copolymer-polyvinyl chloride graftomer (EVA-
It is abbreviated as PVC graftomer. ) is the most widely used because it provides an outer semiconducting layer with excellent peelability and workability. However, this
EVA-PVC graftomer has extremely poor thermal stability compared to polymers such as polyethylene, ethylene/vinyl acetate copolymer, and ethylene/ethyl acrylate copolymer, and decomposes at high temperatures of 200°C or higher. It was not possible to raise the crosslinking temperature. In other words, in the production of cross-linked polyethylene power cables, the polyethylene is usually passed through a pipe of high-pressure steam at a temperature of about 200 degrees Celsius in order to cross-link it, and at this time the outer semiconducting layer of the cable undergoes the most severe thermal history. Therefore, the outer semiconducting layer formed from a composition containing an EVA-PVC graftomer with poor thermal stability easily deteriorates, so there is a natural limit to the crosslinking temperature, so it is necessary to increase the line speed to increase productivity. I was unable to do so. As seen in Japanese Patent Publication No. 51-32394, improvements in the thermal stability of EVA-PVC graftomers have been achieved to some extent by appropriately incorporating inorganic substances such as magnesium oxide, zinc oxide, and calcium oxide. This makes it possible to use a higher crosslinking temperature than before, approximately 230°C or higher. However, it is made by blending these inorganic substances.
When the outer semiconducting layer is formed with EVA-PVC graftomer, the inorganic substances trap acetic acid and hydrogen chloride generated during the decomposition process of the polymer and become water-soluble acetate and chloride, so the outer semiconducting layer after crosslinking is It becomes extremely hygroscopic and contains a large amount of ionic substances. The present inventors have discovered that when a large amount of ionic substances are contained in the semiconducting layer, water trees occur in the cable insulator, which causes a decrease in insulation performance.
It was confirmed that this had an effect on the long-term reliability of the cable. The present inventors have developed an EVA that does not have such problems.
-As a result of intensive research into improving the thermal stability of PVC graftomers, we found that the chemical formula: Mg 4 Al 2
(OH) When mixed with an inorganic compound similar to hydrotalcite represented by 12 CO 3 3H 2 O,
The heat resistance of PVC has been greatly improved, and even when acetic acid or hydrogen chloride is trapped, it does not form water-soluble salts, so it does not generate ionic substances, and as a result, water trees occur in the insulator. It was found that the problem of deterioration of insulation performance can be avoided. The present invention was made based on this knowledge, and the present invention is based on the above knowledge, and it is based on the fact that the outer semiconducting layer extruded on the insulator is
In a cross-linked polyethylene power cable formed of a composition based on a resin containing EVA-PVC graftomer and conductive carbon black, the composition has the chemical formula Mg 4 Al 2 (OH) 12 CO 3 3H 2 O. The amount of inorganic compounds expressed is 0.5 per 100 parts by weight of resin.
The object of the present invention is to provide a crosslinked polyethylene power cable having good water resistance and having an easily peelable outer semiconductive layer characterized by containing up to 20 parts by weight. EVA-PVC graftomers used in the present invention include Sumitomo Chemical's Sumigraft GE, GF,
There are GFL, etc., and it is desirable to use them together with EVA, polyethylene, ethylene/ethyl acrylate copolymer, etc. The appropriate proportion of the EVA-PVC graftomer in the polymer is 10 to 50%; if it is more than this, the heat resistance will be reduced, and if it is less than this, the releasability will be reduced. Examples of the conductive carbon black used in the present invention include acetylene black, which is added in an amount of 10 to 100 parts by weight per 100 parts by weight of the resin to obtain the necessary conductivity. Chemical formula Mg 4 Al 2 used in the present invention
The inorganic compound represented by (OH) 12 CO 3・3H 2 O is
It is commercially available as a hydrotalcite-like compound under the trade name DHT-4A from Kyowa Kagakusha, and is used as an antacid and flame retardant, as well as a stabilizer for polyvinyl chloride. As in the present invention, there has never been an example in which the influence on water resistance has been investigated by using it in an external semiconducting layer. The amount of this compound should be adjusted depending on the amount of EVA-PVC graftomer, but it should be 0.5 to 20 parts by weight, preferably 2 to 10 parts by weight, per 100 parts by weight of the resin. When the amount is less than this, there is almost no thermal stabilizing effect of the EVA-PVC graftomer, and when it is more than this, the physical properties, especially the tear strength, are significantly reduced. In the present invention, in addition to the above-mentioned components, it is desirable to add an antioxidant such as 4,4'-thiobis6-t-butylphenol and an epoxy resin stabilizer, and it is also preferable to add an organic peroxide for crosslinking. You can also do it. These components are kneaded in a conventional manner and extrusion coated onto an insulator to obtain the cable according to the present invention. Next, an example will be described. First, the components shown in Table 1 were kneaded using a Banbury mixer, and the resulting semiconductive composition was press-molded into a 1 mm thick sheet. This was laminated with a 2 mm thick polyethylene sheet containing 2 PHR of dicumyl peroxide as a crosslinking agent, and press crosslinking was performed at 200°C for 20 minutes, and the peel strength was measured using a Schottspur tensile tester. Also, by thermogravimetric analysis, the weight loss rate when left at 200°C or 250°C for 30 minutes was determined and used as a measure of thermal stability. The test results are shown in Table 2 together with the tear strength and water absorption test results. Note that sample numbers 7 to 9 are shown for comparison.

【表】【table】

【表】 (表中の数字は重量部を表わす。)
注1. 住友化学社製スミグラフトGF
[Table] (The numbers in the table represent parts by weight.)
Note 1. Sumigraft GF manufactured by Sumitomo Chemical Co., Ltd.

〔実施例〕〔Example〕

外部半導電層として試料番号1の組成物を用
い、断面積250mm26.6KV三層同時押出架橋ポリエ
チレン電力ケーブルを製造した。架橋条件は外部
半導電層の温度が約240℃となるよう設定した。 得られたケーブルの外部半導電層は外観、剥離
性とも良好であつた。又ケーブルの一部を解体し
て銅テープ遮蔽層の変色の有無を調べたが、変色
はなかつた。このケーブル1mを水を満たしたビ
ニルパイプ中に入れ、6.6KV1000Hzの電圧を導
体に印加し、浸水課電試験を行なつた。課電1000
時間後にとりだして解体し、絶縁体を1mm厚にス
ライスしてスライス10枚中の外部半導電層からの
水トリー発生状況を調べた。試験結果は第3表の
通りであつた。 比較例 1 外部半導電層として試料番号7の組成物を用
い、あとは実施例と同様にケーブルを製造した。
得られたケーブルの外部半導電層の外観、剥離性
は良好であり、銅テープの変色もなかつた。この
ケーブルに対して同様に浸水課電試験を行ない、
外部半導電層からの水トリー発生状況を調べた。
結果は第3表の通りであつた。 比較例 2 外部半導電層として試料番号9の組成物を用
い、あとは実施例と同様にケーブルを製造した。
得られたケーブルの外部半導電層の外観、剥離性
は実施例又は比較例1に比べると劣つていた。又
ケーブルの一部を解体してみると銅テープは青く
変色していた。このケーブルの浸水課電試験後の
外部半導電層からの水トリー発生状況は第3表の
通りであつた。
A three-layer coextruded crosslinked polyethylene power cable with a cross-sectional area of 250 mm 2 6.6 KV was produced using the composition of Sample No. 1 as the outer semiconducting layer. The crosslinking conditions were set so that the temperature of the outer semiconducting layer was approximately 240°C. The outer semiconductive layer of the obtained cable had good appearance and peelability. In addition, a portion of the cable was disassembled and the copper tape shielding layer was examined for discoloration, but no discoloration was found. A 1m cable was placed in a vinyl pipe filled with water, and a voltage of 6.6KV1000Hz was applied to the conductor to conduct a water immersion test. Charge 1000
After a period of time, the insulator was taken out and disassembled, and the insulator was sliced into 1 mm thick slices, and the generation of water trees from the external semiconductive layer in the 10 slices was examined. The test results were as shown in Table 3. Comparative Example 1 A cable was manufactured in the same manner as in Example except that the composition of Sample No. 7 was used as the outer semiconductive layer.
The outer semiconductive layer of the obtained cable had good appearance and peelability, and there was no discoloration of the copper tape. A similar submergence charging test was conducted on this cable.
The occurrence of water trees from the outer semiconducting layer was investigated.
The results were as shown in Table 3. Comparative Example 2 A cable was manufactured in the same manner as in the example except that the composition of sample number 9 was used as the outer semiconductive layer.
The appearance and peelability of the outer semiconductive layer of the obtained cable were inferior to those of Example or Comparative Example 1. When we disassembled part of the cable, we found that the copper tape had turned blue. Table 3 shows the occurrence of water trees from the external semiconductive layer after the water immersion electrification test of this cable.

【表】 以上の実施例から明らかなように本願発明に係
る架橋ポリエチレン電力ケーブルの外部半導電層
は容易に剥離でき、かつ架橋温度を高くすること
ができて、線速をあげることができるので生産性
が向上し、しかも外部半導電層の吸湿及びイオン
性物質が少ないので水トリーの発生のないケーブ
ルを提供できるので極めて有効である。
[Table] As is clear from the above examples, the outer semiconducting layer of the crosslinked polyethylene power cable according to the present invention can be easily peeled off, and the crosslinking temperature can be raised to increase the wire speed. This method is extremely effective because productivity is improved, and since the outer semiconducting layer has less moisture absorption and ionic substances, it is possible to provide a cable that does not generate water trees.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁体上に押出被覆された外部半導電層が、
エチレン・酢酸ビニル共重合体−ポリ塩化ビニル
のグラフトマーを含む樹脂と導電性カーボンブラ
ツクを主成分とする組成物で形成された架橋ポリ
エチレン電力ケーブルにおいて、前記組成物には
化学式Mg4Al2(OH)12CO3・3H2Oで表わされる
無機化合物が樹脂100重量部あたり0.5〜20重量部
配合されていることを特徴とする剥離容易性の外
部半導電層を有する架橋ポリエチレン電力ケーブ
ル。
1 The outer semiconducting layer extruded onto the insulator is
In a crosslinked polyethylene power cable formed from a composition whose main components are a resin containing an ethylene/vinyl acetate copolymer-polyvinyl chloride graftomer and conductive carbon black, the composition has the chemical formula Mg 4 Al 2 (OH ) A cross-linked polyethylene power cable having an easily peelable outer semiconductive layer, characterized in that an inorganic compound represented by 12 CO 3 .3H 2 O is blended in 0.5 to 20 parts by weight per 100 parts by weight of resin.
JP2073781A 1981-02-13 1981-02-13 Crosslinked polyethylene power cable Granted JPS57134807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2073781A JPS57134807A (en) 1981-02-13 1981-02-13 Crosslinked polyethylene power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2073781A JPS57134807A (en) 1981-02-13 1981-02-13 Crosslinked polyethylene power cable

Publications (2)

Publication Number Publication Date
JPS57134807A JPS57134807A (en) 1982-08-20
JPS6332205B2 true JPS6332205B2 (en) 1988-06-29

Family

ID=12035502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2073781A Granted JPS57134807A (en) 1981-02-13 1981-02-13 Crosslinked polyethylene power cable

Country Status (1)

Country Link
JP (1) JPS57134807A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507845A (en) * 1973-05-24 1975-01-27
JPS5132394A (en) * 1974-09-12 1976-03-18 Fuji Electric Co Ltd
JPS52108447A (en) * 1976-03-08 1977-09-10 Matsushita Electric Ind Co Ltd Fire retarding thermoplastic resinous composition
JPS5580445A (en) * 1978-12-14 1980-06-17 Kyowa Chem Ind Co Ltd Thermoplastic resin composition and prevention of deterioration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507845A (en) * 1973-05-24 1975-01-27
JPS5132394A (en) * 1974-09-12 1976-03-18 Fuji Electric Co Ltd
JPS52108447A (en) * 1976-03-08 1977-09-10 Matsushita Electric Ind Co Ltd Fire retarding thermoplastic resinous composition
JPS5580445A (en) * 1978-12-14 1980-06-17 Kyowa Chem Ind Co Ltd Thermoplastic resin composition and prevention of deterioration

Also Published As

Publication number Publication date
JPS57134807A (en) 1982-08-20

Similar Documents

Publication Publication Date Title
US4286023A (en) Article of manufacture, the cross-linked product of a semi-conductive composition bonded to a crosslinked polyolefin substrate
EP2444455A1 (en) A semiconductive polymer composition which contains epoxy-groups
EP0012014B1 (en) A process for producing a crosslinked polyethylene insulated cable and an insulated cable so produced
JPH0113731B2 (en)
JP2011029147A (en) Electric wire for submersible motor
JPS6332205B2 (en)
KR20090087259A (en) Semiconductive peelable closslinked resin composition and manufactured insulating cable using the same
JPH0551624B2 (en)
JPS63279503A (en) Semiconductive composition material
JP2000319464A (en) Semi-conductive resin composition and crosslinked polyethylene-insulated electric power cable
JPS64767B2 (en)
JP2554657B2 (en) Flame retardant chlorine polyethylene composition
JPS60260637A (en) Semiconducting plastic mixture
JPS6157857B2 (en)
JPS5810801B2 (en) Semiconductive resin composition with improved peelability
JPS6112738A (en) Mixture for semiconductive layer
JPS62117202A (en) Vulcanized ep rubber insulated power cable
JPS6290806A (en) Power cable
JP2648870B2 (en) Flame retardant resin composition
JP2007284688A (en) Semiconductor watertight composition
JPH0737440A (en) Resin composition for easily peeled external semiconductive layer and electric power cable coated with resin composition thereof
JPS618802A (en) Crosslinked polyethylene cable
JPS6280908A (en) Vulcanized ep rubber insulated power cable
JPH10106363A (en) Power cable
JPH08199013A (en) Semiconductive resin composition and crosslinked polyethylene insulated power cable