JP2011029147A - Electric wire for submersible motor - Google Patents

Electric wire for submersible motor Download PDF

Info

Publication number
JP2011029147A
JP2011029147A JP2010052841A JP2010052841A JP2011029147A JP 2011029147 A JP2011029147 A JP 2011029147A JP 2010052841 A JP2010052841 A JP 2010052841A JP 2010052841 A JP2010052841 A JP 2010052841A JP 2011029147 A JP2011029147 A JP 2011029147A
Authority
JP
Japan
Prior art keywords
insulating layer
layer
electric wire
protective layer
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010052841A
Other languages
Japanese (ja)
Other versions
JP5556254B2 (en
Inventor
Shuhei Yasuda
周平 安田
Takanori Yamazaki
孝則 山崎
Hisao Furuichi
久雄 古市
Masamichi Idonuma
正倫 井戸沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2010052841A priority Critical patent/JP5556254B2/en
Publication of JP2011029147A publication Critical patent/JP2011029147A/en
Application granted granted Critical
Publication of JP5556254B2 publication Critical patent/JP5556254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric wire for a submersible motor which suppresses occurrence of water tree in an insulating layer and thereby, can control deterioration of insulating characteristics of the electric wire for a long period, when used in high-temperature water and in a severe environment where γ-rays are irradiated. <P>SOLUTION: The electric wire 5 for the submersible motor is constituted of a conductor shield layer 2, an insulating layer 3, and a protective layer 4 in order on a copper conductor 1. The protective layer 4 is constituted of an aliphatic polyamide of an amide group concentration 12.0 [group/100 atom] or lower, and the insulating layer 3 is constituted of a resin composition having mainly a silane graft polymer which is graft-polymerized by adding an unsaturated silane compound and organic peroxide to polyethylene, or a copolymer resin composition of polyethylene and vinyl-silane. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高温水中で且つγ線が照射される過酷な環境下で使用して好適な水中モータ用電線に関するものである。   The present invention relates to an electric wire for an underwater motor suitable for use in a harsh environment in which high-temperature water is irradiated with γ rays.

近年、沸騰水型原子力発電プラントのインターナルポンプに使用される水中モータにおいては、モータを構成する巻線として、モータの使用環境から、高温水中で且つγ線が照射される苛酷な環境に耐えられる絶縁特性を備えた水中モータ用電線が要求されている。   In recent years, submersible motors used in internal pumps in boiling water nuclear power plants can withstand the harsh environment in which high-temperature water and γ rays are irradiated as the windings that make up the motor. There is a demand for an underwater motor wire having an insulating property.

従来知られている水中モータ用電線としては、特許文献1、2に記載されているように、エナメルを塗布・焼付けた導体上に、ポリエチレン絶縁層、ナイロンシースを順次押し出しにより被覆して設けた水中モータ用電線が知られている。   Conventionally known electric wires for underwater motors, as described in Patent Documents 1 and 2, on a conductor coated and baked with enamel, a polyethylene insulating layer and a nylon sheath were sequentially coated by extrusion. Electric wires for underwater motors are known.

また、特許文献3に記載されているように、軟銅線導体上に、エナメル層、結晶性ポリプロピレンとEPゴム(エチレン−プロピレン系共重合ゴム)からなる絶縁層、ポリ塩化ビニルシースを順次設けた水中モータ用電線が知られている。   Moreover, as described in Patent Document 3, an enamel layer, an insulating layer made of crystalline polypropylene and EP rubber (ethylene-propylene copolymer rubber), and a polyvinyl chloride sheath are sequentially provided on an annealed copper wire conductor. Electric wires for motors are known.

特開昭62−256312号公報JP-A-62-256312 特開昭62−256313号公報JP-A-62-256313 実開昭56−96517号公報Japanese Utility Model Publication No. 56-96517

しかしながら、特許文献1、2に記載の水中モータ用電線によれば、ナイロンシースのナイロン(ナイロン6やナイロン66など)が高温水中で加水分解して、電線の絶縁特性が低下するという問題がある。すなわち、ナイロンシースのナイロンが高温水中で加水分解して、ナイロンシースが割れると、このナイロンシースの割れた部分から絶縁層とナイロンシースとの界面に水が浸入し絶縁層に水が透過し易くなるので、絶縁層に水トリーが発生し、これにより電線の絶縁特性が低下するという問題がある。   However, according to the electric wires for underwater motors described in Patent Documents 1 and 2, nylon sheath nylon (such as nylon 6 and nylon 66) is hydrolyzed in high-temperature water, and there is a problem that the insulating properties of the electric wires are deteriorated. . That is, when nylon in the nylon sheath is hydrolyzed in high-temperature water and the nylon sheath is cracked, water penetrates from the cracked portion of the nylon sheath into the interface between the insulating layer and the nylon sheath, and the water easily passes through the insulating layer. Therefore, a water tree is generated in the insulating layer, which causes a problem that the insulating properties of the electric wire are deteriorated.

因みに、特許文献1では、前記問題に関連して、ナイロンシースの上に耐水性のEPゴムを被せた状態でナイロンシースを架橋・冷却(冷却水を使用)することにより、架橋時のナイロンの加水分解を防止しているが、これはあくまでも架橋時のことでありナイロンの加水分解の本質的な解決策とはならないと共に、EPゴムを別工程で剥ぎ取らなければならないという問題がある。   Incidentally, in Patent Document 1, in connection with the above problem, the nylon sheath is crosslinked and cooled (using cooling water) in a state where a water-resistant EP rubber is covered on the nylon sheath, so that Although hydrolysis is prevented, this is only at the time of cross-linking, and is not an essential solution for hydrolysis of nylon, and there is a problem that EP rubber must be peeled off in a separate process.

また因みに、特許文献2では、前記問題に対して、ナイロンシースに代えてエチレン−テトラフロロエチレン共重合体(ETFT)等のように融点が200℃以上の熱可塑性樹脂製のシースを設けることにより、ナイロンの加水分解を防止しているが、ETFT等の熱可塑性樹脂は押し出し性に難点を有することから、前記シースを押し出しにより被覆して設けることが技術的に難しいという問題がある。特に、前記シースを絶縁層との同時押し出しまたはタンデム押し出しにより被覆して設けることは技術的に極めて難しく、これに対し通常採用されている別工程での押し出しでは、絶縁層の上に保護層を押し出しにより被覆して設ける際に両者の界面に異物や空隙が混入し易く、この異物や空隙が起点となって、絶縁層に水トリーが発生し、これにより電線の絶縁特性が低下するという問題がある。   In addition, in Patent Document 2, in order to solve the above problem, a sheath made of a thermoplastic resin having a melting point of 200 ° C. or more, such as ethylene-tetrafluoroethylene copolymer (ETFT), is provided instead of the nylon sheath. Although the hydrolysis of nylon is prevented, there is a problem that it is technically difficult to cover the sheath by extrusion because thermoplastic resins such as ETFT have difficulty in extrudability. In particular, it is technically extremely difficult to provide the sheath by covering it with the insulating layer by simultaneous extrusion or tandem extrusion. On the other hand, in the extrusion in a separate process usually employed, a protective layer is formed on the insulating layer. When covering and providing by extrusion, foreign matter and voids are likely to be mixed at the interface between the two, and this foreign matter and void is the starting point, and water trees are generated in the insulating layer, thereby reducing the insulation properties of the wire. There is.

また、特許文献3に記載の水中モータ用電線によれば、シースにポリ塩化ビニルを使用することから、特許文献1、2のようなナイロンの加水分解による問題はないが、γ線の被爆によりポリ塩化ビニルが分解して、塩化水素が発生するという問題がある。すなわち、ポリ塩化ビニルが分解して、塩化水素が発生すると、この塩化水素が周囲の水によって水素イオンと塩素イオンとに解離され、周囲の水に導電性をもたらす(周囲の水が導電性を持つことになる)結果、絶縁層に水トリーが発生、進展し易くなり、これにより電線の絶縁特性が低下するという問題がある。   Moreover, according to the underwater motor wire described in Patent Document 3, since polyvinyl chloride is used for the sheath, there is no problem due to hydrolysis of nylon as in Patent Documents 1 and 2, but due to exposure to γ rays. There is a problem that polyvinyl chloride is decomposed to generate hydrogen chloride. That is, when polyvinyl chloride is decomposed and hydrogen chloride is generated, this hydrogen chloride is dissociated into hydrogen ions and chlorine ions by the surrounding water and brings conductivity to the surrounding water (the surrounding water becomes conductive). As a result, there is a problem that a water tree is likely to be generated and propagated in the insulating layer, thereby deteriorating the insulating properties of the electric wire.

したがって、本発明の目的は、上記に鑑み、高温水中で且つγ線が照射される苛酷な環境下で使用した場合において、絶縁層に水トリーが発生することを抑制し、これにより電線の絶縁特性の低下を長期に亘り抑制することができる水中モータ用電線を提供することにある。   Therefore, in view of the above, the object of the present invention is to suppress the generation of water trees in the insulating layer when used in a harsh environment where high-temperature water is irradiated and γ rays are irradiated, thereby insulating the wires. An object of the present invention is to provide an electric wire for an underwater motor that can suppress deterioration in characteristics over a long period of time.

上記目的を達成するために請求項1の発明は、銅導体上に、導体遮蔽層、絶縁層、保護層を順次設けて構成した水中モータ用電線において、前記保護層をアミド基濃度12.0[基/100atom]以下の脂肪族ポリアミドにより構成すると共に、前記絶縁層をポリエチレンに不飽和シラン化合物及び有機化過酸化物を加えてグラフト重合したシラングラフトポリマを主体とする樹脂組成物またはポリエチレンとビニルシランの共重合樹脂組成物により構成したことを特徴とする水中モータ用電線を提供する。   In order to achieve the above object, the invention according to claim 1 is an underwater motor electric wire configured by sequentially providing a conductor shielding layer, an insulating layer, and a protective layer on a copper conductor, the protective layer having an amide group concentration of 12.0. [Group / 100 atom] A resin composition or polyethylene mainly composed of a silane-grafted polymer obtained by graft polymerization by adding an unsaturated silane compound and an organic peroxide to polyethylene and forming the insulating layer with an aliphatic polyamide below An electric wire for an underwater motor characterized by comprising a copolymer resin composition of vinylsilane.

ここで、上記ポリエチレンとしては、イオン重合法で重合されたポリエチレン、ラジカル重合法で重合されたポリエチレン、またはイオン重合ポリエチレンとラジカル重合ポリエチレンとを混合したポリエチレンを主体とする高分子材料などを用いることができる。また、これらのポリエチレンの他、エチレンエチルアクリレート共重合体やエチレン酢酸ビニル共重合体、エチレンメタクリレート共重合体等のエチレン共重合体、プロピレンとエチレンの共重合体、ポリオレフィンに無水マレイン酸やエポキシ等を含む官能基をグラフトしたものを一種又は二種以上を含んだものを用いることができる。   Here, as the polyethylene, a polymer material mainly composed of polyethylene polymerized by an ion polymerization method, polyethylene polymerized by a radical polymerization method, or a mixture of an ion polymerization polyethylene and a radical polymerization polyethylene is used. Can do. In addition to these polyethylenes, ethylene copolymers such as ethylene ethyl acrylate copolymers, ethylene vinyl acetate copolymers, ethylene methacrylate copolymers, copolymers of propylene and ethylene, polyolefins with maleic anhydride, epoxies, etc. One containing one or two or more types grafted with a functional group containing can be used.

また、上記不飽和シラン化合物としては、ビニルトリメトキシシラン、ビニルトリエトキシシランのようなビニル基を有する有機シランを用いることができ、前記シラン化合物をポリオレフィンにグラフトするための有機化酸化物としては、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン、α,α´−ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼンなどを単独或いは2種以上組み合わせて用いることができる。   As the unsaturated silane compound, an organic silane having a vinyl group such as vinyltrimethoxysilane or vinyltriethoxysilane can be used. As an organic oxide for grafting the silane compound onto a polyolefin, , Dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne, α, α′-bis (t-butylperoxy-m-isopropyl) benzene or the like can be used alone or in combination of two or more.

また、上記において、アミド基濃度とは、主鎖分子の原子100個に対するアミド基の比率をいう。   In the above, the amide group concentration refers to the ratio of the amide group to 100 atoms of the main chain molecule.

また、上記において、アミド基濃度12.0[基/100atom]以下とした理由は、アミド基濃度が12.0[基/100atom]よりも大きいと、脂肪族ポリアミドの吸水性が高くなり高温水中で加水分解しやすくなるからである。市販のアミド基濃度12.0[基/100atom]以下の脂肪族ポリアミドとしては、例えばナイロン610、ナイロン612、ナイロン11、ナイロン12などが挙げられるが、これに限定されるものではない。   In the above, the reason why the amide group concentration is 12.0 [group / 100 atom] or less is that, if the amide group concentration is higher than 12.0 [group / 100 atom], the water absorption of the aliphatic polyamide is increased and the high temperature water is used. It is because it becomes easy to hydrolyze. Examples of the commercially available aliphatic polyamide having an amide group concentration of 12.0 [group / 100 atom] or less include nylon 610, nylon 612, nylon 11, nylon 12, and the like, but are not limited thereto.

この水中モータ用電線によれば、上記構成の採用により、まず、前記保護層をアミド基濃度12.0[基/100atom]以下の脂肪族ポリアミドにより構成することにより、ポリ塩化ビニルを使用することなく前記ポリアミドを効果的に低吸水性化することができ、これによりナイロンの加水分解を本質的に抑制することができると共に、次に、前記絶縁層をポリエチレンに不飽和シラン化合物及び有機化過酸化物を加えてグラフト重合したシラングラフトポリマを主体とする樹脂組成物またはポリエチレンとビニルシランの共重合樹脂組成物により構成することにより、前記絶縁層の架橋にあたり高温高圧の水蒸気を使用することなく水(水分)と接触させることにより容易に架橋(水架橋又はシラン架橋)することができ、これにより架橋時のナイロンの加水分解を抑制することができるために、これらの総合効果により高温水中で且つγ線が照射される苛酷な環境下で使用した場合において、絶縁層に水トリーが発生することを抑制し、これにより電線の絶縁特性の低下を長期に亘り抑制することができる。   According to this electric wire for underwater motors, by adopting the above configuration, first, the protective layer is made of an aliphatic polyamide having an amide group concentration of 12.0 [group / 100 atom] or less, thereby using polyvinyl chloride. Thus, the polyamide can be effectively made to have a low water absorption, thereby substantially suppressing the hydrolysis of nylon, and the insulating layer is then added to the polyethylene with an unsaturated silane compound and an organic peroxide. By comprising a resin composition mainly comprising a silane graft polymer grafted by adding an oxide or a copolymer resin composition of polyethylene and vinyl silane, water can be used without cross-linking of the insulating layer without using high-temperature and high-pressure steam. (Moisture) can be easily cross-linked (water cross-linked or silane cross-linked). Nylon hydrolysis at the time of crosslinking can be suppressed, so that water trees are generated in the insulation layer when used in high-temperature water and in harsh environments where γ rays are irradiated. As a result, it is possible to suppress the deterioration of the insulation characteristics of the electric wire for a long period of time.

なお、前記絶縁層に対する前記架橋は、前記絶縁層の耐熱性を向上させるために通常必要であり、本発明においては、前記絶縁層をポリエチレンに不飽和シラン化合物及び有機化過酸化物を加えてグラフト重合したシラングラフトポリマを主体とする樹脂組成物またはポリエチレンとビニルシランの共重合樹脂組成物により構成することにより、押し出し後に前記絶縁層をシロキサン触媒の下で水と接触させることにより容易に架橋(水架橋又はシラン架橋)することができる。この架橋方法によれば、過酸化物(化合物)を配合し高温高圧の水蒸気を使用して架橋する方法と比較して、既に述べた通り架橋時のナイロンの加水分解の問題を改善することができると共に、また、放射線照射により架橋する方法と比較して、ナイロンが放射線により酸化劣化する(保護層としての機能が失われる)という問題がなくなり、したがってまた、これらいずれの架橋方法と比較して、保護層の外観が良好となり、本発明の目的との関係で有利に架橋を行うことができる。   In addition, the said bridge | crosslinking with respect to the said insulating layer is normally required in order to improve the heat resistance of the said insulating layer, and in this invention, an unsaturated silane compound and an organic peroxide are added to the said insulating layer in polyethylene. By comprising a resin composition mainly composed of a graft polymerized silane graft polymer or a copolymer resin composition of polyethylene and vinyl silane, the insulating layer can be easily cross-linked by contacting with water under a siloxane catalyst after extrusion ( Water crosslinking or silane crosslinking). According to this cross-linking method, the problem of hydrolysis of nylon at the time of cross-linking can be improved as compared with the method of adding a peroxide (compound) and cross-linking using high-temperature and high-pressure steam. In addition, the problem of nylon being oxidized and deteriorated by radiation (losing the function as a protective layer) is eliminated as compared with the method of crosslinking by irradiation, and also compared with any of these crosslinking methods. The appearance of the protective layer is improved, and crosslinking can be advantageously performed in relation to the object of the present invention.

また、本発明においては、前記保護層をアミド基濃度12.0[基/100atom]以下の脂肪族ポリアミドにより構成することにより、ポリアミド樹脂が元々吸水しやすい性質を有することから、前記保護層を通して前記水(水分)が前記絶縁層まで浸透するため、前記絶縁層の上に前記保護層を押し出しにより被覆した後で、前記架橋(水架橋又はシラン架橋)を容易に行うことができる。これは後述する同時押し出しまたはタンデム押し出しを行う上で非常に有利なことである。   In the present invention, since the protective layer is composed of an aliphatic polyamide having an amide group concentration of 12.0 [group / 100 atom] or less, the polyamide resin originally has a property of easily absorbing water. Since the water (moisture) penetrates to the insulating layer, the crosslinking (water crosslinking or silane crosslinking) can be easily performed after the protective layer is coated on the insulating layer by extrusion. This is very advantageous in performing simultaneous extrusion or tandem extrusion described later.

ここで、前記架橋に用いられる前記シロキサン触媒(シロキサン縮合触媒)としては、ジブチル錫ジラウレートやジオクチル錫ジラウレート、アジピン酸亜鉛、アジピン酸カルシウム、オクチル酸亜鉛、ラウリン酸亜鉛などを用いることができる。   Here, as the siloxane catalyst (siloxane condensation catalyst) used for the crosslinking, dibutyltin dilaurate, dioctyltin dilaurate, zinc adipate, calcium adipate, zinc octylate, zinc laurate, or the like can be used.

請求項2の発明は、前記絶縁層と前記保護層を、同時押し出しまたはタンデム押し出しにより被覆して設けたことを特徴とする請求項1に記載の水中モータ用電線を提供する。   According to a second aspect of the present invention, there is provided the electric wire for an underwater motor according to the first aspect, wherein the insulating layer and the protective layer are covered by simultaneous extrusion or tandem extrusion.

この水中モータ用電線によれば、上記効果に加えて、上記構成を採用により、押し出し構造上、前記絶縁層と前記保護層との界面に異物や空隙が混入しにくくなるので、異物や空隙が起点となって絶縁層に水トリーが発生することを効果的に抑制し、これにより電線の絶縁特性の低下を長期に亘り確実に抑制することができる。特に、同時押し出しでは、更に前記界面の密着性を高めることができるので、界面剥離・空隙発生により絶縁層に水トリーが発生することを抑制し、前記効果を更に高めることができる。   According to this submerged motor wire, in addition to the above effects, the above configuration makes it difficult for foreign matter and voids to enter the interface between the insulating layer and the protective layer due to the extrusion structure. It is possible to effectively suppress the generation of a water tree in the insulating layer as a starting point, thereby reliably suppressing the deterioration of the insulating properties of the electric wire over a long period of time. In particular, the simultaneous extrusion can further enhance the adhesion of the interface, thereby suppressing the generation of a water tree in the insulating layer due to the separation of the interface and the generation of voids, thereby further enhancing the effect.

なお、同時押し出しとは、専用の押し出しダイスを用いて前記絶縁層と前記保護層を同時に押し出し成形する方法をいい、タンデム押し出しとは、前記絶縁層を押し出した後、直ちに前記絶縁層の上に前記保護層を押し出し成形する方法をいう。いずれの押し出し方法においても、それらを夫々別工程で押し出す場合と比較して、前記絶縁層と前記保護層との界面に異物や空隙が混入することを防ぐことができる。   Note that the simultaneous extrusion refers to a method in which the insulating layer and the protective layer are simultaneously extruded using a dedicated extrusion die, and the tandem extrusion is immediately after the insulating layer is extruded onto the insulating layer. A method for extruding the protective layer. In any of the extrusion methods, it is possible to prevent foreign matters and voids from entering the interface between the insulating layer and the protective layer, as compared with the case where they are extruded in separate steps.

請求項3の発明は、前記導体遮蔽層を、エナメル層または半導電性層により構成したことを特徴とする請求項1又は2に記載の水中モータ用電線を提供する。   According to a third aspect of the present invention, there is provided the electric wire for an underwater motor according to the first or second aspect, wherein the conductor shielding layer is composed of an enamel layer or a semiconductive layer.

ここで、上記エナメル層としては、エポキシエナメルやポリイミド系エナメル、ポリアミドイミド系エナメル、ポリエステルイミド系エナメルなどのエナメル層を用いることができ、また、上記半導電性層としては、例えばポリエチレンやエチレン共重合体などの樹脂にカーボンブラックなどの導電性付与剤を配合した半導電性層を用いることができる。   Here, as the enamel layer, an enamel layer such as an epoxy enamel, a polyimide enamel, a polyamideimide enamel, a polyesterimide enamel, or the like can be used. As the semiconductive layer, for example, polyethylene or ethylene A semiconductive layer in which a conductivity imparting agent such as carbon black is blended with a resin such as a polymer can be used.

この水中モータ用電線によれば、上記効果に加えて、上記構成の採用により、前記導体遮蔽層における銅イオンの析出・拡散防止効果を安定して確保することができる。これにより巻線としての水中モータ用電線の絶縁の信頼性を高めることができる。   According to this electric wire for underwater motors, in addition to the above effect, the effect of preventing precipitation / diffusion of copper ions in the conductor shielding layer can be stably secured by adopting the above configuration. Thereby, the reliability of insulation of the electric wire for underwater motors as a coil | winding can be improved.

本発明の水中モータ用電線によれば、高温水中で且つγ線が照射される苛酷な環境下で使用した場合において、絶縁層に水トリーが発生することを抑制し、これにより電線の絶縁特性の低下を長期に亘り抑制することができる。   According to the wire for an underwater motor of the present invention, it is possible to suppress the generation of a water tree in the insulating layer when used in a high-temperature water and in a severe environment where γ rays are irradiated. Can be suppressed over a long period of time.

本発明の一実施の形態に係る水中モータ用電線の横断面図である。It is a cross-sectional view of the electric wire for submersible motors concerning one embodiment of the present invention.

本発明の好適な実施の形態を図1に基づいて説明すると、1は導体、2は銅イオンの析出・拡散を防止する導体遮蔽層、3は絶縁層、4は保護層、5は水中モータ用電線である。   A preferred embodiment of the present invention will be described with reference to FIG. 1. 1 is a conductor, 2 is a conductor shielding layer for preventing precipitation / diffusion of copper ions, 3 is an insulating layer, 4 is a protective layer, and 5 is an underwater motor. Wire.

以下、図1を参照して、本発明の実施例及び比較例を説明する。   Hereinafter, examples and comparative examples of the present invention will be described with reference to FIG.

図1のように、導体1として外径約4.5mmの銅線の外周上に、エポキシ樹脂を主体とする塗料を繰り返し塗付・焼付けた、いわゆるエナメル層により構成した厚さ約0.06mmの導体遮蔽層2を設けた。次いで、この導体遮蔽層2の外周上に、夫々表1に示される配合組成の絶縁層3及び保護層4を順次設けて、夫々実施例及び比較例の水中モータ用電線5を作製した。   As shown in FIG. 1, a thickness of about 0.06 mm constituted by a so-called enamel layer in which a coating mainly composed of an epoxy resin is repeatedly applied and baked on the outer periphery of a copper wire having an outer diameter of about 4.5 mm as the conductor 1. The conductor shielding layer 2 was provided. Next, an insulating layer 3 and a protective layer 4 having the composition shown in Table 1 were sequentially provided on the outer periphery of the conductor shielding layer 2 to produce underwater motor wires 5 of Examples and Comparative Examples, respectively.

ここで、表1中、実施例1〜3及び比較例1〜5は、絶縁層3及び保護層4を同時押し出しにより被覆して設けた。この場合、絶縁層3の厚さは1.5mm、保護層4の厚さは0.2mmとした。   Here, in Table 1, Examples 1 to 3 and Comparative Examples 1 to 5 were provided by covering the insulating layer 3 and the protective layer 4 by simultaneous extrusion. In this case, the thickness of the insulating layer 3 was 1.5 mm, and the thickness of the protective layer 4 was 0.2 mm.

また、同表中、実施例4、5は、絶縁層3を押し出しにより被覆して設けた後、直ちに絶縁層3の上に保護層4をタンデム押し出しにより被覆して設けた。この場合も、絶縁層3の厚さは1.5mm、保護層4の厚さは0.2mmとした。   In the same table, in Examples 4 and 5, the insulating layer 3 was coated by extrusion, and immediately after that, the protective layer 4 was coated on the insulating layer 3 by tandem extrusion. Also in this case, the thickness of the insulating layer 3 was 1.5 mm, and the thickness of the protective layer 4 was 0.2 mm.

また、実施例6は、導体遮蔽層2として、前記したエポキシ樹脂を主体とするエナメル層により構成した導体遮蔽層の代わりに、エチレンエチルアクリレート共重合体100重量部に対し導電性付与剤としてカーボンブラックを65重量部配合した組成物からなる半導電性層により構成した導体遮蔽層を設けた。   Further, in Example 6, instead of the conductor shielding layer composed of the enamel layer mainly composed of the epoxy resin as the conductor shielding layer 2, carbon as a conductivity imparting agent with respect to 100 parts by weight of the ethylene ethyl acrylate copolymer. A conductor shielding layer composed of a semiconductive layer made of a composition containing 65 parts by weight of black was provided.

また、実施例1〜6及び比較例1〜3は、絶縁層3の架橋方法として、絶縁層3及び保護層4を押し出しにより被覆して設けた後、絶縁層3及び保護層4を70℃の飽和水蒸気に12時間晒して、絶縁層3を架橋した。なお、この架橋は、いずれもシロキサン触媒の下で水(飽和水蒸気)と接触させることにより行った。   In Examples 1 to 6 and Comparative Examples 1 to 3, as a method of crosslinking the insulating layer 3, after the insulating layer 3 and the protective layer 4 were provided by extrusion, the insulating layer 3 and the protective layer 4 were formed at 70 ° C. The insulating layer 3 was crosslinked by exposing it to saturated water vapor for 12 hours. In addition, all this bridge | crosslinking was performed by making it contact with water (saturated water vapor | steam) under a siloxane catalyst.

また、比較例4は、絶縁層3の架橋方法として、絶縁層3及び保護層4を押し出しにより被覆して設けた後、絶縁層3及び保護層4を高圧水蒸気に晒して、絶縁層3を加熱架橋した。   Further, in Comparative Example 4, as a method of crosslinking the insulating layer 3, the insulating layer 3 and the protective layer 4 are provided by being covered by extrusion, and then the insulating layer 3 and the protective layer 4 are exposed to high-pressure steam so that the insulating layer 3 is formed. Heat-crosslinked.

また、比較例5は、絶縁層3の架橋方法として、絶縁層3及び保護層4を押し出しにより被覆して設けた後、絶縁層3及び保護層4に電離性放射線を照射して、絶縁層3を加熱架橋した。   Further, in Comparative Example 5, as a method of crosslinking the insulating layer 3, the insulating layer 3 and the protective layer 4 are provided by being covered by extrusion, and then the insulating layer 3 and the protective layer 4 are irradiated with ionizing radiation. 3 was heat crosslinked.

また、比較例6は、導体1として外径約4.5mmの銅線の外周上に、エポキシ樹脂を主体とする塗料を繰り返し塗付・焼付けた、いわゆるエナメル層により構成した厚さ約0.06mmの導体遮蔽層2を設けた後、この導体遮蔽層2の外周上に、表1に示される配合組成の絶縁層3を押し出しにより被覆して、厚さ1.5mの絶縁層3を設け、この絶縁層3を70℃の飽和水蒸気に12時間晒して架橋した後、更に厚さ0.2mmの保護層4を別工程で押し出しにより被覆して設けた。   Further, Comparative Example 6 has a thickness of about 0.00 mm formed by a so-called enamel layer in which a coating mainly composed of an epoxy resin is repeatedly applied and baked on the outer periphery of a copper wire having an outer diameter of about 4.5 mm as the conductor 1. After providing the conductor shielding layer 2 having a thickness of 06 mm, the insulating layer 3 having the composition shown in Table 1 is coated on the outer periphery of the conductor shielding layer 2 by extrusion to provide the insulating layer 3 having a thickness of 1.5 m. The insulating layer 3 was exposed to saturated steam at 70 ° C. for 12 hours to be crosslinked, and then a protective layer 4 having a thickness of 0.2 mm was further provided by extrusion in a separate process.

Figure 2011029147
Figure 2011029147

表1は、上記実施例1〜6及び比較例1〜6の実施内容を纏めたものである。このうち、下段の評価は、夫々作製した水中モータ用電線5の特性試験結果を纏めたものである。   Table 1 summarizes the implementation details of Examples 1-6 and Comparative Examples 1-6. Among these evaluations, the lower evaluation is a summary of the characteristic test results of the produced underwater motor wires 5.

ここで、(絶縁層及び保護層の)押出被覆後の界面状態の評価は、夫々作製した水中モータ用電線5の界面を目視により観察し、電線長さ1000m当たり確認された異物・剥離の数が、10個より少ないものを「良」(○)とし、10個以上のものを「不良」(×)と判定した。   Here, the evaluation of the interface state after the extrusion coating (of the insulating layer and the protective layer) was performed by observing the interface of the produced underwater motor electric wire 5 with the naked eye, and the number of foreign matters / peeling confirmed per 1000 m of the electric wire length. However, those with less than 10 were judged as “good” (◯), and those with 10 or more were judged as “bad” (×).

また、(絶縁層を)架橋後の保護層の外観の評価は、夫々作製した水中モータ用電線5の外観を目視により観察し、異常が見られなかったものを「良」(○)とし、割れ、変色等の異常が見られたものを「不良」(×)と判定した。   Further, the evaluation of the appearance of the protective layer after crosslinking (insulating layer) was performed by visually observing the appearance of each of the produced underwater motor electric wires 5, and if no abnormality was found, “good” (◯) Those in which abnormalities such as cracks and discoloration were observed were judged as “bad” (×).

また、重要な水トリー特性の評価は、まず、夫々作製した水中モータ用電線5を巻線形成時の最小曲げ半径(r=約15mm)で2.5回巻回した試験用サンプルを各々10個作製した。   Further, evaluation of important water tree characteristics is carried out by first preparing 10 test samples, each of which was prepared by winding the produced underwater motor wires 5 2.5 times with a minimum bending radius (r = about 15 mm) at the time of winding formation. Individually produced.

このうち、通常の水トリー特性の評価は、各々作製した試験用サンプル10個のうち5個を用いて行った。すなわち、試験用サンプル5個を90℃の温水に浸漬し、導体1と温水との間に50Hz、3kVの交流電圧を500日間印加した後、絶縁層3の断面を薄くスライスしてメチレンブルー水溶液で煮沸染色し、光学顕微鏡を用いて水トリーの長さを計測、その長さが200μm以上の水トリーの発生個数を計数した。ここで、その発生個数が1.0×103(個/cm3)以上であれば「不良」(×)とし、1.0×102(個/cm3)より多く1.0×103(個/cm3)より少なければ「良」(△)とし、1.0×101(個/cm3)以下であれば「優良(○)」と判定した。 Among these, the evaluation of normal water tree characteristics was performed using five of the ten test samples prepared. That is, five test samples are immersed in warm water at 90 ° C., an AC voltage of 50 Hz and 3 kV is applied between the conductor 1 and the warm water for 500 days, and then the cross-section of the insulating layer 3 is thinly sliced to obtain a methylene blue aqueous solution. After boiling dyeing, the length of the water tree was measured using an optical microscope, and the number of water trees with a length of 200 μm or more was counted. Here, if the number of generations is 1.0 × 10 3 (pieces / cm 3 ) or more, it is regarded as “defective” (×), which is larger than 1.0 × 10 2 (pieces / cm 3 ) and 1.0 × 10 3. the less than 3 (pieces / cm 3) as "good" (△), was determined as "good (○)" if 1.0 × 10 1 (number / cm 3) or less.

また、γ線照射環境下での水トリー特性の評価は、残りの試験用サンプル5個を用いて行った。すなわち、試験用サンプル5個を水入りの銅製容器に入れ、この銅製容器をγ線照射室内で90℃に保たれた恒温槽内に配置し、γ線を0.125kGy/hの線量率で照射しつつ、銅製容器と試験用サンプルの導体との間に50Hz、3kVの交流電圧を500日間印加した後、上記同様の方法により水トリーの長さを計測、水トリーの発生個数を計数し、判定した。   In addition, the evaluation of water tree characteristics under the environment of γ-ray irradiation was performed using the remaining five test samples. That is, 5 test samples are placed in a copper container filled with water, the copper container is placed in a thermostatic chamber maintained at 90 ° C. in a γ-ray irradiation chamber, and γ-rays are applied at a dose rate of 0.125 kGy / h. While irradiating, an AC voltage of 50 Hz and 3 kV was applied between the copper container and the conductor of the test sample for 500 days, then the length of the water tree was measured by the same method as above, and the number of water trees generated was counted. Judged.

上記表より、保護層4をアミド基濃度12.0[基/100atom]以下の脂肪族ポリアミドにより構成した実施例1〜6は、そのアミド基濃度が12.0[基/100atom]より多い比較例1、2と比較して、高温水中での水トリー特性が良く、また、保護層4をポリ塩化ビニル樹脂により構成した比較例3と比較して、γ線照射環境下での水トリー特性が良いことが分かる。   From the above table, Examples 1 to 6 in which the protective layer 4 is composed of an aliphatic polyamide having an amide group concentration of 12.0 [group / 100 atom] or less have a comparison in which the amide group concentration is higher than 12.0 [group / 100 atom]. Compared with Examples 1 and 2, water tree characteristics in high-temperature water are good, and compared with Comparative Example 3 in which the protective layer 4 is made of polyvinyl chloride resin, water tree characteristics in a γ-irradiation environment I understand that is good.

また、絶縁層3をポリエチレンに不飽和シラン化合物及び有機化過酸化物を加えてグラフト重合したシラングラフトポリマを主体とする樹脂組成物、あるいはポリエチレンとビニルシランの共重合樹脂組成物により構成し、そして、絶縁層3をシロキサン触媒の下で水(飽和水蒸気)と接触させることにより架橋した実施例1〜6は、他の架橋方法で架橋した比較例4、5と比較して、保護層の外観に割れや変色が見られず良好な外観を有することが分かる。   The insulating layer 3 is composed of a resin composition mainly composed of a silane graft polymer obtained by graft polymerization by adding an unsaturated silane compound and an organic peroxide to polyethylene, or a copolymer resin composition of polyethylene and vinyl silane, and Examples 1 to 6, which were crosslinked by bringing the insulating layer 3 into contact with water (saturated steam) under a siloxane catalyst, were compared with Comparative Examples 4 and 5 which were crosslinked by other crosslinking methods. It can be seen that there is no cracking or discoloration, and that it has a good appearance.

また、絶縁層3と保護層4を同時あるいはタンデムに押し出しにより被覆して設けた実施例1〜6と比較例1〜5は、いずれも、絶縁層3と保護層4を別工程で押し出しにより被覆して設けた比較例6と比較して、押出被覆後の両者の界面に異物や剥離が少なく界面の状態が良好であることが分かる。   In Examples 1 to 6 and Comparative Examples 1 to 5 in which the insulating layer 3 and the protective layer 4 are coated simultaneously or in tandem by extrusion, both the insulating layer 3 and the protective layer 4 are extruded in separate steps. Compared to Comparative Example 6 provided by coating, it can be seen that the interface between the two after extrusion coating has less foreign matter and peeling, and the interface state is good.

本発明は、以上の実施の形態の限定されることなく、その発明の範囲において種々の改変が可能であることは言うまでもない。   It goes without saying that the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the invention.

1 導体
2 導体遮蔽層
3 絶縁層
4 保護層
5 水中モータ用電線
DESCRIPTION OF SYMBOLS 1 Conductor 2 Conductor shielding layer 3 Insulating layer 4 Protective layer 5 Electric wire for underwater motors

Claims (3)

銅導体上に、導体遮蔽層、絶縁層、保護層を順次設けて構成した水中モータ用電線において、前記保護層をアミド基濃度12.0[基/100atom]以下の脂肪族ポリアミドにより構成すると共に、前記絶縁層をポリエチレンに不飽和シラン化合物及び有機化過酸化物を加えてグラフト重合したシラングラフトポリマを主体とする樹脂組成物またはポリエチレンとビニルシランの共重合樹脂組成物により構成したことを特徴とする水中モータ用電線。   In an underwater motor electric wire configured by sequentially providing a conductor shielding layer, an insulating layer, and a protective layer on a copper conductor, the protective layer is made of an aliphatic polyamide having an amide group concentration of 12.0 [group / 100 atom] or less. The insulating layer is composed of a resin composition mainly composed of a silane graft polymer obtained by graft polymerization by adding an unsaturated silane compound and an organic peroxide to polyethylene, or a copolymer resin composition of polyethylene and vinyl silane. Electric wire for underwater motor. 前記絶縁層と前記保護層を、同時押し出しまたはタンデム押し出しにより被覆して設けたことを特徴とする請求項1に記載の水中モータ用電線。   2. The electric wire for a submersible motor according to claim 1, wherein the insulating layer and the protective layer are provided so as to be covered by simultaneous extrusion or tandem extrusion. 前記導体遮蔽層を、エナメル層または半導電性層により構成したことを特徴とする請求項1又は2に記載の水中モータ用電線。   The electric wire for submersible motors according to claim 1 or 2, wherein said conductor shielding layer is constituted by an enamel layer or a semiconductive layer.
JP2010052841A 2009-06-26 2010-03-10 Underwater motor wires Active JP5556254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010052841A JP5556254B2 (en) 2009-06-26 2010-03-10 Underwater motor wires

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009152118 2009-06-26
JP2009152118 2009-06-26
JP2010052841A JP5556254B2 (en) 2009-06-26 2010-03-10 Underwater motor wires

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014111805A Division JP5959573B2 (en) 2009-06-26 2014-05-30 Electric wire for submersible motor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011029147A true JP2011029147A (en) 2011-02-10
JP5556254B2 JP5556254B2 (en) 2014-07-23

Family

ID=43637641

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010052841A Active JP5556254B2 (en) 2009-06-26 2010-03-10 Underwater motor wires
JP2014111805A Active JP5959573B2 (en) 2009-06-26 2014-05-30 Electric wire for submersible motor and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014111805A Active JP5959573B2 (en) 2009-06-26 2014-05-30 Electric wire for submersible motor and manufacturing method thereof

Country Status (1)

Country Link
JP (2) JP5556254B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171041A1 (en) * 2013-04-19 2014-10-23 三菱電機株式会社 Production method for molded article of silane crosslinked polyethylene resin, production method for molded rod, and production device for same
CN110580975A (en) * 2019-09-30 2019-12-17 合肥恒大江海泵业股份有限公司 water-resistant winding wire and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106229061A (en) * 2016-08-30 2016-12-14 无锡江南电缆有限公司 A kind of crosslinked polyetylene insulated nylon protection of electrical cable
CN106356124A (en) * 2016-11-25 2017-01-25 江苏奇鹰电线电缆有限公司 Flexible high-temperature resistant electric wire cable
CN106814399A (en) * 2016-12-29 2017-06-09 江苏海上龙源风力发电有限公司 A kind of culture zone submarine cable location detection methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186415A (en) * 1986-02-13 1987-08-14 株式会社東芝 Magnet wire for water-proof sumerged motor
JPS62256312A (en) * 1986-04-30 1987-11-09 昭和電線電纜株式会社 Manufacture of magnet wire for high voltage submerged motor
JP2001014946A (en) * 1999-06-28 2001-01-19 Hitachi Cable Ltd Electric wire and cable
JP2002170436A (en) * 2000-11-30 2002-06-14 Hitachi Cable Ltd Cross-linked polyethylene electric cable and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186415A (en) * 1986-02-13 1987-08-14 株式会社東芝 Magnet wire for water-proof sumerged motor
JPS62256312A (en) * 1986-04-30 1987-11-09 昭和電線電纜株式会社 Manufacture of magnet wire for high voltage submerged motor
JP2001014946A (en) * 1999-06-28 2001-01-19 Hitachi Cable Ltd Electric wire and cable
JP2002170436A (en) * 2000-11-30 2002-06-14 Hitachi Cable Ltd Cross-linked polyethylene electric cable and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171041A1 (en) * 2013-04-19 2014-10-23 三菱電機株式会社 Production method for molded article of silane crosslinked polyethylene resin, production method for molded rod, and production device for same
JP5933823B2 (en) * 2013-04-19 2016-06-15 三菱電機株式会社 Method for manufacturing molded product of silane-crosslinked polyethylene resin, method for manufacturing rod-shaped molded product, and apparatus for manufacturing the same
CN110580975A (en) * 2019-09-30 2019-12-17 合肥恒大江海泵业股份有限公司 water-resistant winding wire and manufacturing method thereof

Also Published As

Publication number Publication date
JP2014194949A (en) 2014-10-09
JP5556254B2 (en) 2014-07-23
JP5959573B2 (en) 2016-08-02

Similar Documents

Publication Publication Date Title
JP5959573B2 (en) Electric wire for submersible motor and manufacturing method thereof
US10553332B2 (en) Cable
EA010339B1 (en) Low voltage power cable with polyolefin-based insulation layer
JP3966632B2 (en) Wire covering resin composition and insulated wire
JP2009277580A (en) Electric wire for submersible motor
RU2578306C2 (en) Crosslinkable elastomeric composition
JP2011049116A (en) Fire-resistant composition for electric cable coating, and electric cable
JP2009284593A (en) Electric wire for submersible motors
WO2022030264A1 (en) Insulation wire
JP3682304B2 (en) Silane cross-linked polyethylene pipe
JP2020188019A (en) cable
JP2011103252A (en) Electric wire for submersible motor
JP2001256833A (en) Composition for electrical insulation and electric wire and cable
JP2011103204A (en) Electric wire for submersible motor and its manufacturing method
CA2686291A1 (en) A curable composition for medium and high voltage power cables
JP2001143540A (en) Fire retardant electric wire and cable
JP4495130B2 (en) Wire covering resin composition and insulated wire
JPWO2019087505A1 (en) cable
JP2000285735A (en) Wire and cable
JPH08199013A (en) Semiconductive resin composition and crosslinked polyethylene insulated power cable
JP2005044596A (en) Nonphosphate high-flame-resistance high-strength nonhalogen insulated wire
JPH06267334A (en) Electrically insulating composition and wire and/or cable
JPH08185712A (en) Electric wire and cable
JPH05258612A (en) Electric insulator for electric wire/cable
JP2013163797A (en) Resin composition for watertight material and insulated wire having water tight material using the composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120622

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R150 Certificate of patent or registration of utility model

Ref document number: 5556254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350