JPH01133015A - Focus detector and its production - Google Patents

Focus detector and its production

Info

Publication number
JPH01133015A
JPH01133015A JP28944887A JP28944887A JPH01133015A JP H01133015 A JPH01133015 A JP H01133015A JP 28944887 A JP28944887 A JP 28944887A JP 28944887 A JP28944887 A JP 28944887A JP H01133015 A JPH01133015 A JP H01133015A
Authority
JP
Japan
Prior art keywords
optical axis
lens
light
focus detection
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28944887A
Other languages
Japanese (ja)
Inventor
Takao Yamaguchi
孝夫 山口
Atsushi Kawamura
篤 川村
Toshiro Ozawa
小沢 敏朗
Shuichi Kikuchi
修一 菊地
Nobuaki Ono
信昭 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP28944887A priority Critical patent/JPH01133015A/en
Publication of JPH01133015A publication Critical patent/JPH01133015A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To improve the accuracy of focus detection by disposing a filter having such a density distribution as to negate the nonuniformity in the light quantity distribution in the diametral direction centering at the optical axis, which nonuniformity is generated in an optical system of a pupil splitting system, on the optical axis forward of the intersected point excluding a conjugate position. CONSTITUTION:The filter 7 which has the density changing gradually in accordance with the distances from the optical axis X and in which the change of the density changes symmetrically with the optical axis is disposed on the optical axis X except the conjugate position R of the apertures of imaging lens 4a, 4b nearer on a subject side than the point S where the split luminous fluxes 6a, 6b respectively split from the luminous flux from the subject in the different parts of the pupil of a photographing lens 1 and passed through said parts intersect with the optical axis X. The nonuniform light quantity distribution generated by the optical system is thereby approximately uniformly corrected. The light quantity of the image on a photodetecting element array is, therefore, uniformized with inexpensive and simple constitution. The accuracy of the focus detection is thereby improved.

Description

【発明の詳細な説明】 (a)  技術分野 本発明は、焦点検出装置およびその製造方法に関し、よ
り詳細には、撮影レンズの焦点面後方に該撮影レンズ側
より順に、該撮影レンズ光軸と同軸上にコンデンサレン
ズを、上記光軸に対称な位置に2つの結像レンズを、こ
の結像レンズによって再結像された2つの像をそれぞれ
電気的に検出し得る位置に受光素子列をそれぞれ配設し
上記2つの像を互いに比較して上記撮影レンズの焦点検
出を行うカメラの焦点検出装置およびその製造方法に関
するものである。
Detailed Description of the Invention (a) Technical Field The present invention relates to a focus detection device and a method for manufacturing the same, and more specifically, the present invention relates to a focus detection device and a method for manufacturing the same. A condenser lens is placed on the same axis, two imaging lenses are placed at symmetrical positions with respect to the optical axis, and a photodetector array is placed at a position where the two images re-formed by the imaging lenses can be electrically detected. The present invention relates to a focus detection device for a camera that detects the focus of the photographing lens by comparing the two images, and a method for manufacturing the same.

(b)  従来技術 従来、カメラの焦点検出を行う手段として種々の方式が
提案されてきたが、これらの1つとして瞳分割方式と呼
ばれる方式がある。
(b) Prior Art In the past, various methods have been proposed as means for detecting the focus of a camera, one of which is a method called a pupil division method.

第11図は、この瞳分割方式による焦点検出装置の光学
系の構成を示している。
FIG. 11 shows the configuration of an optical system of a focus detection device using this pupil division method.

第11図において、50は光軸、51はこの光軸上に配
設された撮影レンズ、52はこの撮影レンズの結像面、
53はコンデンサレンズ、54上記光軸50に対称に配
設された2つの結像レンズ54aおよび54bから成る
結像レンズ部、55は受光素子列55aおよび55bよ
り成る受光部で、結像レンズ54aおよび54bによっ
て再結像された2つの像を受ける。尚、この光学系は、
光軸50に対して対称に構成される。また、撮影レンズ
51の図中左方が被写体側である。コンデンサレンズ5
3は、入射光の向き゛を変えると同時に結像レンズ54
a 、54bのそれぞれの開口の共役点(共役位1)R
を撮影レンズ51側に作るという瞳分割上の大きな働き
をする。つまり、撮影レンズ51の結像面52上の3点
ALL、BL1およびCLIは、結像レンズ54aによ
り受光素子列55a上の3点AL2.BL2およびCL
2に結像関係を形成する。また、点AUI、BU1およ
びCUIは、上記3点ALL、BLIおよびCLIと同
一点であるが結像レンズ54bにより受光素子列55b
上の点AU2.BU2およびCO2に結像関係を形成す
る。また結像レンズの開口PL2.QL2およびPU2
.QU2は、コンデンサレンズ53により、撮影レンズ
51側にそれぞれPLI、QLIおよびPUI、QUI
の結像関係を形成する。
In FIG. 11, 50 is an optical axis, 51 is a photographic lens disposed on this optical axis, 52 is an imaging plane of this photographic lens,
53 is a condenser lens; 54 is an imaging lens section consisting of two imaging lenses 54a and 54b arranged symmetrically about the optical axis 50; 55 is a light receiving section consisting of a row of light receiving elements 55a and 55b; and 54b. Furthermore, this optical system is
It is configured symmetrically with respect to the optical axis 50. Further, the left side of the photographing lens 51 in the figure is the subject side. condenser lens 5
3, the imaging lens 54 simultaneously changes the direction of the incident light.
conjugate point (conjugate position 1) R of each aperture of a, 54b
It plays a major role in pupil division by creating the image on the photographing lens 51 side. That is, the three points ALL, BL1, and CLI on the imaging plane 52 of the photographing lens 51 are changed to the three points AL2, BL1, and CLI on the light receiving element array 55a by the imaging lens 54a. BL2 and CL
2 to form an imaging relationship. In addition, points AUI, BU1, and CUI are the same points as the above three points ALL, BLI, and CLI, but due to the imaging lens 54b, the light receiving element array 55b
Upper point AU2. An imaging relationship is formed between BU2 and CO2. Also, the aperture PL2 of the imaging lens. QL2 and PU2
.. QU2 has PLI, QLI, PUI, and QUI on the photographing lens 51 side through the condenser lens 53.
form an imaging relationship.

さて、上述のように上記光学系は、光軸50に対して対
称であるため、受光部55上の光量分布が第12図およ
び第13図に示すように均一にはならない。つまり、受
光素子列55a側では光軸50から遠い周辺部の点CL
2の光量が減少し、受光素子列55b側では同じく周辺
部の点AU2の光量が減少し、理論上、同一光量である
べき点AL2とAU2、点BL2とBU2および点CL
2とCO2のそれぞれが異った光量になり測距精度を著
しく劣化させる原因となっていた。
Now, as described above, since the optical system is symmetrical with respect to the optical axis 50, the light amount distribution on the light receiving section 55 is not uniform as shown in FIGS. 12 and 13. In other words, on the light receiving element array 55a side, the point CL in the periphery far from the optical axis 50
2 decreases, and on the light-receiving element array 55b side, the light amount at the peripheral point AU2 also decreases, and points AL2 and AU2, points BL2 and BU2, and point CL, which should theoretically have the same light amount, decrease.
2 and CO2 have different amounts of light, which causes a significant deterioration in distance measurement accuracy.

従来、この問題を解決するために例えば1分割光束56
aと56bとの開き角を狭くし、つまり点ALLとBL
Iとの間隔および点CLIとBLlとの間隔が狭くなる
ような光学系を構成して、光軸50を中心とする直径方
向の不均一な光量分布の影響を軽減させるという提案が
あるが、このように構成した場合は、スペース上の制約
を受けるという問題が新らたに発生する。
Conventionally, in order to solve this problem, for example, one divided light beam 56 was used.
The opening angle between a and 56b is narrowed, that is, the points ALL and BL
There is a proposal to reduce the influence of uneven light intensity distribution in the diametrical direction centered on the optical axis 50 by configuring an optical system such that the distance between the points CLI and BLl is narrower, and the distance between the points CLI and BLl is narrower. When configured in this way, a new problem arises in terms of space constraints.

また、例えば、特開昭62−115407号公報に示さ
れるように、受光部である光電変換素子列からの出力を
電気的に処理して上記不均一を補正するものもあるが、
コストの大幅な上昇を招くという欠点があった。
Furthermore, as shown in Japanese Patent Application Laid-open No. 62-115407, for example, there is a device that electrically processes the output from a photoelectric conversion element array that is a light receiving section to correct the above-mentioned non-uniformity.
This had the disadvantage of causing a significant increase in cost.

(C)  目的 本発明は、上述の事情に鑑みなされたもので、その目的
とするところは、安価にして簡略な構成で、受光素子列
上の像の光量を均一化し、焦点検出の精度を向上させ得
る焦点検出装置およびその製造方法を提供することにあ
る。
(C) Purpose The present invention was made in view of the above-mentioned circumstances, and its purpose is to equalize the light amount of the image on the light receiving element array and improve the accuracy of focus detection with a simple and inexpensive structure. An object of the present invention is to provide an improved focus detection device and a method for manufacturing the same.

(d)  構成 本発明は、上述の目的を達成させるために、撮影レンズ
の焦点面後方に、該撮影レンズ側より順に、該撮影レン
ズ光軸と同軸上にコンデンサレンズを、上記光軸に対称
な位置に2つの結像レンズを、この結像レンズによって
再結像された2つの像をそれぞれ電気的に検出し得る位
置に受光素子列をそれぞれ配設し上記2つの像を互いに
比較して上記撮影レンズの焦点検出を行うカメラの焦点
検出装置において、第1の発明(特許請求の範囲第1項
記載の発明)は、上記被写体からの光束が上記撮影レン
ズの瞳の異なる部分でそれぞれ分割されて通過する分割
光束が上記光軸と交差する点より上記被写体側の上記結
像レンズの開口の共役位置を除く上記光軸上に、この先
細からの距離に対応してその濃度が漸次変化し、しかも
この濃度の変化が該光軸に対して対称的に変化するフィ
ルタを配設して、光学系により生じる不均一な光量分布
を略均一に補正するように構成したことを特徴とし、第
2の発明(特許請求の範囲第2項記載の発明)は、上記
結像レンズと上記受光素子列との間の上記光軸上に、こ
の光軸からの距離に対応してその濃度が漸次変化し、し
かもこの濃度の変化が該光軸に対して対称的に変化する
フィルタを配設して、光学系により生じる不均一な光量
分布を略均一に補正するように構成したことを特徴とし
、第3の発明(特許請求の範囲第3項記載の発明)は、
撮影レンズの焦点面後方に、該撮影レンズ側より順に、
該撮影レンズ光軸と同軸上にコンデンサレンズを、上記
光軸に対称な位置に2つの結像レンズを、この結像レン
ズによって再結像された2つの像をそれぞれ電気的に検
出し得る位置に受光素子列をそれぞれ配設し上記2つの
像を互いに比較して上記撮影レンズの焦点検出を行うカ
メラの焦点検出装置の製造方法において、上記光軸上の
上記結像レンズと上記受光素子列との間の予定位置にネ
ガフィルムを配置し、上記撮影レンズの前方に配置した
所定の光源からの光束を該撮影レンズに入射させ、上記
装置を合焦状態に調整した上で上記光束をもって上記ネ
ガフィルムを露光させ、この露光されたネガフィルムを
現像することにより、上記光軸からの距離に対応してそ
の1度が漸次変化し、しかもこの濃度の変化が該光軸に
対して対称的に変化するフィルタを製作し、このフィル
タを上記予定位置に配設することを特徴としたものであ
る。
(d) Structure In order to achieve the above-mentioned object, the present invention includes a condenser lens arranged coaxially with the optical axis of the photographic lens, behind the focal plane of the photographic lens, in order from the photographic lens side, and symmetrical to the optical axis. Two imaging lenses are placed at the same positions, and a light receiving element array is placed at a position where the two images re-formed by the imaging lenses can be electrically detected, respectively, and the two images are compared with each other. In the focus detection device for a camera that detects the focus of the photographic lens, a first invention (the invention set forth in claim 1) is characterized in that the light flux from the subject is divided into different parts of the pupil of the photographic lens. On the optical axis excluding the conjugate position of the aperture of the imaging lens on the object side from the point where the divided light flux passing through the optical axis intersects with the optical axis, the density thereof gradually changes in accordance with the distance from this taper. However, the present invention is characterized in that a filter is disposed in which the density changes symmetrically with respect to the optical axis, so that the uneven light amount distribution caused by the optical system is corrected to be substantially uniform. A second invention (the invention set forth in claim 2) is characterized in that on the optical axis between the imaging lens and the light-receiving element array, the concentration is adjusted according to the distance from the optical axis. It is characterized by a structure in which a filter whose density changes gradually and whose density changes symmetrically with respect to the optical axis is arranged so that uneven light intensity distribution caused by the optical system is corrected to be substantially uniform. The third invention (the invention described in claim 3) is
Behind the focal plane of the photographic lens, in order from the photographic lens side,
a condenser lens coaxially with the optical axis of the photographing lens, two imaging lenses at positions symmetrical to the optical axis, and positions where the two images re-formed by the imaging lenses can be electrically detected. In the method for manufacturing a focus detection device for a camera, the imaging lens and the light receiving element array on the optical axis are arranged on the optical axis, and the imaging lens and the light receiving element array are arranged on the optical axis, respectively, and the focus of the photographing lens is detected by comparing the two images with each other. A negative film is placed at a predetermined position between the photographic lens, a light beam from a predetermined light source placed in front of the photographic lens is made to enter the photographic lens, and the device is adjusted to a focused state, and the light beam is brought into the By exposing a negative film to light and developing the exposed negative film, the degree changes gradually in accordance with the distance from the optical axis, and this change in density is symmetrical with respect to the optical axis. The present invention is characterized in that a filter that changes in shape is manufactured and this filter is disposed at the predetermined position.

以下、本発明の実施例を添付図面に基づいて具体的に説
明する。
Embodiments of the present invention will be specifically described below with reference to the accompanying drawings.

第1図および第2図は、それぞれ第1の発明に係る焦点
検出装置の第1実施例および第2実施例の構成を示す側
面図である。尚、第1図と第2図との相異点は、フィル
タの配設位置が異なることのみなので、フィルタ以外は
同一の番号を付すことにする。
1 and 2 are side views showing the configurations of a first embodiment and a second embodiment of a focus detection device according to the first invention, respectively. Incidentally, the only difference between FIG. 1 and FIG. 2 is that the positions of the filters are different, so the same numbers are given to everything other than the filters.

第1図および第2図において、1は撮影レンズ、2はこ
の撮影レンズ1の後方に形成される該撮影レンズ1の結
像面、3はさらに上記撮影レンズ1の光軸X上の上記結
像面2の後方に配設されるコンデンサレンズ、4は上記
光軸Xに対して対称に配設され、上記コンデンサレンズ
3と共に分割光束(後述)を再結像させる1対の結像レ
ンズ4a 。
1 and 2, 1 is a photographing lens, 2 is an image plane of the photographic lens 1 formed behind the photographic lens 1, and 3 is the image forming surface of the photographic lens 1 on the optical axis X. A condenser lens 4 disposed behind the image plane 2 is disposed symmetrically with respect to the optical axis .

4bより成る結像レンズ部、5は上記再結像された一対
の像を電気的に検出し得る位置に配設された一対の受光
素子列5a 、5bより成る受光部で、上記一対の像に
対応する電気的出方を互いに比較して焦点検出を行うよ
うに構成されている。
4b is an imaging lens section, and 5 is a light receiving section consisting of a pair of light receiving element arrays 5a and 5b disposed at a position where the pair of re-imaged images can be electrically detected. It is configured to perform focus detection by comparing the electrical outputs corresponding to each other.

尚、上記光学系は、すべて光軸Xに対して対称に構成さ
れている(以下、このことを「光軸対称」という)。ま
た、図示しないが撮影レンズ1の前方(図中左方)に被
写体があるものとする。
Note that all of the above optical systems are configured symmetrically with respect to the optical axis X (hereinafter, this will be referred to as "optical axis symmetry"). Although not shown, it is assumed that there is a subject in front of the photographic lens 1 (to the left in the figure).

6はこの被写体からの光束が上記撮影レンズ1のそれぞ
れ異なる瞳の部分で分割されて通過する分割光束6aお
よび6b等をまとめて示す上記分側光束、Sはこの分割
光束6が光軸Xと交わる交点、7および8はいずれも光
軸X上に直交するように配設されるフィルタで、7は上
記交点Sと撮影レンズ1との間に位置し、光軸からの距
離(垂直距離)が増加するに伴ってその濃度が漸次減少
し、しかもこの減少が光軸対称に分布するように構成さ
れた第1実施例のフィルタ、8は逆に、撮影レンズ1の
前方に位置し、光軸Xからの距離が増加するに伴ってそ
の濃度が漸次増加し、しかもこの漸次増加が光軸Xに対
して対称に分布するように構成された第2実施例のフィ
ルタである。また、上記光学系において、撮影レンズ1
の結像面上の3点ALL、BLIおよびCLIは、結像
レンズ4aにより受光素子列5a上の3点AL2゜BL
2およびCL2に結像関係を持つように構成され、また
、点AUI、BUIおよびCUIは、上記3点ALL、
BLIおよびCLIと同一点であるが結像レンズ4bに
より受光素子列5b上の点AU2.BU2およびCu2
に結像関係を持つように構成され、さらに結像レンズ部
4のそれぞれの開口PL2.QL2およびPU2.QU
2は、コンデンサレンズ3により、撮影レンズ1側にそ
れぞれPLI、QLIおよびPUl、QUIの結像関係
を持つように構成されている。
Reference numeral 6 indicates the above-mentioned split light flux 6a and 6b, etc., in which the light flux from the subject is divided at different pupil portions of the photographing lens 1 and passes through them, and S indicates that the divided light flux 6 is on the optical axis The intersecting points 7 and 8 are both filters disposed perpendicular to the optical axis On the contrary, the filter 8 of the first embodiment is configured such that the density gradually decreases as the light increases, and this decrease is distributed symmetrically about the optical axis. The filter of the second embodiment is configured such that the density gradually increases as the distance from the axis X increases, and this gradual increase is distributed symmetrically with respect to the optical axis X. Further, in the above optical system, the photographing lens 1
The three points ALL, BLI and CLI on the imaging plane of
2 and CL2, and the points AUI, BUI, and CUI are configured to have an imaging relationship with the above three points ALL,
Point AU2. which is the same point as BLI and CLI, but on the light receiving element array 5b by the imaging lens 4b. BU2 and Cu2
The imaging lens unit 4 is configured to have an imaging relationship with each aperture PL2 . QL2 and PU2. QU
2 is configured to have an imaging relationship of PLI, QLI, PUl, and QUI on the photographing lens 1 side by a condenser lens 3, respectively.

そして、フィルタ7および8を除いた第1図および第2
図の光学系は、第11図に示した光学系と同様に、受光
部5上の光軸Xを中心とする直径方向に光量分布の不均
一を生じる特性を持っているものとする。
1 and 2 excluding filters 7 and 8.
It is assumed that the optical system shown in the figure has a characteristic that, like the optical system shown in FIG. 11, the light quantity distribution is non-uniform in the diametrical direction centered on the optical axis X on the light receiving section 5.

第3図および第4図は、上記実施例の受光部S上の光量
分布を示すグラフで、第3図は受光素子列5a上の光量
分布、第4図は受光素子列5b上の光量分布を示してい
る。第3図および第4図において、横軸は受光部5上の
位置、縦軸はその光量である。尚、DSは光軸からの距
離(この図では離れる方向)を示している。
3 and 4 are graphs showing the light amount distribution on the light receiving section S of the above embodiment, FIG. 3 is the light amount distribution on the light receiving element row 5a, and FIG. 4 is the light amount distribution on the light receiving element row 5b. It shows. In FIGS. 3 and 4, the horizontal axis represents the position on the light receiving section 5, and the vertical axis represents the amount of light. Note that DS indicates the distance from the optical axis (in this figure, the direction away from the optical axis).

第5図および第6図は、それぞれ第1実施例のフィルタ
7および第2実施例のフィルタ8の濃度分布を示すグラ
フである。同図において、横軸はOを光軸Xの位置とす
る光軸からの距MDSを示し、縦軸はその濃度を示す。
5 and 6 are graphs showing the concentration distribution of the filter 7 of the first embodiment and the filter 8 of the second embodiment, respectively. In the figure, the horizontal axis shows the distance MDS from the optical axis with O as the position of the optical axis X, and the vertical axis shows the density.

第7図は、第2の発明に係る焦点検出装置の実施例(以
下、第3実施例という)の構成を示す側面図である。尚
、第1図および第2図と同一部分には同一符号を付して
重複した説明は省略する。
FIG. 7 is a side view showing the configuration of an embodiment (hereinafter referred to as a third embodiment) of a focus detection device according to the second invention. Note that the same parts as in FIGS. 1 and 2 are given the same reference numerals and redundant explanations will be omitted.

第7図において、9は現像されたネガフィルムより成り
、受光部5の直前に配設されたフィルタである。
In FIG. 7, reference numeral 9 denotes a filter made of developed negative film and disposed just before the light receiving section 5. As shown in FIG.

第8図および第9図は、共に第7図に示した第3実施例
における受光部5上の位置およびその光量をそれぞれ横
軸および縦軸にとった光量分布を示すグラフである。尚
、DSは光軸Xからの距離(この図では離れる方向)を
示している。
FIGS. 8 and 9 are graphs showing the light amount distribution in which the position on the light receiving section 5 and the light amount thereof are plotted on the horizontal and vertical axes, respectively, in the third embodiment shown in FIG. 7. Note that DS indicates the distance from the optical axis X (in this figure, the direction away from the optical axis).

第10図は、光軸の位置を0として光軸からの距離DS
を横軸に表わし、縦軸に第7図に示す第3実施例のフィ
ルタ9の濃度を表わして濃度分布を示すグラフである。
Figure 10 shows the distance DS from the optical axis, assuming the position of the optical axis is 0.
7 is a graph showing a concentration distribution, with the horizontal axis representing the concentration of the filter 9 of the third embodiment shown in FIG. 7 and the vertical axis representing the concentration of the filter 9 of the third embodiment shown in FIG.

次に、上述のように構成された本実施例の作用を説明す
る。まず、第1実施例において、フィルタフの配設位置
は、上述したように撮影レンズ1の後方であるが、より
詳しくは、結像レンズ4aおよび4bそれぞれの開口P
L2.QL2およびPU2.QU2の共役位置Rよりも
後方であり、かつ分割光束6a 、6bが互いに重なる
ことのない交点Sよりも前方であるから、フィルタ7は
その効果を十分に発揮するのである。ちなみに、共役位
置Rにフィルタ7を配設した場合は、結像レンズ部4の
開口PL2.QL2およびPU2.QU2上での光量分
布は変化させ得るが、受光部5上での光量分布は変化さ
せ得ない。
Next, the operation of this embodiment configured as described above will be explained. First, in the first embodiment, the arrangement position of the filter is behind the photographing lens 1 as described above, but more specifically, the aperture P of each of the imaging lenses 4a and 4b is
L2. QL2 and PU2. Since it is behind the conjugate position R of QU2 and in front of the intersection S where the divided light beams 6a and 6b do not overlap with each other, the filter 7 fully exhibits its effect. Incidentally, when the filter 7 is disposed at the conjugate position R, the aperture PL2. QL2 and PU2. Although the light amount distribution on QU2 can be changed, the light amount distribution on light receiving section 5 cannot be changed.

さて、第1実施例のフィルタフの濃度は、第5図に示す
ように光軸Xの位置0で最も高<(a<)、光軸Xの位
置Oから離れるに伴って漸次低下する(fJくなる)の
で、受光素子列5aに対してフィルタ7は、分割光束6
bのうち、結像面2上の点CLIを通る光束L1よりも
、点AL1を通る光束L2の光量を相対的に減少させる
。一方、フィルタ7がないときの上記光学系は、受光素
子5a上の点CL2の光量が点AL2の光量よりも少な
い(低下している)から、上述の作用によって、相対的
に点AL2の光量を減少させ、第3図に示すように、3
点CL2.BL2.AL2の光量を略均一化する。尚、
分割光束6aに関しても同様の考え方が成立し、第4図
に示すように受光素子列5b上の各点CU2.BU2.
AU2の光量もフィルタ7によって略均一化される。尚
、均一化(補正)された光量分布は直線が望しいが、第
3図および第4図に示すように、グラフはわずかな曲線
になる。しかし、焦点検出が受光部5上の2つの像の比
較によって検出することから、第3図および第4図のよ
うにそれぞれの特性が揃っているならば、その検出精度
に悪影響を与えることはない。
Now, as shown in FIG. 5, the concentration of the filter in the first embodiment is highest at position 0 of the optical axis Therefore, the filter 7 splits the divided light beam 6 with respect to the light receiving element array 5a.
Among b, the light quantity of the light flux L2 passing through the point AL1 is relatively reduced compared to the light flux L1 passing through the point CLI on the imaging plane 2. On the other hand, in the optical system without the filter 7, since the light amount at the point CL2 on the light receiving element 5a is smaller (decreased) than the light amount at the point AL2, the light amount at the point AL2 is relatively 3, as shown in Figure 3.
Point CL2. BL2. The light amount of AL2 is made approximately uniform. still,
The same concept holds true for the divided luminous flux 6a, and as shown in FIG. 4, each point CU2 . BU2.
The light amount of the AU2 is also made substantially uniform by the filter 7. Although it is desirable that the uniformized (corrected) light amount distribution be a straight line, the graph will be a slight curve as shown in FIGS. 3 and 4. However, since focus detection is performed by comparing two images on the light receiving section 5, if their characteristics are the same as shown in Figures 3 and 4, there will be no negative impact on the detection accuracy. do not have.

次に、第2図に示す第2実施例において、フィルタ8は
、撮影レンズ1より前方に配設され、より詳しくは、共
役位置Rより前方に配設されるので、その効果を十分発
揮する。そして、光束L1およびL2は、共役位[Rを
境に内外が入れ換わる。つまり、共役位置Rから交点S
までの間は光束L1がL2より光軸Xに対して外側にあ
り、共役位[IRより前方(被写体側)では光束L2が
Llよりも光軸Xに対して外側となる。
Next, in the second embodiment shown in FIG. 2, the filter 8 is disposed in front of the photographic lens 1, more specifically, in front of the conjugate position R, so that the filter 8 can fully exhibit its effect. . Then, the light beams L1 and L2 switch inside and outside with the conjugate position [R as the boundary. In other words, from the conjugate position R to the intersection S
Until then, the light beam L1 is on the outside with respect to the optical axis X than L2, and at the conjugate position [in front of the IR (on the subject side), the light beam L2 is on the outside with respect to the optical axis X than L1.

従って、第6図に示すように、光軸Xの位[0が最も濃
度が低く(薄く)、該位置0より離れるに伴って漸次濃
度が高く(濃く)なるような濃度分布を持つフィルタ8
によって、光束L2の光量が低下(減少)するので、第
1実施例と同様、つまり第3図に示すように受光素子列
5a上の光量分布が略均一化される。尚、受光素子列5
b上の光量分布に関しても同様の考え方が成立し、その
光量分布が第4図に示すように略均一化される。
Therefore, as shown in FIG. 6, the filter 8 has a density distribution such that the density is the lowest (lightest) at position 0 of the optical axis
As a result, the light quantity of the light beam L2 is reduced (decreased), so that the light quantity distribution on the light-receiving element array 5a is made substantially uniform as in the first embodiment, that is, as shown in FIG. 3. In addition, the light receiving element array 5
A similar concept holds true for the light amount distribution on b, and the light amount distribution is made approximately uniform as shown in FIG.

次に、第3実施例の作用を述べるに先立って、第3の発
明に係る焦点検出装置の製造方法(以下第4実施例とい
う)を説明する。
Next, before describing the operation of the third embodiment, a method for manufacturing a focus detection device according to the third invention (hereinafter referred to as the fourth embodiment) will be explained.

まず、第7図の撮影レンズ1の前方(被写体側)に白色
光源を配置し、上記光学系に白色信号を入射させる。そ
して、フィルタ9を配設する予定位置に、γ特性を最適
に選んだネガフィルムを配置し、上記光学系を合焦状態
に調整した上で上記ネガフィルムを露光きせる。上記光
学系は、光軸Xから離れるに伴って光量が低下する特性
を有しているから、上記ネガフィルムは、第12図およ
び第13図からもわかるように、受光部S上の点CL2
およびAU2に対応する部位の露光量が少なく、点AL
2およびCu2に対応する部位の露光量が最も多いこと
になる。従って、このように露光されたネガフィルムを
現象すると、点CL2およびAU2に対応する部位が最
も暗く(黒く)、点AL2およびCu2に対応する部位
が最も明かるく (白く)なる。つまり、現像されたネ
ガフィルムは、第10図に示すように、上記光学系の不
均一な光量分布を打消して補正(均一化)するような濃
度分布を有することになる。従って、この現像された上
記ネガフィルムをフィルタ9として上記予定位置に配設
して、第3実施例の焦点検出装置が製造できるのである
First, a white light source is placed in front of the photographing lens 1 (on the subject side) in FIG. 7, and a white signal is made to enter the optical system. Then, a negative film whose γ characteristic is optimally selected is placed at the planned position where the filter 9 will be placed, and the negative film is exposed after the optical system is adjusted to a focused state. Since the optical system has a characteristic that the amount of light decreases as it moves away from the optical axis
And the exposure amount of the part corresponding to AU2 is small, and the point AL
2 and Cu2 have the highest exposure amount. Therefore, when the negative film exposed in this manner is developed, the areas corresponding to the points CL2 and AU2 become the darkest (black), and the areas corresponding to the points AL2 and Cu2 become the brightest (white). In other words, as shown in FIG. 10, the developed negative film has a density distribution that cancels out and corrects (uniforms) the uneven light amount distribution of the optical system. Therefore, by disposing the developed negative film as the filter 9 at the predetermined position, the focus detection device of the third embodiment can be manufactured.

さて、次に第7図に示す第3実施例の作用を簡略に説明
する。考え方は上述の第1、第2実施例と同様で、上記
光学系の不均一な光量分布を・、第10図に示す濃度分
布を有するフィルタ9が打消して均一化し、第8図およ
び第9図に示すように受光部5上の光軸Xを中心とする
直径方向の光量分布を均一化する。そして、第3図およ
び第4図との相違点は、グラフが直線になっていること
である。つまり、当該光学系の不均一な光量分布特性を
そのまま逆利用してフィルタ9を製作方法を採用したか
ら、均一化(補正)の精度が高くなるのである。
Next, the operation of the third embodiment shown in FIG. 7 will be briefly explained. The idea is the same as in the first and second embodiments described above, and the filter 9 having the density distribution shown in FIG. 10 cancels out the uneven light amount distribution of the optical system and makes it uniform. As shown in FIG. 9, the light quantity distribution in the diametrical direction centered on the optical axis X on the light receiving section 5 is made uniform. The difference between FIG. 3 and FIG. 4 is that the graph is a straight line. In other words, since the filter 9 is fabricated by directly utilizing the non-uniform light intensity distribution characteristics of the optical system, the accuracy of uniformization (correction) is increased.

このように、本実施例によれば、光軸対称に構成された
、いわゆる瞳分割方式の光学系に発生する光軸Xを中心
とする直径方向の光量分布の不均一を、まず、第1実施
例および第2実施例においては、共役位置Rを除く交点
Sより前方の光軸上に、上記不均一を打消すような濃度
分布を持ったフィルタ7および8を配設したから、受光
部5上の光量分布が略均一化され、焦点検出の精度を向
上させることができるという利点がある。
As described above, according to this embodiment, the non-uniformity of the light quantity distribution in the diametrical direction centered on the optical axis In the embodiment and the second embodiment, filters 7 and 8 having density distributions that cancel out the above-mentioned non-uniformity are disposed on the optical axis in front of the intersection S excluding the conjugate position R. There is an advantage that the light amount distribution on the lens 5 is made substantially uniform, and the accuracy of focus detection can be improved.

また、第4実施例の製造方法として、上述した光量分布
の不均一を有する光学系の受光部5(厳密にはその直前
の予定位置)上の不均一な光量分布をそのままネガフィ
ルムに露光してフィルタ9を製作し、これを上記予定位
置に配設して第3実施例と同様に構成したので、フィル
タ9の製作が極めて容易に行えるという利点があり、さ
らに当該光学系の光量分布特性をより高精度で補正(均
一化)できるという利点がある。
In addition, as a manufacturing method of the fourth embodiment, the non-uniform light intensity distribution on the light receiving part 5 (strictly speaking, the scheduled position immediately before it) of the optical system having the above-mentioned non-uniform light intensity distribution is directly exposed to a negative film. Since the filter 9 was fabricated using the above-mentioned method and arranged in the above-mentioned predetermined position to have the same configuration as in the third embodiment, there is an advantage that the filter 9 can be fabricated extremely easily, and furthermore, the light intensity distribution characteristics of the optical system can be improved. This has the advantage of being able to correct (uniform) with higher precision.

尚1本発明は、上述の実施例に限定されるものではなく
、その要旨を逸脱しない範囲内で、種々の変形実施が可
能であることは勿論である。
Note that the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made without departing from the spirit of the invention.

例えば、第1の発明において、フィルタ7および8は撮
影レンズ1と独立した部材より構成するに限らず、撮影
レンズ1のレンズ表面に、所定の濃度分布を持つ薄膜を
形成してもよい。また、レンズ材料自体が濃度分布を有
するような材料を用いて撮影レンズ1を構成し、フィル
タ7.8を兼ねるようにしてもよい。
For example, in the first invention, the filters 7 and 8 are not limited to being composed of members independent of the photographic lens 1, but may be formed as thin films having a predetermined concentration distribution on the lens surface of the photographic lens 1. Further, the photographing lens 1 may be constructed using a material that has a density distribution itself, and may also serve as the filter 7.8.

上記第1〜第3実施例における各フィルタは、所定の光
路と光路外との間を可動なるように構成し、撮影時に光
路外に退避させるように構成してもよい。
Each of the filters in the first to third embodiments may be configured to be movable between a predetermined optical path and outside the optical path, and may be configured to be retracted outside the optical path during photographing.

(e)  効果 以上、詳述したように、撮影レンズの焦点面後方に順に
、コンデンサレンズが光軸上に配設され、2つの結像レ
ンズおよび2つの受光素子列が光軸に対称に配設され、
該光軸を中心とした直径方向に不均一な光量分布を有す
る光学系を用いた焦点検出装置において、第1の発明に
よれば、上記不均一な光量分布を打消すように光軸から
の距離に対応してその濃度が漸次変化するフィルタを分
割光束が上記光軸と交わる点より上記被写体側の、上記
結像レンズの開口の共役位置を除く上記光軸上に配設す
るように構成したから、第1の効果として、安価にして
簡略な構成で、受光素子列上の像の光量を均一化するこ
とができ、従って、焦点検出の精度を向上させることが
でき、第2の発明によれば、上記結像レンズと上記受光
素子列との間の光軸上の予定位置に、上記不均一な光量
分布を打消すように光軸からの距離に対応してその濃度
が漸次変化するフィルタを配設するように構成したから
、上記第1の効果と同様の効果を発揮させることかでき
、さらに、第3の発明によれば、上記光軸上の上記結像
レンズと受光素子列との間の予定位置にネガフィルムを
配置し上記撮影レンズの前方に配置した所定の光源から
の光束を上記光学系に入射させ、該光学系を合焦状態に
した上で上記ネガフィルムを露光させ、これを現像した
上で上記予定位置にフィルタとして配設して、焦点検出
装置を製造するようにしたので、第2の効果として、当
該光学系により一層適合した上記均一化ができ、上記第
1の効果よりもさらに高精度な焦点検出が可能な焦点検
出装置を提供することができ、第3の効果として、上記
第2の発明に係る焦点検出装置を容易にしかも低コスト
で製造することができる。
(e) Effects As detailed above, condenser lenses are arranged on the optical axis in order behind the focal plane of the photographic lens, and two imaging lenses and two light receiving element arrays are arranged symmetrically about the optical axis. established,
According to the first aspect of the invention, in a focus detection device using an optical system having a non-uniform light quantity distribution in the diametrical direction centered on the optical axis, the focus detection device uses a focus detection device that uses an optical system having a non-uniform light quantity distribution in a diametrical direction centered on the optical axis. A filter whose density gradually changes in accordance with the distance is arranged on the optical axis except for a conjugate position of the aperture of the imaging lens, which is closer to the object than the point where the divided light beam intersects with the optical axis. Therefore, the first effect is that the light intensity of the image on the light receiving element array can be made uniform with a simple and inexpensive configuration, and therefore, the accuracy of focus detection can be improved, and the second invention According to the above, at a predetermined position on the optical axis between the imaging lens and the light-receiving element array, the density thereof gradually changes in accordance with the distance from the optical axis so as to cancel out the uneven light intensity distribution. According to the third aspect of the present invention, the imaging lens and the light receiving element on the optical axis are arranged so that the same effect as the first effect can be achieved. A negative film is placed at a predetermined position between the photographic lens and the photographic lens, and a beam of light from a predetermined light source placed in front of the photographing lens is made to enter the optical system, and the optical system is brought into focus, and then the negative film is placed. Since the focus detection device is manufactured by exposing and developing the film and disposing it as a filter at the predetermined position, the second effect is that the uniformity can be made more suitable for the optical system. It is possible to provide a focus detection device capable of more accurate focus detection than the first effect, and as a third effect, the focus detection device according to the second invention can be manufactured easily and at low cost. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、それぞれ上記第1の発明に係る
焦点検出装置の第1実施例および第2実施例の光学系の
構成を示す側面図、第3図および第4図は、それぞれ上
記第1実施例および第2実施例の受光素子列5a上およ
び受光素子列5b上の光量分布をそれぞれ示すグラフ、
第5図および第6図は、それぞれ上記第1実施例のフィ
ルタおよび上記第2実施例のフィルタの濃度分布を示す
グラフ、第7図は、上記第2の発明に係る焦点検出装置
の実施例(第3実施例)の光学系の構成を示す側面図、
第8図および第9図は、それぞれ第7図に示す第3実施
例の受光素子列5aおよび5b上の光量分布を示すグラ
フ、第10図は、同じく第3実施例のフィルタのυ3度
分布を示すグラフ、第11図は、従来の瞳分割方式の光
学系を示す側面図、第12図および第13図は、それぞ
れ第11図に示す従来例の受光素子列55aおよび55
b上の光量分布を示すグラフである。 1・・・・・・撮影レンズ、     2・・・・・・
結像面。 3・・・・・・コンデンサレンズ、 4・・・・・・結像レンズ部。 4a 、4b・・・・・・結像レンズ。 5・・・・・・受光部、 5a 、5b・・・・・・受光素子列、6.6a 、6
b  ・・・・分割光束、7.8.9・・・・・・フィ
ルタ、 Ll、L2・・・・・・光束、   X・・・・・・光
軸、S・・・・・・交点、       R・・・・・
・共役位置。
1 and 2 are side views showing the configurations of optical systems of a first embodiment and a second embodiment of the focus detection device according to the first invention, respectively, and FIGS. 3 and 4 are respectively A graph showing the light amount distribution on the light receiving element row 5a and the light receiving element row 5b of the first example and the second example, respectively;
5 and 6 are graphs showing the density distribution of the filter of the first embodiment and the filter of the second embodiment, respectively, and FIG. 7 is an embodiment of the focus detection device according to the second invention. A side view showing the configuration of the optical system of (third example),
8 and 9 are graphs showing the light intensity distribution on the light receiving element rows 5a and 5b of the third embodiment shown in FIG. 7, respectively, and FIG. 10 is a υ3 degree distribution of the filter of the third embodiment, respectively. 11 is a side view showing a conventional pupil division optical system, and FIGS. 12 and 13 are graphs showing light receiving element rows 55a and 55 of the conventional example shown in FIG. 11, respectively.
It is a graph which shows the light quantity distribution on b. 1... Photography lens, 2...
Image plane. 3...Condenser lens, 4...Imaging lens section. 4a, 4b...imaging lenses. 5... Light receiving section, 5a, 5b... Light receiving element array, 6.6a, 6
b...Divided light flux, 7.8.9...Filter, Ll, L2...Light flux, X...Optical axis, S...Intersection , R...
- Conjugate position.

Claims (3)

【特許請求の範囲】[Claims] (1)撮影レンズの焦点面後方に、該撮影レンズ側より
順に、該撮影レンズ光軸と同軸にコンデンサレンズを、
上記光軸に対称な位置に2つの結像レンズを、この結像
レンズによって再結像された2つの像をそれぞれ電気的
に検出し得る位置に受光素子列をそれぞれ配設し上記2
つの像を互いに比較して上記撮影レンズの焦点検出を行
うカメラの焦点検出装置において、上記被写体からの光
束が上記撮影レンズの瞳の異なる部分でそれぞれ分割さ
れて通過する分割光束が上記光軸と交差する点より上記
被写体側の上記結像レンズの開口の共役位置を除く上記
光軸上に、この光軸からの距離に対応してその濃度が漸
次変化し、しかもこの濃度の変化が該光軸に対して対称
的に変化するフィルタを配設して、光学系により生じる
不均一な光量分布を略均一に補正するように構成したこ
とを特徴とする焦点検出装置。
(1) At the back of the focal plane of the photographic lens, in order from the photographic lens side, place a condenser lens coaxially with the optical axis of the photographic lens,
Two imaging lenses are disposed at positions symmetrical to the optical axis, and light-receiving element arrays are disposed at positions where the two images re-formed by the imaging lenses can be electrically detected, respectively.
In a camera focus detection device that detects the focus of the photographic lens by comparing two images with each other, the light beam from the subject is divided into different parts of the pupil of the photographic lens, and the divided light beams that pass through are aligned with the optical axis. On the optical axis excluding the conjugate position of the aperture of the imaging lens on the object side from the intersection point, the density changes gradually in accordance with the distance from the optical axis, and this change in density causes the light to change. What is claimed is: 1. A focus detection device characterized in that a filter that changes symmetrically with respect to an axis is disposed so as to substantially uniformly correct an uneven light amount distribution caused by an optical system.
(2)撮影レンズの焦点面後方に、該撮影レンズ側より
順に、該撮影レンズ光軸と同軸上にコンデンサレンズを
、上記光軸に対称な位置に2つの結像レンズを、この結
像レンズによって再結像された2つの像をそれぞれ電気
的に検出し得る位置に受光素子列をそれぞれ配設し上記
2つの像を互いに比較して上記撮影レンズの焦点検出を
行うカメラの焦点検出装置において、上記結像レンズと
上記受光素子列との間の上記光軸上に、この光軸からの
距離に対応してその濃度が漸次変化し、しかもこの濃度
の変化が該光軸に対して対称的に変化するフィルタを配
設して、光学系により生じる不均一な光量分布を略均一
に補正するように構成したことを特徴とする焦点検出装
置。
(2) Behind the focal plane of the photographing lens, in order from the photographing lens side, a condenser lens is placed coaxially with the optical axis of the photographing lens, and two imaging lenses are installed at positions symmetrical to the optical axis of the imaging lens. In a focus detection device for a camera, light receiving element arrays are arranged at positions where two images re-formed by can be electrically detected respectively, and the two images are compared with each other to detect the focus of the photographing lens. , on the optical axis between the imaging lens and the light-receiving element array, the density changes gradually according to the distance from the optical axis, and the change in density is symmetrical with respect to the optical axis. What is claimed is: 1. A focus detection device characterized in that the focus detection device is configured to include a filter that changes depending on the direction of the focus, so as to substantially uniformly correct the non-uniform light amount distribution caused by the optical system.
(3)撮影レンズの焦点面後方に、該撮影レンズ側より
順に、該撮影レンズ光軸と同軸上にコンデンサレンズを
、上記光軸に対称な位置に2つの結像レンズを、この結
像レンズによって再結像された2つの像をそれぞれ電気
的に検出し得る位置に受光素子列をそれぞれ配設し上記
2つの像を互いに比較して上記撮影レンズの焦点検出を
行うカメラの焦点検出装置の製造方法において、上記光
軸上の上記結像レンズと上記受光素子列との間の予定位
置にネガフィルムを配置し、上記撮影レンズの前方に配
置した所定の光源からの光束を該撮影レンズに入射させ
、上記装置を合焦状態に調整した上で上記光束をもって
上記ネガフィルムを露光させ、この露光されたネガフィ
ルムを現像することにより、上記光軸からの距離に対応
してその濃度が漸次変化し、しかもこの濃度変化が該光
軸に対して対称であるフィルタを製作し、このフィルタ
を上記予定位置に配設することを特徴とする焦点検出装
置の製造方法。
(3) Behind the focal plane of the photographing lens, in order from the photographing lens side, a condenser lens is placed coaxially with the optical axis of the photographing lens, and two imaging lenses are installed at positions symmetrical to the optical axis of the imaging lens. A focus detection device for a camera that detects the focus of the photographing lens by disposing a light receiving element array at a position where two images re-formed by can be electrically detected respectively, and comparing the two images with each other. In the manufacturing method, a negative film is placed at a predetermined position between the imaging lens and the light receiving element array on the optical axis, and a light beam from a predetermined light source placed in front of the taking lens is directed to the taking lens. After adjusting the device to a focused state, the negative film is exposed to the light flux, and the exposed negative film is developed, so that its density gradually increases in accordance with the distance from the optical axis. 1. A method for manufacturing a focus detection device, comprising: manufacturing a filter whose density changes and whose density change is symmetrical with respect to the optical axis, and arranging this filter at the predetermined position.
JP28944887A 1987-11-18 1987-11-18 Focus detector and its production Pending JPH01133015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28944887A JPH01133015A (en) 1987-11-18 1987-11-18 Focus detector and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28944887A JPH01133015A (en) 1987-11-18 1987-11-18 Focus detector and its production

Publications (1)

Publication Number Publication Date
JPH01133015A true JPH01133015A (en) 1989-05-25

Family

ID=17743394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28944887A Pending JPH01133015A (en) 1987-11-18 1987-11-18 Focus detector and its production

Country Status (1)

Country Link
JP (1) JPH01133015A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1762875A1 (en) * 2005-09-13 2007-03-14 Canon Kabushiki Kaisha Autofocus imaging optical system and image pickup device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1762875A1 (en) * 2005-09-13 2007-03-14 Canon Kabushiki Kaisha Autofocus imaging optical system and image pickup device
US8135267B2 (en) 2005-09-13 2012-03-13 Canon Kabushiki Kaisha Autofocus imaging optical system and image pickup device

Similar Documents

Publication Publication Date Title
JPH0239763B2 (en)
US4670645A (en) Focus detecting device with shading reduction optical filter
JPS58156908A (en) Optical system for detecting focusing state
US4792669A (en) Focus detecting device having two selectively movable lenses
JPS6269217A (en) Focus detecting device
JPS63118112A (en) Focus detector
US20020025155A1 (en) Camera and focal point detection apparatus
JPH03235906A (en) Focus detecting device
JPH01133015A (en) Focus detector and its production
JPH0713699B2 (en) Projection system for automatic focus detection
JP3586365B2 (en) Photometric device
JPH01120518A (en) Focus detecting device
JPH0667088A (en) Focus detecting device
JPS6032013A (en) Optical system for detecting focus
JP2632178B2 (en) Automatic focus detection device for camera
JPH01266503A (en) Focus detecting device
JP2757373B2 (en) Focus detection device
JP2002174766A (en) Focus detector
JPH01243009A (en) Focus detecting device
JPS59129811A (en) Focusing detecting device
JP2903472B2 (en) Distance measuring device
JPS5999407A (en) Ttl type focus detector
JPS6278518A (en) Focus detecting device
JPS5910911A (en) Detector of focal position
JPH01185505A (en) Focus detecting device